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Leveraging multiple genomic data 
to prioritize disease-causing indels 
from exome sequencing data
Mengmeng Wu1,2, Ting Chen1,2 & Rui Jiang1,3

The emergence of exome sequencing in recent years has enabled rapid and cost-effective detection of 
genetic variants in coding regions and offers a great opportunity to combine sequencing experiments 
with subsequent computational analysis for dissecting genetic basis of human inherited diseases. 
However, this strategy, though successful in practice, still faces such challenges as limited sample size 
and substantial number or diversity of candidate variants. To overcome these obstacles, researchers 
have been concentrated in the development of advanced computational methods and have recently 
achieved great progress for analysing single nucleotide variant. Nevertheless, it still remains unclear 
on how to analyse indels, another type of genetic variant that accounts for substantial proportion 
of known disease-causing variants. In this paper, we proposed an integrative method to effectively 
identify disease-causing indels from exome sequencing data. Specifically, we put forward a statistical 
method to combine five functional prediction scores, four genic association scores and a genic 
intolerance score to produce an integrated p-value, which could then be used for prioritizing candidate 
indels. We performed extensive simulation studies and demonstrated that our method achieved high 
accuracy in uncovering disease-causing indels. Our software is available at http://bioinfo.au.tsinghua.
edu.cn/jianglab/IndelPrioritizer/.

Recent developments of high-throughput DNA sequencing technology1 and computational methods for sequenc-
ing data analysis2 have enabled the effective detection of genetic variants in the whole genome and provided a 
great opportunity to dissect genetic basis of not only Mendelian diseases3, 4 but also complex diseases5 and can-
cers6. Typically, in a disease study, a crowd of genetic variants are tested for enrichment in disease cases against 
normal controls, and variants showing significant enrichment are hypothesized to be disease-related. Further 
functional or biological experiments are needed to validate these selected variants and establish causal relation-
ships. Despite of being successful in practice, such traditional strategy faces several challenges, such as substantial 
statistical penalty induced by the large number of candidate variants, e.g. tens of thousands variants in exome and 
several millions of variants in whole-genome, and the diversity of genetic variants, e.g. SNV (single nucleotide 
variants), indel (micro-insertion or micro-deletion), SV (structural variants), etc. In ideal settings, these problems 
can be solved in some degree by increasing sample size, which can provide more statistical power for the discov-
ery of disease-related variants. However, the increase of cost and time coupled with the increase of sample size 
often prohibits large-scale sequencing in most disease studies. In contrast, computational prediction of functional 
effects of genetic variants can filter out neutral variants and significantly reduce the number of candidates, and 
thus attracts much attention in recent years.

Many methods have been proposed for predicting functional effects of SNV, such as SIFT7 and PolyPhen28 for 
coding regions, and CADD9 for noncoding regions. These methods can be roughly categorized into two groups, 
those utilize conservation of DNA or protein sequence across species to measure disruptive effects of particular 
mutations, and those directly build machine learning classifiers by using known causal and neutral SNVs as train-
ing data. These methods are applied to all possible coding SNVs to derive pre-computed prediction scores, which 
are collected in public databases, such as dbNSFP10, ANNOVAR11 and dbWGFP12. These prediction scores are 
used frequently in sequencing-based disease studies recently, and show great utilities for SNV analysis. However, 
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these methods have no specificity for diseases due to absence of phenotype information, and substantial can-
didates may remain after applying various filters. To overcome this limitation, several methods are proposed 
recently to incorporate phenotype information to prioritize disease-causing SNVs9, 13–16, showing promising per-
formance compared with traditional methods. Besides SNVs, indels are recognized to be important by an increas-
ing number of studies and a growing number of indels are discovered to be disease-causing. As of February 2017, 
nearly 40,000 indels are collected in the HGMD database17 (professional version). Although several methods 
have been developed for predicting functional effects of indels18–22, none of them considers the incorporation of 
phenotype information. To fill the gap, we proposed a method integrating phenotype information and functional 
effect predictions to prioritize indels from exome sequencing data.

Specifically, our method integrates five indel functional prediction scores, including CADD23, VEST20, SIFT18, 
DDIG19, 24 and PinPor22, four genic association scores derived from four different genomic data, including gene 
expression25, protein-protein interaction26, gene ontology27 and transcriptional regulation28, and a genic intol-
erance score named RVIS29. We transform each functional prediction score and RVIS score into a p-value by 
comparing it against the corresponding empirical null distribution. For each genic association score, we build a 
two-layered network, consisting a disease network, a gene network and known associations between diseases and 
genes, then perform random walk simulation procedure to infer association strength between given disease and 
query genes30. We also build empirical null distributions for genic association scores and transform these scores 
into p-values. Finally, we integrate these p-values into an integrated p-value by Fisher’s method with dependence 
correction. The integrated p-value thus provides a means for prioritizing indels.

We collected data from such public databases as HGMD17, 1000 Genomes Project31 and Exome Sequencing 
Project32, and we conducted a simulation studies to validate the effectiveness of our method. In simulation stud-
ies, each causal indel was spiked into the exome of a normal individual, and our method was applied to uncover 
the spiked causal indel. The simulation studies supported the effectiveness of our method for prioritizing causal 
indels and the robustness in the presence of missing data. In the future, we may further incorporate more func-
tional genomic data into our method and extend it to more types of variants.

Results
Overview of our method. As depicted in the overview paradigm (Fig. 1), our method takes a list of candi-
date indels and an OMIM33 identifier for disease of interest as input and produces a ranking list of the candidates 
as output. To achieve this goal, we first extract for each indel five functional prediction scores, including SIFT18, 
PinPor22, CADD21, DDIG19 and VEST20, from their corresponding websites. Because these scores are different 
from each other in such factors as training data, prediction method, numeric scales and so on, we transform these 
scores into p-values (detailed in “Methods”), which provides a unified representation of functionally damaging 
effects of candidate indels. Then, we quantify the association strength between genes hosting candidate indels 
and the disease of interest through a random walk model on a two-layered phenotype-gene network (detailed in 
“Methods”). We use four types of genomic data to construct the network, including gene expression25, gene ontol-
ogy27, protein-protein interaction34 and transcriptional regulation28, and thus we obtain four types of association 
scores. We also transform these association scores into p-values. Besides, we incorporate the RVIS score29, which 
quantifies genic intolerance, and transform it into a p-value. Consequently, for each indel, we obtain five p-values 
for the functional prediction scores, four p-values for the association scores and one p-value for the RVIS score. 
Next, we use Fisher’s method with dependence correction to integrate these p-values into an integrated p-value, 
which quantifies the statistical strength of each indel being causative for the given disease. Finally, we prioritize 
candidate indels according to their p-values, with indels with small p-values ranked in top positions, indicating 
that they are more likely to be causal.

Figure 1. Schematic overview of our method. Our method takes a list of candidate indels and a disease of 
interest as input and outputs a prioritized list according to the likelihood of causing the disease. For each indel, 
we extract five kinds of functional scores, four kinds of association scores and RVIS score as genomic features. 
Each genomic feature is transformed into a p-value and we use Fisher’s method with independence correction 
to integrate these p-values into an integrated p-value, which is used to prioritize candidate indels.
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Performance in simulation studies. To validate our method for prioritizing disease-causing indels, 
we conducted the following simulation studies. We first obtained positive samples by extracting from the 
HGMD database coding indels with genomic length ranging from 1 bp to 20 bp, also called micro-deletions and 
micro-insertions. For each of these causal indels, we mapped the text description of the annotated disease to 
an OMIM identifier. To ensure high data quality, we require that such a mapping must satisfy at least one of the 
following criterions: (1) the disease descriptive text in HGMD exactly matched that of the OMIM record; (2) the 
same causal variants, either in DNA sequence format or rsid, were shared by the HGMD disease and the OMIM 
record; (3) the same pubmed ID was shared by the HGMD disease and the OMIM record. Although such rules 
removed many low quality mapping, one-to-many or many-to-many mapping could still occur due to pleio-
tropic effects of some variants. We therefore focused on only diseases with one-to-one mapping in the HGMD 
and OMIM databases and discarded indels with multiple mapped OMIM identifiers. With the above rules, we 
obtained a set of indels with high quality and uniquely mapped OMIM identifier, and these indels could serve 
as the gold-standard for validating our method. We then retrieved negative samples from two public sequencing 
project data, including 1000 Genomes Project (KG for short) and Exome Sequencing Project (ESP for short). 
Here, we followed the strategy used in VEST and retained indels with minor allele frequency (MAF) > 1% in the 
African American subpopulation. The collected indels were categorized into four subtypes: (1) nonframeshift 
deletion (ND for short), (2) nonframeshift insertion (NI for short), (3) frameshift deletion (FD for short), and 
(4) frameshift insertion (FI for short). The detailed summary statistics about data used in the simulation studies 
were presented in Table 1, which suggested obvious enrichment of frameshift indels in the HGMD dataset, when 
compared with the KG and ESP datasets (Fisher’s exact test, p-values < 2.2 × 10−16). This may partly be attributed 
to severe consequence induced by frameshift indels since they can disrupt all amino acids after indels while non-
frameshift indels only alter several amino acids. The coverage of each functional scores for data used in simulation 
studies was presented in Table 2, which showed that coverage varied across different datasets and the integration 
of multiple scores in deed helped to improve the overall coverage.

For each disease-causing indel, we spiked it into the corresponding control dataset of the same subtype and 
applied our method to prioritize the resulting simulated data set. Here, we conducted simulations for these four 
subtypes of indels separately, in order to avoid the bias of imbalance due to the obvious difference of the number 
of each subtype. With integrated p-values supplied by our method, we obtained a rank for each disease-causing 
indel from the final prioritization list, and derived two metrics for overall performance evaluation. First, we 
counted the number of disease-causing indels ranked among top 20 and referred to this criterion as TOP. 
Second, we defined rank ratio of each disease-causing indel by dividing its rank by the number of all indels in the 

Data source ND NI FD FI

KG 531 319 380 210

ESP 1,546 321 1,164 835

HGMD 1,228 255 9,167 3,953

Table 1. Summary about data used in the simulation studies. Abbreviations: ND (nonframeshift deletion), NI 
(nonframeshift insertion), FD (frameshift deletion), FI (frameshift insertion). Each entry denotes the number of 
indels for each indel subtype in the three datasets.

Data Score ND NI FD FI

ESP

SIFT 94.76% 93.76% 93.64% 94.25%

PinPor 99.54% 99.68% 98.96% 99.04%

CADD 99.93% 100% 99.91% 99.64%

DDIG 95.47% 96.26% 92.26% 94.25%

VEST 99.74% 100% 98.88% 99.40%

RVIS 82.08% 80.68% 81.27% 70.54%

KG

SIFT 91.71% 89.96% 88.68% 85.71%

PinPor 97.55% 97.80% 91.84% 95.71%

CADD 100% 100% 100% 100%

DDIG 93.22% 92.16% 84.73% 80.47%

VEST 99.05% 99.68% 97.63% 99.52%

RVIS 84.55% 78.68% 81.05% 73.80%

HGMD

SIFT 96.82% 94.90% 98.65% 98.20%

PinPor 100% 100% 100% 100%

CADD 62.78% 58.03% 68.07% 68.15%

DDIG 48.45% 58.03% 68.07% 68.12%

VEST 59.85% 100% 58.25% 100%

RVIS 93.48% 87.45% 94.27% 92.84%

Table 2. Coverage of each genomic data on the datasets used in the simulation studies. Each entry denotes the 
coverage rate of each genomic data for each indel subtype in the three datasets.
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dataset. The rank ratios of all disease-causing indels were then averaged to get an overall measure, called as MRR. 
Typically, high TOP and low MRR together indicate good performance.

The rank histograms of causal indels were presented in Fig. 2, and the overall ranks of causal indels were 
obviously skewed towards top position. For example, over 80% of disease-causing indels were ranked in top 5 
for all indel subtypes, while the corresponding numbers for random guess would be 0.9%, 1.6%, 1.3% and 2.3% 
respectively, significantly less than that of our method. We also observed the same trend for causal indels ranked 
in top 10 and top 20. This demonstrated that our method could effectively uncover the real disease-causing indels 
in top positions. On the other hand, the MRRs for these four indel subtypes were 1.67%, 1.06%, 3.62% and 2.19%, 
while MRRs of random guess would be 50%, significantly worse than our method. Both MRR and TOP met-
rics supported the effectiveness of our method. We also performed a prospective simulation study, in which we 
extracted HGMD disease-causing indels that were discovered after 2015 from the HGMD database (professional 
version 2016. (4) We used these indels as cases and performed the same simulation study as before, and the results 
were shown in Supplementary Table 1. We observed similar performance in terms of MRR and TOP, suggesting 
our evaluation was unbiased.

Integration helps performance improvement. We next investigated whether integration of multiple 
genomic data could significantly improve prioritization performance. With the same simulation studies men-
tioned above, we evaluated the performance of individual genomic data for prioritization of disease-causing 
indels. The results were shown in Table 3, in which both MRR and TOP were evaluated for each genomic data. 
Here, we also considered the influence of missing data, and last position was assigned to the causal indel if the 
corresponding genomic data was missing. Therefore, the final performance of each genomic data relied on both 
its predictive power and coverage, and genomic data with high coverage and strong predictive power would have 
good performance.

From Table 3, we clearly observed that our integration method outperformed every individual genomic data 
alone. Specifically, the MRRs of individual genomic data ranged from 5.55% to 62.01%, 3.44% to 75.12%, 8.69% 

Figure 2. Rank histogram on simulation studies. Ranks of disease-causing indels against neutral indels, for 
different indel subtypes: (A) nonframeshift deletion; (B) nonframeshift insertion; (C) frameshift deletion; (D) 
frameshift insertion.
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to 56.43% and 7.08% to 42.38%, while our integration method achieved MRR of 1.67%, 1.06%, 3.62% and 2.19% 
for the four indel subtypes, respectively. The TOPs of individual genomic data ranged from 7 to 949, 0 to 210, 
1 to 6,843 and 0 to 2,956, while our integration method achieved TOP of 1,082, 231, 7,614 and 3,445, respec-
tively. Besides MRR and TOP, we also evaluated rank ROC for performance comparison. Given a threshold for 
rank ratio, ranging from 0 to 1, we defined the true positive rate (TPR, also called sensitivity) as the propor-
tion of disease-causing indels with rank ratios below the threshold and the false positive rate (FPR, also called 
1-specificity) as the proportion of neutral indels with rank ratios below the threshold. By varying the threshold, 
we obtained a series of TPR and FPR values and plotted TPR against FPR to obtain rank ROC. From Fig. 3, we 
found that our method had better rank ROC than any individual genomic data.

The gained improvement in prioritization performance could be largely attributed to integration of diverse 
genomic data. These genomic data could be categorized into three groups in general, the first group of functional 
prediction scores, including SIFT, CADD, PinPor, DDIG and VEST, the second group of genic association scores, 
including gobp, gexp, strg and tsfc, and third group of the genic intolerance score RVIS. The functional prediction 
scores could discriminate between damaging indels and neutral indels, while it could not discriminate causal 
indels responsible for different diseases, because all damaging indels manifested similar effect, such as altering 
protein structures and functions. However, given a disease of interest, we only interested in these damaging indels 
responsible for the given disease. The second group of genic association scores could prioritize genes which 
may be associated with the disease of interest, and these genes are more likely to harbour disease-causing indels 
responsible for the given disease. In addition, RVIS provides genic intolerance, and genes with low RVIS scores 
are more likely to be disease relevant genes. We draw the correlations between these genomic data for the four 
different indel subtypes (Fig. 4). From this figure, we found that different correlation patterns existed for different 
indel subtypes, manifested as different hierarchical clustering results. In general, obvious correlations between 
genic association scores were observed and no correlations between these association scores and the other func-
tional prediction scores. This reflected that association scores and functional prediction scores measured different 
genomic activities. Thus, these three types of genomic data sources complement with each other, and integration 
of them can help us prioritize real disease-causing indels.

Comparison of different data fusion strategies. We adopted Fisher’s method (Fisher for short) for 
integration of p-values, which was an old but well-established and widely-used method. We also investigated 
the other three methods for integration of p-values, named minimal p-value (minP for short), Stouffer’s Z-score 
method (Stouffer for short) and Robust Rank Aggregation35 (RRA for short). With the same simulation studies 
mentioned above, we applied these three methods for disease-causing indel prioritization and evaluated the cor-
responding MRRs and TOPs for comparison. The results were shown in Supplementary Table 2, and we found 
that Fisher’s method was similar with Stouffer’s method in terms of MRRs and TOPs, which was not surpris-
ing because the two methods had close connections and nearly same statistical power asymptotically. Minimal 
p-value followed the two methods and RRA exhibited worst performance. It was worth noting that RRA was orig-
inal designed for rank aggregation and its algorithm was not optimized to perform p-values integration. Another 
interesting phenomenon was that these methods have similar TOP performance in spite of different MRRs. We 
also compared rank ROCs of these four methods, as shown in Fig. 5, from which the same conclusion could be 
draw. Thus, one can pick anyone of them if only TOP performance is cared about and minimal p-value method 
shows great advantage over the others for its simplicity.

We also compared the robustness of these methods in terms of missing data, and presented the results in 
Supplementary Figure 1. We used the results generated from above simulation studies and categorized these 
indels by the number of missing functional scores, ranging from 0 to 6. We then evaluated the rank ratios of each 
indels in each subgroup and investigated the influence of the number of missing data on performance for each 
method. We observed increasing rank ratios (decreasing performance) with increasing the number of missing 
data, for all these methods. This was reasonable because missing data indicated missing information and posed 
challenge for prioritization. Stouffer’s method assigned nearly 1 (meaning last position) to several indels in all 
subgroups, while the other three methods avoided that. The median rank ratios for all method were near zero 

Score

MRR TOP

ND NI FD FI ND NI FD FI

SIFT 27.80% 24.16% 26.37% 25.57% 31 18 1 0

CADD 62.01% 75.12% 43.76% 42.38% 7 0 249 61

DDIG 54.72% 46.44% 56.43% 40.89% 455 102 2,334 1,344

VEST 43.40% 3.12% 52.38% 7.08% 489 141 3,524 2,089

PinPor 39.16% 34.19% 33.71% 38.71% 49 22 90 56

RVIS 28.65% 30.95% 30.87% 31.67% 61 11 1,066 465

gobp 5.55% 3.44% 8.69% 9.15% 949 210 6,724 2,956

strg 10.78% 10.09% 14.51% 15.04% 935 196 6,843 2,943

gexp 19.53% 15.65% 24.26% 23.82% 477 117 3,670 1,547

tsfc 29.36% 28.39% 32.58% 32.06% 408 103 3,304 1,475

Integration 1.67% 1.06% 3.62% 2.19% 1,082 231 7,614 3,445

Table 3. Performance of each individual genomic data and the integrated score for the simulation studies. Each 
entry denotes MRR or TOP of each individual score, and the integrated score achieves the best performance.
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when the number of missing data was less than 4 and began to increase obviously after that. Stouffer’s method had 
the best control when the number of missing data was over four, followed by Fisher’s method and the other two 
methods performed worse. Generally speaking, Fisher’s method had both best performance and relatively robust 
controls over missing data, thus it was considered to be the most suitable method for our problem.

Performance for personal exome. The simulation studies presented above only focused on uncovering 
disease-causing indels from common indels (MAF > 1%), while realistic personal exome harboured both com-
mon indels and rare indels (MAF < =1%). We randomly selected an individual (HG00096) exome from KG 
dataset, and draw the MAF histogram of indels from this individual in Supplementary Figure 2, from which 
we observed a roughly two-component mixture distribution, including common and rare components. We 
also investigated the functional prediction scores for the two different components, as shown in Supplementary 
Figure 3. There existed some difference between the distribution of functional scores of common and rare indels 
and rare indels tended to have high pathogenic possibility. Besides individual HG00096, we also randomly 
selected another nine individuals from different populations as listed in Supplementary Table 3. We assumed no 
disease-causing indels existed in anyone of these ten individuals owing to the healthy status of them. We then 
spiked each of HGMD disease-causing indels into each individual exome and prioritized the simulated exomes, 
which was a more difficult task than before due to the introduction of neutral rare indels. From Supplementary 
Table 3, we found that the MRRs of causal indels tended to be larger than before and the TOPs were also fewer 
than before. We compared the rank ratios of each causal indels between the two simulation studies and found it 
was significantly (Wilcoxon rank sum test, p-value < 2.2 × 10−16) worse in these individual exome data. Despite 

Figure 3. ROC curves of each individual genomic data and the integrated score. Based on results of the 
simulation studies, we plotted rank ROCs of each individual genomic data and the integrated score for: (A) 
nonframeshift deletion; (B) nonframeshift insertion; (C) frameshift deletion; (D) frameshift insertion.
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of difficulties presented in individual exome data, our method achieved relatively satisfactory results, as shown in 
Supplementary Table 3. Specifically, the average MRRs for the four indel subtypes were 2.71%, 1.99%, 4.88% and 
3.35% respectively and the average TOPs were 509, 116, 3,220 and 1,434. The results on these ten individuals were 
similar, suggesting the robustness of our method against different genetic backgrounds. These results collectively 
supported our method for effectively prioritizing disease-causing indels in personal exome.

Conclusions and Discussion
In this paper, we proposed an integrative method to prioritize disease-causing indels from exome sequencing 
data. Our method integrates five functional prediction scores, four genic association scores and a genic intoler-
ance score with a statistical method. Our integration procedure mainly consists of two steps, transforming various 
genomic data scores into p-values and integrating these p-values with Fisher’s method. Our method enjoys sev-
eral advantages, including simplicity, robustness in terms of missing data, effectiveness in terms of prioritization 
power and flexibility for further development. We believe that our integration methodology not only be useful for 
variant analysis, but also can benefit the other genomic studies involving data integration.

Despite of being effective, our method can be further improved in several aspects. First, we focus on coding 
indels and ignore noncoding indels. How to extend our method to be capable of analysing noncoding indels 
remains a topic of future research. Second, more genomic data are generated and some of them may be proved to 
be useful for variant prioritization, such as transcriptomic data, epigenomic data, and other phenotypic informa-
tion etc. It is not difficult to incorporate other genomic data into our method, in which additional genomic data 
are transformed into p-values with appropriate procedures and these new p-values are integrated with existing 
p-values to obtain the integrated p-values. Third, we assume the correctness of variant calling in present study and 
ignore the quality information supplied in VCF files. It is worth noting that correct calling of indels still remains 

Figure 4. Correlations between individual genomic data. Pearson’s correlation coefficients between each pair of 
individual genomic data for: (A) nonframeshift deletion; (B) nonframeshift insertion; (C) frameshift deletion; 
(D) frameshift insertion.

http://3
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a challenge to be solved. How to incorporate quality information of indel calling into our method is another 
research direction of our interest.

Materials and Methods
Data sources. We downloaded the HGMD database (professional version 2014.3), KG and ESP databases 
from corresponding official websites and extracted indels satisfying criterion mentioned in simulation studies. 
We then extracted five types of functional prediction scores for these indels from corresponding websites: SIFT 
(http://sift.bii.a-star.edu.sg/), PinPor (http://watson.compbio.iupui.edu/pinpor), CADD (http://cadd.gs.washing-
ton.edu/), DDIG: (http://sparks-lab.org/ddig/), VEST (http://www.cravat.us/CRAVAT/).

We downloaded 7,719 diseases with text descriptions from the OMIM database (accessed in February 2014) 
and 20,327 genes from Ensemble database (accessed in March 2014). OMIM ID and Ensemble ID were used 
to represent disease and gene respectively in our study. With BioMart tool, we also obtained 4,368 associations 
between 3,709 diseases and 2,870 genes, and mappings between gene Ensemble ID and gene HGNC symbol. We 
downloaded the RVIS scores from its website (http://genic-intolerance.org/index.jsp).

Transform functional scores into p-values. For each type of functional scores, we first build an empiri-
cal null distribution from either public or private databases, which puts equal probability on each data point. For 
a query functional score, we calculate the p-value as the proportion of null distribution data points with extremer 
(e.g. larger) scores than query score

Figure 5. ROC curves of different data fusion strategies. Rank ROCs of four different data fusion strategies for 
(A) nonframeshift deletion; (B) nonframeshift insertion; (C) frameshift deletion; (D) frameshift insertion.
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ing (SIFT, PinPor). For RVIS score, smaller ones denotes lower tolerance and corresponding genes have high 
probabilities to be disease-causing, thus we transform RVIS scores into p-values with = ∑ ≤=p s sI( )i

N
i1 .

Construction of disease network. To construct disease network, we first collected 10,346 concepts from 
the HPO database36 and annotations for 6,346 human diseases, which were used to construct a 10,346 dimen-
sional numeric vector (concept vector) for each disease. Each entry of the concept vector characterizes the infor-
mation of the disease relating to the corresponding HPO concept, calculated as −log(hi), where hi is the frequency 
of concept i occurred in text description of the disease. We calculated the similarity score between every pair 
of disease as the cosine of the angle between concept vectors of the two diseases. We then obtained a similarity 
matrix for all human diseases by applying the above method to each pair of disease. In order to remove low con-
fident edges in this network, we only retained 10 neighbouring diseases with highest similarity scores for each 
disease, leading to a nearest neighbour network, which we referred to as the disease network.

Construction of gene network. We constructed four gene networks with different genomic data, includ-
ing gene expression (gexp), gene ontology (gobp), protein-protein interaction (strg) and transcriptional regula-
tion (tsfc).

gexp. We obtained a whole-genome gene expression profile25, which measured expression levels of 44,775 tran-
scripts across 79 human tissues. Each gene was represented by a 79 dimensional numeric vector (expression 
vector) with each dimension denoting the expression level in the corresponding human tissue. We obtained the 
raw similarity scores between pairs of genes by calculating the Pearson’s correlation coefficient of their expression 
vectors and an exponential transformation was applied to remove noise as:
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−





− 











wexp 1

(2)
ab

ab
2

where ϕab was the transformed similarity score for gene a and b, wab the raw similarity score and σ the standard 
deviation of raw similarity scores for all gene pairs. We obtained a gene similarity matrix by applying the above 
method to each pair of genes and we only retained 100 neighbouring genes of highest similarity for each gene in 
order to remove low confident edges, leading to a final gene network (gexp).

gobp. We downloaded the gene ontology database27 (November 22, 2014) and extracted 25,616 concepts asso-
ciated with biological process domain and used a 25,616 dimensional numeric vector (gene ontology vector) 
to characterize each gene with each dimension denoting whether the gene had the corresponding concept. We 
obtained the raw similarity score between each pair of genes by calculating the cosine of the angle between their 
gene ontology vectors and transformed these raw similarity score with the exponential transformation mentioned 
above. We finally obtained the gene network (gobp) with the same strategy mentioned above.

strg. We downloaded the STRING database26 (version 9.1) and extracted 403,514 interactions between 13,747 
proteins, leading to a binary gene network. For each pair of proteins (e.g. a and b), we calculated the shortest path 
distance between them in the PPI network as δab and rescaled this score with

δ
δ

= −
′ ′

w 1
max (3)ab

ab

a b

We also applied the exponential transformation mentioned above to this score to obtain the final similarity score, 
and constructed the gene network (strg) with the same strategy as above.

tsfc. We extracted 218 vertebrate transcription factors from the TRANSFAC database28 with high confident 
position specific scoring matrices and used the program MATCH to identify potential binding sites for each 
transcription factor within the 1,000 basepairs upstream of each human gene. Based on the matching results, we 
constructed a 218 numeric vector (binding vector) for each human gene with each dimension denoting the num-
ber of potential binding sites of the corresponding transcription factor on the gene. We calculated raw similarity 
score between each pair of genes as the cosine of the angle between their binding vectors. We then applied the 
exponential transformation on the raw similarity scores and constructed a gene network (tsfc) using the same 
strategy mentioned above.

Random walk on two-layered network for disease-gene association inference. We constructed 
a disease-gene heterogeneous network, consisting of a disease network, a gene network, and known associations 
between diseases and genes, and simulated the random walk process on this network to infer the association 
strength of a given disease-gene pair37. The disease network was the one constructed as above, which encoded the 
similarities between diseases, the gene network was one of the four gene networks constructed as above, encoding 
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similarities between genes, and the known links between diseases and genes were collected from the OMIM 
databases as mentioned above.

For a query disease of interest, a random walker started a series of moves on the disease-gene network with 
some initial probability p(0), which encoded the interested disease. At each move, the walker either restarted with 
probability π or move on with probability 1 − π. If moves on, the walker may switch between disease network 
and gene network with probability τ or just wander within either disease or gene network with probability 1 − τ. 
When wandering about within disease or gene network, the walker moved to one of its direct neighbours with 
probabilities proportional to the similarities between current node and its direct neighbours, e.g. higher proba-
bilities moving to more similar neighbours. Over a series of iterations, the probability distribution of the walker 
on the network will converge to a steady probability vector p(∞), providing a measure of the association strength 
between the query disease and genes.

Mathematically, we used a triple H = (D, G, A) to denote the disease-gene heterogeneous network, where 
D = {dij}m×m collected edge weights of the disease network, G = {gij}n×n collected edge weights of the gene weights, 
A = {aij}m×n collected binary indications of disease-gene associations, and m and n the number of diseases and 
genes, respectively. We normalized each row of D to obtain a transition matrix U = {uij}m×m, where 

= ∑ =u d d/ij ij j
m

ij1  denoted the transition probability from disease i to disease j. Similarly, we derived the other 
three transition matrices: V = {vij}n×n with = ∑ =v g g/ij ij j

n
ij1  denoting the transition probability from gene i to gene 

j, R = {rij}m×m with = ∑ =r a a/ij ij j
n

ij1  (rij = 0 if ∑ == a 0j
n

ij1 ) denoting the transition probability from disease i to 
gene j, and S = {sij}n×m with = ∑ =s a a/ij ji j

m
ji1  (sij = 0 if ∑ == a 0j

m
ij1 ) denoting the transition probability from gene 

i to disease j. We then defined matrix T as

τ τ
τ τ

=





−
−




T R

S
(1 )U

(1 )V (4)

and performed row-normalization to obtain overall transition matrix for the heterogeneous network as 
= + × +W {w }ij m n( ) (m n) with = ∑ =

+w t t/ij ij j
m n

ij1  denoting transition probability within the heterogeneous network.

Let = ×u u{ }i m
(0) (0)

1
 and = ×v {v }i n

(0) (0)
1
 denote the initial probabilities for the diseases and genes, respectively. 

We assigned equal probabilities to the neighbours of the query disease to u(0) and all zeros to v(0), assuming a 
completely unknown genetic basis. Let =p ((u ) , (v ) )T T T(0) (0) (0)  denotes the initial probabilities for the heteroge-
neous network and p(t) denotes the probability after t moves, the interaction can be formulated as

π π= − ++p p(1 )p (5)t t( 1) ( ) (0)

Repeating the interaction until p(t) becomes stable (e.g., ε− <+p pt t( 1) ( )
2
2

, where ε is a small positive num-
ber), and we obtained the steady-state probability p(∞), consisting of a disease probability u(∞) and a gene proba-
bility v(∞). The gene probability can be used to infer the association strength between the query disease and genes. 
We set default values for parameters τ = 0.5, π = 0.5 and ε = 10−4 according to the literature37.

We then transformed the steady-state probabilities to p-values in order to facilitate subsequent integration. We 
simulated the random walk process for all disease-gene pairs that were not associated and obtained the distribu-
tion of steady-state probability under no association. Then we assigned a p-value for a query disease-gene pair as

= ≥‐ ‐p Pr(scores of non associated disease gene pairs the query score) (6)

Here, score referred to the steady-state probability and this p-value quantified the probability of observing 
stronger association scores under no association (null hypothesis). We excluded the known link between the 
query disease and the query gene when inferring their association.

Fisher’s method for p-values integration. We have ten different genomic data, leading to ten p-values 
through computations described as above, and Fisher’s method is used to integrate these p-values into an inte-
grated p-value, which quantify the statistical significance of candidate indels causing the query disease.

In detail, let p1, …, pK denote the p-values to be integrated, where K = 10 in our study, we then define the 
Fisher’s statistic as

∑=
=

U V
(7)i

K

i
1

where Vi = −2 log pi. If independence between different sources is assumed, it is obvious to verify that χ~U K2
2  

since ~p Uniform(0, 1)i  and χ− ~p2 log i 2
2. However, this independence assumption usually does not hold in 

reality, and we assume this statistic follows a scaled chi-squared distribution with scale η and degrees of freedom 
v. With method of moments, we derived the matching equations as

∑∑

ηχ η

ηχ η










= ⇒ =

= ⇒ =
= =

K

U V

E[ ] E[U] v 2

Var[ ] Var[ ] 2 v 4 cov(V , )
(8)

v

v
k

K

j

K

j k

2

2 2

1 1

We then obtained the estimates for these parameters
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η ν
η

=
∑ ∑

== =




ˆ
V

K
Kcov(V , )

and 2
(9)

k
K

j
K

k j1 1

We estimated the covariance cov(Vk, Vj) with a normal model38. In detail, let = Φ −−z (1 p )i i
1  be the trans-

formed variable with standard normal distribution, where Φ ⋅− ( )1  is the inverse cumulative distribution function 
of the standard normal distribution. Then, the covariance to be estimated can be approximated by

ρ ρ ρ ρ≈ + + +
   

VCov(V, ) a a a a (10)i j ij ij ij ij1 2
2

3
3

4
4

where = . = . = . = − .a a a a3 263119, 0 709866, 0 026589, 0 709866/n1 2 3 4 , n the sample size for obtaining Zi 

and ρ ρ ρ= =



 +






ρ−

−


ˆ ˆ
ˆ

Z ZCor( , ) and 1ij i j ij ij n

1

2 1
ij

2

. In the case of missing data, it is simple to ignore that data source 

and reduce the degree of freedom.

Alternative p-values integration strategies. Besides Fisher’s method for p-values integration, we also 
selected three other methods for comparison. Given K p-values p1, …, pK to be integrated.

minP. This method just takes the minimal p-values as integrated p-value with =
= ...

p pmin
i K iminP 1, ,

. It is easy to deal 
with missing data, as ignoring that data source.

Stouffer’s Z-score method. In this method, p-values are first transformed into z-scores with = Φ −−z p(1 )i i
1  

where Φ ⋅( ) is the standard normal cumulative distribution, then the overall meta-analysis statistic is calculated 
as = ∑ =Z z

K
i
K

i1 , the integrated p-value is computed as = − Φp 1 (Z)Stouffer . Ignoring corresponding data source is 
enough to handle the missing data problem, as Fisher’s method does.

RRA. This method was proposed for aggregating ranking lists35, and it could be applied to p-values integration. 
Let ...p p, , K(1) ( ) be a reordering of original p-values list, satisfying ≤ ... ≤p p K(1) ( ), then the probability of m-th 
element of ordered p-values list generated from uniform distribution are more significant is

∑β = −
=

−( ) ( )K
m p p1

(11)m
i m

K

m
i

m

K m

( ) ( )

Then the integrated p-value is approximated as β=
= ..

p K minRRA i K
m

1, ,
, where K is used as Bonferroni correction. The 

same method is used to deal with missing data as above.
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