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Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical market. They are used
in a broad range of disease fields, such as autoimmune diseases, cancer, inflammation and infectious diseases. The
growth of the segment has necessitated development of new analytical platforms for faster and better antibody
selection and characterization. Early quality control and risk assessment of biophysical parameters help prevent failure
in later stages of antibody development, and thus can reduce costs and save time. Critical parameters such as
aggregation, conformational stability, colloidal stability and hydrophilicity, are measured during the early phase of
antibody generation and guide the selection process of the best lead candidates in terms of technical developability.
We report on the use of a novel instrument (ActiPix/Viscosizer) for measuring both the hydrodynamic radius and the
absolute viscosity of antibodies based on Taylor dispersion analysis and UV area imaging. The looped microcapillary-
based method combines low sample consumption, fast throughput and high precision compared to other
conventional methods. From a random panel of 130 antibodies in the early selection process, we identified some with
large hydrodynamic radius outside the normal distribution and others with non-Gaussian Taylor dispersion profiles. The
antibodies with such abnormal properties were confirmed later in the selection process to show poor developability
profiles. Moreover, combining these results with those of the viscosity measurements at high antibody concentrations
allows screening, with limited amounts of materials, candidates with potential issues in pre-formulation development.

Introduction

Therapeutic monoclonal antibodies (mAbs) represent a
fast-growing class of therapeutics, with at least 30 antibodies
approved in the US and the EU and more pending registra-
tion.1 The development of these new biologics requires an
effective discovery platform integrating aspects of both biol-
ogy and developability to identify the best lead candidates for
clinical development. Indeed, several important risk factors,
such as aggregation, high viscosity, and low stability, need to
be addressed during the early phase of antibody generation
and guide the selection process of the best lead candidates in

terms of technical developability and possible effects on safety
and efficacy.2-4 In the early discovery phase, which typically
involves evaluation of hundreds of candidates, the major bio-
physical characteristics usually screened are aggregation pro-
pensity and thermostability. At a later stage, other parameters
important in formulation, such as viscosity, colloidal stability
and self-interactions, are assessed for fewer candidates. New
methods using less material and higher throughput have been
described recently, allowing these assays to be performed early
in the selection phase.5-10 A novel approach for the measure-
ment of the hydrodynamic radius using nanoliters of solution
has been described recently based on an instrument
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combining UV area imaging detection and a microcapillary
loop.11-15 Moreover, the same instrumental combination
allows measurement of the viscosity of protein solutions in a
fast throughput. We report on the Rh and viscosity measure-
ments of a panel of antibodies representative of candidates
chosen during the early selection process, and we show the
potential of this technique to help identifying mAbs with
potential developability issues.

Results

Method validation and reliability of the instrument
measurements

Over a 2-year period, the performances of the instrument were
closely monitored by repeated injections of a reference mAb, a
mouse IgG2a, at the beginning and at the end of each series of
measurements. The inter-assay and intra-assay variations were
3.3% and 1.2%, respectively, (100 measurements), indicative of
the high precision of the measurements and despite many capil-
lary changes (Table 1). The average life-span of one capillary was
between 50 to 200 injections depending on the quality of the
samples injected. All measurements were done in triplicates. The
reference antibody was stored in phosphate-buffered saline PBS
at 4�C at a concentration of 1.5 mg/ml and was routinely moni-
tored for aggregation level by size-exclusion liquid chromatogra-
phy (SEC-LC) to confirm its purity of more than 98%. The
average Rh of this antibody was 5.57 nm.

Comparison between dynamic light scattering and Taylor
dispersion analysis

The Rh of a panel of 27 mAbs was measured by Taylor disper-
sion analysis (TDA) and compared to that measured by dynamic
light scattering (DLS). The amount of soluble aggregates present
in the antibody preparation varied between 0.1 and 11.6% as
measured by SEC-LC. As shown in Figure 1, there was no signif-
icant differences between both methods as confirmed by t-test
(P D 0.4). The average Rh measured by TDA was 5.77 nm
(STD D 0.28) and by DLS 5.79 nm (STD D 0.39).

Correlation between Rh and molecular mass
The Rh of IgGs, antibody fragments and a tetravalent bispe-

cific IgG-like molecule16 were measured by TDA and the results
plotted against their molecular masses measured by mass spec-
trometry. As shown in Figure 2, there was a good linear

correlation between both measurements. No significant differen-
ces were found between mAbs from mouse or human origin, or
between aglycosylated and wild type hIgG1. Moreover, accurate
Rh measurements down to 0.2 nm were obtained by TDA using
small peptides (results not shown).

Rh distribution of a random panel of mAbs
We measured the Rh of a random panel of 130 mAbs formu-

lated in PBS buffer at low protein concentration (1.5 mg/ml) to
minimize any viscosity effect, but keep a good UV signal-to-noise
ratio. The panel contained 106 human mAbs generated by phage
display technology17 and 24 mouse mAbs derived from hybrid-
oma cells. The Rh of 20 mAbs (15%) could not be determined
by TDA due to the poor fitting of the UV peaks. Indeed, the UV
chromatograms showed significant peak tailing, precluding any
fit to a Gaussian curve (Fig. S1). These antibodies had low
amounts of aggregates (<10%) as evidenced by SEC-LC, ruling
out that aggregation precluded the peak fitting. DLS analysis

Table 1. Performance summary of the reference mouse IgG2a

Rh (nm) 5.57
STD (nm) 0.18
Inter-CV (%) 3.3
Intra-CV (%) 1.2
No. of injections 300
No. of capillary changes 16

The reference mIgG2a at 1.5 mg/mL was injected in triplicates at the
beginning and the end of each series of measurements.

Figure 1. Comparison between the Rh measured by TDA and by DLS of a
panel of 27 mAbs.

Figure 2. Linear correlation between the Rh measured by TDA and the
molecular mass measured by mass spectrometry (r2 D 0.99).
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showed that most Rh values were in the normal range, but some
with high polydispersity (Table S1). However, 16 of 20 showed
strong peak tailing, when run on the SEC-LC, indicative of inter-
actions with the media of the column and also very likely with
the capillary wall. These interactions could not be reversed by
changing the buffer composition or the pH. Moreover, dynamic
coating of the capillary using Tween-20 (0.01- 0.1%), BSA (up
to 0.01 mg/ml) or SDS (0.01–0.3 mM) showed no improve-
ments. The histogram distribution and scatter plot analysis of the
Rh of the remaining 110 mAbs are shown in Figure 3. The aver-
age Rh was 5.77 nm (STD D 0.49). The normality test for the
whole antibody population failed (P < 0.001) due to a few out-
liers with an Rh above 6.3 nm. One of them with the Rh of
9.1 nm was shown to be a stable dimer by SEC-MALS analysis.

Viscosity distribution
The loop capillary with dual windows combined with the high

sensitivity of the array detector allows the precise measurement of
the specific hsp

� �
and absolute viscosity .hc/ of the protein solu-

tions. The inter-assay variation measured with our reference

antibody at 1.5 mg/ml was 3.1% (n D 23). The viscosity distri-
bution of the same panel of antibodies at low concentration in
PBS is shown in Figure 4. The average viscosity was 0.93 mPa.s
(STD D 0.046), compared to the viscosity of 0.9 mPa.s for the
PBS buffer at 25�C. Three mAbs showed a viscosity more than 2
STD above the average. The scatter plot of the viscosity versus
Rh values for each MAbs shows clearly the few outliers with
either higher viscosity or Rh. The Rh of the mAbs described
above were re-calculated using the measured viscosity instead of
that of the vehicle, and 4 out of the 7 outliers had an Rh in the
normal range.

Viscosity measurement and antibody concentration
Figure 5 shows the viscosity measured in function of antibody

concentration for 5 antibodies with known viscosity measured by
rheometry. At higher concentrations, the viscosity increases expo-
nentially. The 2 MAbs with high viscosity can be already sorted
out from those with lower viscosity at concentration as low as
25 mg/ml (Fig. 5 insert), allowing the selection of the best candi-
dates with a low amount of material.

Figure 3. Rh distribution of a random panel of 110 mAbs. (A) Scatter plot
representation of the Rh vs. mAb. The black line corresponds to the aver-
age Rh of 5.77 nm. (B) Frequency histogram of the Rh measured at
1.5 mg/ml in PBS. The black line represents the normality fitting.

Figure 4. Viscosity distribution of a random panel of 100 mAbs. (A) Fre-
quency histogram of the absolute viscosity (hc/ measured at 1.5 mg/ml
in PBS at 25�C. Shaded bars represent mAbs with a viscosity above the
average C2 STD. (B) Scatter plot representation of the viscosity versus
Rh. MAbs outside the black box have values 2 STD beyond the average
viscosity (0.93 mPa.s) or average Rh (5.77 nm).
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Discussion

The unique combination of UV area imaging and Taylor dis-
persion analysis in a microcapillary loop allows accurate measure-
ments of the hydrodynamic radius of proteins with very low
sample volumes. The method was originally based on a manual
injection device and was replaced later by an automated system,
coupling the autosampler of a CE instrument to the UV array
detector as described by Chapman and Goodall.11 Additional
studies showed that the TDA-based method allows the accurate
determination of the Rh of proteins subjected to various stress
conditions such as thermal challenge, but also the evaluation of
detailed process-related batch-to-batch variability.12-15 By com-
paring TDA with DLS, Hawe et al.12 showed that TDA allows
the accurate determination of the hydrodynamic radius of pepti-
des and proteins over a wide concentration range, with little
interference from excipients present in the sample.

By performing multiple injections of a reference antibody, we
confirmed the high precision of the Rh measurements and the
advantage of UV area imaging compared to light scattering-based
methods, the former being less prone to buffer interferences. The
average Rh of a panel of monomeric IgG molecules measured by
TDA correlated well with that obtained by DLS and to those pre-
viously published for human IgGs using photon correlation spec-
troscopy.18-19 Moreover we showed a linear correlation between
the Rh of various antibody formats and fragments. On the other
hand, we could not confirm any significant differences between
the Rh of N-glycosylated and several aglycosylated mAbs carrying
the Asn297 ! Ala mutation, as shown previously by SEC analysis
on deglycosylated antibodies.20 Likewise, there were no differen-
ces observed between the Rh of mouse and human IgGs. From a
panel of 110 mAbs, only 7 showed an Rh outside the normal dis-
tribution. However, when taking in account the absolute viscos-
ity of the antibody solution instead of that of water, we found
that 4 of them had their Rh back into the normal range, leaving
only 3 antibodies with confirmed higher Rh, pinpointing the

importance of including the absolute viscosity measurement in
the Rh calculation. Whether the larger Rh measured for the 3
mAbs is due to expanded conformation would need further
investigation. The 15% of antibodies showing abnormal TDA
with poor data fitting also showed other developability issues,
such as strong interaction with the column media during SEC-
LC that resulted in peak tailing. They were all discarded at some
stage of the preclinical selection process, suggesting that TDA
measurement is a good indicator of potential problematic anti-
bodies, using a very limited amount of material.

The same instrument was used to measure the specific and
absolute viscosity of the mAb panel. In comparison to other CE-
based methods measuring viscosity,21-22 the dual capillary win-
dow combined with the APS detector gave high precision meas-
urements of t0 and thus of Dt, providing accurate viscosity
measurements. Despite the low concentration of the antibody
solutions, some differences in viscosities were observed and influ-
enced the Rh calculation by TDA. At higher antibody concentra-
tions, viscosity increases exponentially as a result of the increase
of protein-protein interactions, which have been shown to be
dependent on the nature of the antibody.23-30 For some thera-
peutic candidates, this will lead to serious issues, when formulat-
ing them for subcutaneous injection at concentration above
100 mg/ml. Indeed, an antibody solution with a viscosity above
50 mPa.s is usually considered unsuitable for injection and
requires extensive formulation studies, including the use of vari-
ous additives to lower the viscosity.31 Moreover, optimal injec-
tion conditions, in terms of injection force, flow rate and needle
characteristics tend to call for even lower viscosity thresholds of
around 15 mPa.s.32 Based on our results, the lowest antibody
concentration to perform predictive formulation analysis using
the Viscosizer would be 25 mg/ml, considerably reducing the
amount of material needed for such studies. Taken together, our
results show that the ActiPic/Viscosizer system represents a valu-
able and complementary method to identify early candidates
with potential developability issues.

Materials & Methods

The dPBS pH 7.3 was purchased from Lonza (BE17-512Q),
L-Tyrosine from Merck (K35116671 610), the fused-silica
capillaries from Biotaq Inc. (BT075365). All mAbs and deriva-
tives were prepared in our internal antibody production facility
by transient expression in mammalian HEK-293 cells and puri-
fied by standard Protein-A affinity chromatography. They were
tested under comparable buffer and concentrations conditions,
namely in dPBS pH 7.3 at 1.5 mg/ml. The antibody concentra-
tion was measured by UV absorbance at 280 nm using a nano-
drop device and the mAb specific extinction coefficient. L-
Tyrosine solution was prepared in dPBS to a final concentration
of 0.025 mg/ml.

Rh measurement by Taylor dispersion analysis
TDA was performed on the ActiPix D100 nano-sizing system

originally developed by Paraytec Ltd, and now licensed to

Figure 5. The viscosity profiles of 5 mAb solutions were determined at
different protein concentrations. The black line represents the 50 mPa.s
empirical threshold for subcutaneous injection.

80 Volume 7 Issue 1mAbs



Malvern Instruments (Viscosizer 200). The sample (63.3 nl) at a
concentration of 1.5 mg/ml is injected by application of a pres-
sure (140 mBar) into fused silica capillary (ID:OD dimensions
of 75:360 mm) under a linear flow of buffer (2.4 mm/s) and con-
trolled temperature set at 25�C using a CE injection system
(Prince Technologies). The sample is detected twice along the
loop forming capillary passing through the UV area imaging
detector as described previously.11

UV absorbance of the protein is recorded during the first and
second passages through the APS detector, giving 2 peaks. As a
sample plug travels along a capillary, the peak begins to broaden
along the flow direction due to the Taylor dispersion and coun-
teracted by transverse diffusion. The analysis of peak broadening
was done using the Actipix D100 software (version 1.5). A
Gaussian fit was applied to the 2 UV peaks and only fits with a
R2

> 0.999 were considered for the Rh calculation. The analysis
of band broadening allows the calculation of the average hydro-
dynamic radius (Rh) by the equation:

RhD 4:kB:T : t
2
2 ¡ t21

� �
p:h:r2: t2 ¡ t1ð Þ

kB is the Boltzmann constant, T, the temperature (Kelvin), h,
the absolute viscosity of the solution, r, the capillary radius, t2,
the variance and t, the center point of the peak (Fig. 6). The
detector head is placed inside the CE, for controlled temperature.
The viscosity of water was used for the measurement (hH2O D
0.89 mPa.s), assuming that the low concentration of the antibody
brings no additional viscosity effect. The capillary was cleaned
between samples by injecting 0.5 M of sodium hydroxide during
5 min at a linear flow rate of 34.1 mm/s, and re-equilibrated in
dPBS buffer during 15 min at the same flow rate. UV absorbance
was measured at 214 nm. The analysis time was approximately
11 min per injection. Each sample was measured in triplicates.

Viscosity measurement
According to Poiseuille’s law, the

flow rate of a fluid through a capillary
under constant pressure is related to the
capillary length, internal diameter and
the viscosity. Using the ActiPix/Visco-
sizer system under constant temperature
(25�C) and pressure (2500 mBa), the
specific viscosity of a sample can be
determined from a simple Dt measure-
ment, the time needed by the sample to
pass from window one to window 2.
The specific viscosity hsp can be calcu-
lated by the equation:

hsp D Dts ¡Dtm
Dtm

� �
:SF

Where Dtm and Dts, are the times
needed by the marker and the sample to

pass from window 1 to window 2, respectively, and SF is the scal-
ing factor.

SFD 2:L

l1 C l2ð Þ

The total capillary length was 130 cm (L), the length to the
first window being 40 cm (l1) and that of the second window
being 84.7 cm (l2). The Dtm is measured by a 2 min injection of
a tyrosine solution at a concentration of 0.025 mg/ml. At this
low concentration, the viscosity of the tyrosine corresponds to
the viscosity of the buffer itself (hdPBS pH7.3, 25�C D 0.9 mPa.s)
and represents the shortest time to go from the first to the second
window. The capillary is then re-equilibrated by injection of
dPBS at pH7.3 for 2 min. The Dts is finally measured by injec-
tion of the sample at the 1.5 mg/ml concentration into the capil-
lary at a constant pressure during 2 min (Fig. 7). Finally,
between each sample, a cleaning of the capillary is done by inject-
ing dPBS buffer during 4 min followed by 0.5 M sodium
hydroxide during 2 min and re-equilibration in dPBS buffer dur-
ing 8 min at the same flow rate. The entire procedure (equilibra-
tion, viscosity measurement, cleaning) takes around 20 min at a
flow rate of 42.6 mm/s.

Rh determination with absolute viscosity correction
From the specific viscosity (hsp), the relative viscosity (hr) can

be retrieved. Knowing the viscosity of the buffer (h0,dPBS pH7.3 D
0.9 mPa.s) allows the determination of the absolute viscosity of
the sample (hc).

hc D hr:h0 D .hsp C 1/h0

As the viscosity is an important parameter in the Rh measure-
ment, the Rh obtained above can be corrected with the newly

Figure 6. Rh determination of proteins by the ActiPix/Viscosizer system. The protein sample is injected
into a capillary loop at a constant pressure. UV absorbance at 214 nm is recorded during the first and
second passages through the APS detector, respectively. The analysis of peak broadening, time (t) and
diffusion (t), due to Taylor dispersion allows the calculation of the Rh.
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calculated viscosity (hc).

Rhc D 4:kB:T : t
2
2 ¡ t21

� �
p:hc:r

2: t2 ¡ t1ð Þ

Rh measurement by DLS
DLS was measured with an Avid Nano’s W130i system using

quartz ultra-micro cuvettes. Antibodies were diluted in dPBS
buffer (h25�C: 0.906 mPA.s) to a final concentration of 1.5 mg/
ml. Light scattering was detected at 660 nm with a fixed detec-
tion angle of 90� and data were collected in automatic mode at
25�C using a solvent refractive index of 1.333. A correlation
function was done from the average of 10 measurements. The
mean Rh was determined using i-Size Software (Version 3.0).
DLS of each antibody was measured at least 3 times. DLS meas-
urements showing a polydispersity >30% were considered as not
reliable.

Aggregation measurement by SEC-LC
The aggregation level of all mAbs analyzed by TDA was mea-

sured by SEC-LC on an Agilent 1290 Infinity system equipped
with a Superdex 200, 10/300 SEC column (GE Healthcare 17–
5175–01). The sample (50 ml) was loaded on the column equili-
brated with dPBS at pH 7.3. The flow rate was 0.5 ml/min and
the protein absorbance was measured at 230 nm. The percentage

of aggregates was calculated from the
peak area at different retention times.
A comparable SEC column coupled to
a multi-angle light scattering detector
(MALS) was used to confirm the
nature of the soluble aggregates.

Mass determination by mass
spectrometry

Intact masses of antibodies and
related molecules were determined by
liquid chromatography-mass spec-
trometry using a Waters Acquity
UPLC system coupled to a Waters Q-
TOF Premier Mass Spectrometer.
Around 5 mg of antibody was injected
at a flow rate of 0.4 ml/min onto a
MassPrep micro-desalting cartridge
(Waters, 186002785) heated at 80�C,
and eluted with a water/acetonitrile
gradient (2–90%) containing 0.1%
formic acid.
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