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Exosomes are small discoid extracellular vesicles (EVs) originating from endosomes that

are 30–150 nm in diameter and have a double lipid layer. They participate in the immune

response, cell migration, cell differentiation, and tumor invasion and mediate intercellular

communication, regulating the biological activity of receptor cells through the proteins,

nucleic acids, and lipids that they carry. Exosomes also play vital roles in the diagnosis

and treatment of liver diseases. Macrophages, which show unique phenotypes and

functions in complex microenvironments, can be divided into M1 and M2 subtypes.

M1 macrophages function in immune surveillance, and M2 macrophages downregulate

the immune response. Recent studies have shown that macrophages are involved in

non-alcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Moreover,

several studies have demonstrated that liver diseases are associated with exosomes

derived from or transferred to macrophages. This review focuses on the participation of

macrophages and exosomes in liver diseases.

Keywords: macrophages, exosomes, hepatitis virus, alcoholic liver disease, non-alcoholic fatty liver disease,

acute liver failure, hepatocellular carcinoma

INTRODUCTION

Exosomes are small discoid extracellular vesicles (EVs) originating from endosomes that are
30–150 nm in diameter and have a double lipid layer (1). The exosome formation process involves
invagination of the cell membrane to form an endosome, which then develops into a multivesicular
body (MVB) that subsequently fuses with the cell membrane, releases the particles outside of
the cell, and forms the exosome (2). A variety of cells can secrete exosomes under normal and
pathological conditions (3). In addition, exosomes are also widely found in bodily fluids, including
blood, saliva, urine, ascites, and cerebrospinal fluid (4, 5). The function of an exosome depends
on the type of cell from which it originates. In general, exosomes can participate in processes
such as immune response, cell migration, cell differentiation, and tumor invasion (6). Exosomes
mediate intercellular communication, regulating the biological activity of receptor cells through the
proteins, nucleic acids, and lipids they carry (7, 8). Exosomes also play a vital role in the diagnosis
and treatment of liver diseases (9).

Macrophages are a heterogeneous population of cells that exhibit a unique phenotype and
function in the complex microenvironment in vivo. According to differences in their activation
state and function, macrophages can be divided into classically activated macrophages (CAMs
or M1) and alternatively activated macrophages (AAMs or M2). M1 macrophages participate
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in the immune response and in immune surveillance by
presenting antigens and secreting pro-inflammatory cytokines
such as IL-6 and tumor necrosis factor-α (TNF-α). M2
macrophages have a weak antigen presentation ability and play
an important role in immune regulation by downregulating the
immune response via the secretion of the inhibitory cytokines
IL-10, transforming growth factor-β (TGF-β) and mannose
receptor (Mrc) (10–12). It has been suggested that macrophages
have a series of continuous functional states, and M1 and M2
macrophages are the two extremes of this continuous state
(13). Moreover, recent studies have found that macrophages are
involved in non-alcoholic fatty liver disease (NAFLD) (14, 15),
liver fibrosis (16), and hepatocellular carcinoma (HCC) (17).

Exosomes secreted by hepatocytes exposed to alcohol can be
ingested by macrophages, thereby promoting the secretion of
cytokines (18). In cholestatic liver disease, exosomal long non-
coding RNA (lncRNA) H19 from bile duct cells promotes the M1
polarization of Kupffer cells and the production of chemokine
ligand 2 and interleukin 6 (19). In melatonin-treated HCC cells,
exosomes change the immunosuppression status of macrophages
(20). In this review, we summarize the effects and interaction of
macrophages and exosomes in liver diseases (Table 1).

CHARACTERISTICS OF EXOSOMES

Cells release bilayer membranous vesicles called EVs, which
can be divided into exosomes, microvesicles (MVs), ectosomes,
migrasomes, apoptotic bodies, and oncosomes according to
their size and origin (37). Exosomes are the smallest EVs, with
a diameter of 30–150 nm. Further, exosomes can be divided
into small exosomes (60–80 nm) and large exosomes (90–
120 nm). Proteomic analyses have shown that small exosomes
carry proteins that are associated with endosomes, MVBs, and
phagocytic vesicles, indicating that small exosomes are classical
exosomes from the endosomal compartment. In contrast,
large exosomes include plasma membrane proteins, cellular
connexins, and late endosomal proteins and may be atypical
exosomes from plasma membrane germination (38). Medium-
sized EVs, 100–1,000 nm in diameter, include MVs, ectosomes,
and microparticles (39). Ectosomes depend on the plasma
membrane, while exosomes depend on endocytic membranes.
These two distinct types of EVs differ in size, composition, and
release regulation mechanisms. For ectosomes and exosomes,
the goods on the surface and in the lumen differ when EVs are
released by different cell types or individual cells in different
functional conditions. After release, the two types of EVs move
through the extracellular fluid at different times and for different
distances (40). Migrasomes, apoptotic bodies, and oncosomes
are large EVs (a few thousand nanometers) that have been
found to be associated with migration, phagocytosis, and cancer,
respectively. Migrasomes are newly identified organelles that
depend on migration, leaving long retractable fibers upon cell
migration, and vesicles grow atop the tips and intersections of
fibers. Eventually, the fibers that connect the vesicles to the main
cell body break apart, and the vesicles are released into the
extracellular space or absorbed directly by the surrounding cells

(41). Apoptotic bodies, small bodies released by programmed cell
death, can be formed in two ways: the sprouting and shedding
mechanism and the autophagosome mechanism (42). The term
“oncosomes” was originally used to describe abnormally large
EVs, although it is often used to refer to EVs released by
cancer cells (43). Oncosomes derived from prostate cancer
cells strongly promote the establishment of a tumor-supporting
environment by inducing new interstitial reprogramming (44).
In fact, EVs should not be classified into subtypes according to
their sizes because their diameters overlap; for example, some
MVs, whose size range is very large (100–1,000 nm), can be
easily confused with large exosomes (45). At present, the origin
is the only basis for distinguishing exosomes from other EVs.
Other EVs are formed by the protrusion and shedding of cell
membranes, whereas exosomes are derived from intracellular
endosomes, which can form MVBs that are then degraded by
lysosomes or fused with the cytoplasmic membrane, released and
enter the receiving cell through fusion, endocytosis or receptors
(46). According to the MISEV2018 guidelines, exploring the
biogenesis of EVs remains a challenge without the use of
live imaging techniques. Therefore, operational terms are still
recommended for the description of EV subtypes according to
their size, density, biochemical composition, and cell or organ
origin (47).

The exosome formation process involves invagination of the
cell membrane to form an endosome, which then develops
into MVBs. Some of these MVBs directly fuse with lysosomes
and degrade, some are transported to the Golgi for recovery,
and some fuse with the cell membrane to release small
vesicles outside of the cell and form exosomes. Regarding the
mechanisms associated with exosome biogenesis and abscission,
many molecules play an important role. First, the endosomal
sorting complex required for transport (ESCRT) and other
proteins, such as tumor susceptibility gene 101 protein (TSG101)
and ALG-2 interacting protein X (ALIX), are involved in cargo
sorting into exosomes (3). Apart from ESCRT, other ESCRT-
independent mechanisms, including lipid rafts and tetraspanins
CD63 and CD81, are conducive to exosome biogenesis (48).
Finally, the Rab-GTPase family contributes to the intracellular
trafficking and fusion of MVBs with the cell membrane to release
exosomes. Some studies clarified that sphingomyelinase, protein
kinase D family, and argonaute-2 are involved in the formation
of exosomes (49) (Figure 1).

Exosomes are composed of nucleic acids (including DNA and
RNA), proteins, and lipids. Exosomal RNAs mainly play key
roles in the target cell and mainly include mRNAs, microRNAs,
lncRNAs, circRNAs, etc. (50). MicroRNAs are now the most
widely and deeply studied type of RNA in exosomes, often due
to their relationship with the occurrence and development of
diseases (51). Exosomal proteins can be divided into membrane
proteins and intramembrane proteins. Membrane proteins,
including tetraspanins (CD63, CD81, and CD9) and some cell-
specific proteins, such as A33 (colon epithelial cell source),
MHC-II, and CD86 (antigen-presenting cell sources), participate
in exosome transport. Intracellular exosomal proteins include
the heat shock protein family (HSP60, HSP70, HSP90, HSPA5,
and CCT2), a variety of metabolic enzymes (GAPDH, PKM2,
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TABLE 1 | Summary of exosome and macrophage participation in liver diseases.

Disease Exosome component Pathway/mediator Effect References

HBV HBV-miR-3 SOCS5/STAT1 M1 polarization and IL-6 secretion (21)

HBV-infected hepatocyte

exosomes

MyD88, TICAM-1, and MAVS Resistance to the host’s inherent immune response (22)

HCV Anti-HCV miRNA-29 TLR3-activated macrophages Inhibition of the HCV replication (23)

Exosome-packaged HCV TLR7/8 Monocytes tend to differentiate into macrophages (24)

ALD miR-155 Hsp90 Increase in inflammatory macrophages (25)

miR-27A CD206 on monocytes M2 polarization (26)

CD40L (TNFSF5) Caspase-3 M1 polarization (27)

miR-122 HO-1 Reprogramming ability to make monocytes sensitive to

LPS

(18)

Mitochondrial double-stranded

RNA

TLR3 in Kupffer cells Increase in IL-1β and IL−17A levels (28)

NAFLD mi R-192-5p Rictor/Akt/FoxO1 M1 polarization (29)

Hepatocyte-derived EV DR5/Caspase/ROCK1 Macrophage pro-inflammatory response (30)

Lipotoxic EVs ITGβ1 Promotion of monocyte adhesion and liver inflammation (31)

miR122-5p lysosome M1 polarization (32)

ALF miR-17 TXNIP Inhibition of inflammatory factor activation in hepatic

macrophages

(33)

HCC lncRNA TUC339 Toll-like receptor signaling and

FcγR-mediated phagocytosis

Reduction in pro-inflammatory cytokine production and

amelioration of phagocytosis

(34)

Exo-con STAT3 Upregulation of PD-L1 expression and cytokine secretion

in macrophages

(20)

miR-23a-3p PTEN/AKT Upregulation of PD-L1 expression in macrophages and

inhibition of T-cell function

(35)

miR-142-3p RAC1 Propofol stimulates the transfer of miR-142-3p from

macrophages to HCC cells. MiR-142-3p downregulates

RAC1 expression and inhibits HCC cell migration and

invasion

(36)

HBV, Hepatitis B virus; HCV, Hepatitis C virus; ALD, Alcoholic liver disease; NAFLD, Nonalcoholic fatty liver disease; ALF, Acute liver failure; HCC, Hepatocellular carcinoma; Exo-con,

Hepatocellular carcinoma-derived exosomes; M1, M1 macrophages; M2, M2 macrophages.

PGK1, PDIA3, antioxidant proteins), ribosomal proteins (RPS3),
signal transduction factors (melanoma differentiation-related
factors, ARF1, CDC42), adhesion factors (MFGE8, integrin),
cytoskeletal proteins, and ubiquitin (52, 53). Lipids are important
components of the exosomal membrane, and exosomes contain
more specific lipids than parent cells. Several studies have found
that the percentages of different lipid categories in cells and
exosomes vary among several cell types, such as human B cells
and dendritic cells. Specifically, in human B cells, cholesterol,
and sphingomyelins have been found to be enriched from cells
to exosomes (54) (Figure 2).

Exosomes have several functions. First, they function as
a shuttle bus between cells, mediate cell-cell communication
and play a role in immunity. Exosomes have been identified
as important mediators of intercellular communication
through the transfer of encapsulated cargo, such as bioactive
lipids, non-coding RNAs, mRNAs, and proteins (55). These
bioactive molecules are stable because they are covered with
a biofilm capable of avoiding degradation. In addition, due
to the characteristics of their surface proteins, exosomes also
show relatively high target specificity to receptor cells. All
these characteristics make exosomes important mediators
of communication between cells, especially between organs.
Second, the occurrence and progression of diseases [e.g.,
tumor metastasis (56–58), cardiovascular disease risk (59, 60),

neurological diseases (61, 62)] can be predicted by studying the
relationship among the exosome type, number, size, and content.
Finally, several recent studies have reported on targeted drugs for
exosomes. Exosomes can be used as carriers to deliver drugs to
target areas, providing hope for the treatment of many diseases
(63, 64).

HEPATITIS VIRUS

Hepatitis B virus (HBV) infection is characterized by long-term
chronic infection accompanied by hepatocyte injury due to the
complicated interaction between HBV and the immune system.
In addition, according to the World Health Organization, more
than 185 million people are infected with hepatitis C virus
(HCV) (65). In the process of HCV infection, the interaction
between macrophages and hepatocytes is an important part of
liver innate immunity.

HBV encodes a microRNA (HBV-miR-3) that inhibits HBV
replication by impeding transcription. Type I interferons (IFNs)
constitute important immune responses to viral infection and
can thus be used to treat some infectious viruses, including
HBV and HCV. IFN-I interacts with its receptor to activate
the Janus kinase (JAK)/STAT pathway, and STAT1/2 is then
phosphorylated and transferred to the nucleus to bind to the
IFN-stimulating response element, initiating the transcription of
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FIGURE 1 | Exosome biogenesis and abscission. The cell membrane

invaginates to form an endosome, which then develops into a late endosome

or multivesicular body (MVB) with processing of the rough endoplasmic

reticulum and Golgi. Some of these MVBs directly fuse with lysosomes and

degrade, some are transported to the Golgi for recovery, and some fuse with

the cell membrane to release small vesicles outside of the cell and form

exosomes. Many molecules play an important role in exosome biogenesis and

abscission. First, the endosomal sorting complex required for transport

(ESCRT) and other proteins, such as tumor susceptibility gene 101 protein

(TSG101) and ALG-2 interacting protein X (ALIX), are involved in cargo sorting

into exosomes. In addition, other ESCRT-independent mechanisms, including

lipid rafts and tetraspanins CD63 and CD81, are conducive to exosome

biogenesis. Finally, the Rab-GTPase family contributes to the intracellular

trafficking and fusion of MVBs with the cell membrane to release exosomes.

IFN-stimulated genes. SOCS5, an E3 ubiquitin ligase, negatively
regulates the mechanism described above; specifically, it inhibits
JAK kinase activity by interacting with JAKs through its JAK
interaction region. Exosomal HBV-miR-3 promotes macrophage
differentiation into theM1 phenotype and IL-6 secretion through
the SOCS5/STAT1 pathway (21). Macrophage exosomes rely
on T cell immunoglobulin and the hepatitis A virus receptor
mucin receptor 1 to enter liver cells and then promote anti-
HBV activity induced by IFN-α. In addition, the two main
endocytic pathways for viral infection, namely, reticular protein-
mediated endocytosis and macrophage phagocytosis, cooperate
to allow exosome entry into liver cells and transfer of this activity
(66). HBV-infected hepatocyte exosomes carry viral nucleic acids
and prompt the expression of NKG2D ligands in macrophages.
Compared to normal hepatocytes, HBV-infected hepatocyte
exosomes show higher expression levels of immunoregulatory
microRNAs, which are transported to macrophages and then
restrict IL-12p35 mRNA expression in macrophages, leading to
resistance to the host’s inherent immune response (22).

Exosomes derived from macrophages play a key role in
inhibiting the replication of HCV. TLR3-activated macrophages

release exosomes containing anti-HCV microRNA (miRNA)-
29 family members (23). Further studies show that interferon-
stimulatedmacrophage-derived EVs inhibit HCV replication and
participate in antiviral immune responses, while polyunsaturated
fatty acids weaken this process (67). On the other hand, exosomes
can also affect macrophages. Concretely, monocytes tend to
differentiate into macrophages that show high expression of
M2 surface markers and produce pro- and anti-inflammatory
cytokines when cocultured with exosome-packaged HCV, which
is mediated by TLR7/8 (24).

ALCOHOLIC LIVER DISEASE

Alcoholic liver disease (ALD) or alcoholic hepatitis (AH) is a
liver disease caused by long-term heavy drinking. The effects
of alcohol, alcohol metabolites, and gut-derived endotoxins
cause liver damage in patients with ALD (68, 69). The initial
manifestation is usually fatty liver, which can develop into
AH, liver fibrosis, and liver cirrhosis (70). Approximately 3.3
million people die each year from excessive drinking, accounting
for almost 5.9% of all global deaths. According to the World
Health Organization, Europe has the highest amount of alcohol
consumption per adult. In EU countries, 41% of all liver deaths
are attributed to alcohol. Since ALD patients have not shown any
clinical symptoms or abnormal laboratory indicators in the past,
screening should be carried out in high-risk groups (71).

A recent study focused on the potential correlation between
autophagy and exosomes since autophagosome and exosome
biogenesis involve the same components. The researchers found
autophagy damage in ALD and AH mouse models and in the
livers of patients with ALD. Moreover, this autophagy occurs
at the lysosome level by reducing the expression of lysosome-
associated membrane protein 1 (LAMP1) and lysosome-
associated membrane protein 2 (LAMP2). The expression of
microRNA 155 (miR-155) is increased by alcohol, and its action
targets are LAMP1, LAMP2, mechanistic target of rapamycin,
and Ras homolog enriched in the brain. In line with this,
miR-155 gene-deficient mice exhibited less alcohol-induced
autophagic damage and less exosome production than control
mice. Downregulation of LAMP1 or LAMP2 increases the
number of exosomes released by hepatocytes and macrophages.
These results reveal that the increased exosome content induced
by alcohol is related to the destruction of autophagy and
the impaired function of autophagosomes and lysosomes
(25). Another study clarified that atypical exosomes can
eliminate lysosomal waste to combat lysosomal dysfunction, thus
maintaining dynamic equilibrium (72). In addition, researchers
have found that EVs in patients with ALD carry a unique
protein cargo and induce macrophage activation by heat shock
protein 90 (73). Another study found that alcohol increases
the EV (mainly exosomes) production of primary human
monocytes and THP-1 monocytes, and monocytes exposed
to alcohol communicate with primitive monocytes through
EVs. Furthermore, miR-27A in exosomes polarizes primitive
monocytes into M2 macrophages (26). Similarly, patients with
AH and alcohol-fed mice produced more EVs than normal
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FIGURE 2 | Exosome components. Exosomes carry proteins, nucleic acids, and lipids. Proteins include tetraspanins (CD63, CD81, and CD9), some cell-specific

proteins such as MHC-II (antigen-presenting cell source), heat-shock protein family (HSP60, HSP70, HSP90), a variety of metabolic enzymes (GAPDH, PKM2, PGK1,

PDIA3, antioxidant proteins), signal transduction factors (ARF1, CDC42), adhesion factors (MFGE8, integrin), cytoskeletal proteins (Actin, Tubulin, Vimentin), and

MVB-producing proteins (Alixs, Tsg101, Clathrin). Nucleic acids include DNA, mRNA, microRNA, lncRNA, and circRNA.

controls. Exosomal miRNA-192, miRNA-122, and miRNA-30a
secreted into the blood could be used as diagnostic biomarkers
of ALD (74). In addition, a previous study in mice demonstrated
that ethanol promotes the secretion of EVs via CYP2E1 and
revealed for the first time that the caspase-3 pathway is involved
in this process. EVs contain CD40L (TNFSF5) and can activate
pro-inflammatory macrophages (27). Liver cells exposed to
alcohol secrete exosomes containing increased concentrations
of miR-122, which is absorbed by macrophages and makes
them sensitive to lipopolysaccharide (LPS), thereby enhancing
cytokine secretion (18). In addition, mitochondria have also
attracted much attention. Ethanol exposure can activate toll-like
receptor 3 in Kupffer cells by hepatic mitochondrial double-
stranded RNA (MtdsRNA) through exosomal delivery, resulting
in increased IL-1β levels, which promotes the production of IL-
17A. MtdsRNA and TLR3 can be used as therapeutic targets
for ALD (28, 75). Hence, blocking these pathways may protect
against alcohol-induced liver injury.

NON-ALCOHOLIC FATTY LIVER DISEASE

NAFLD is characterized by the excessive accumulation of liver fat
and insulin resistance, which is defined by histological analysis as
>5% hepatocyte steatosis or by proton density as a fat content
of >5.6%. NAFLD includes two kinds of pathological diagnoses
with different prognoses: non-alcoholic fatty liver (NAFL) and
non-alcoholic steatohepatitis (NASH). The latter is more severe

than the former and includes fibrosis, liver cirrhosis, and HCC
(76). High-calorie diets, excessive intake of saturated fats, refined
carbohydrates, sugary drinks, and fructose and Western diets are
all associated with increased body mass, obesity, and especially
NAFLD (77). High-fructose intake increases the risk of NASH
and advanced liver fibrosis (78, 79). In addition, it is generally
recognized that monocyte-derived macrophages recruited in the
liver are involved in the inflammatory response of NASH.

The pathological features of NASH are lipid-induced
hepatocyte apoptosis (apoptosis induced by toxic lipid
mediators) and infiltration by inflammatory cells, some of which
are activated macrophages (80). The latest research indicates
that the number and miR-192-5p level of serum exosomes in
NASH patients, and NASH model rats are significantly higher
than those in their respective control groups. Furthermore,
the exosomes released by lipotoxic hepatocytes can be ingested
by macrophages, resulting in activation of M1 macrophages
and hepatic inflammation by regulating the Rictor/Akt/FoxO1
signaling pathway (29). Another study showed that in a mouse
model of NASH, EVs derived from lipotoxic hepatocytes are
rich in active integrin β1 (ITGβ1), mediating the adhesion
of monocytes to hepatic sinusoidal endothelial cells, which is
a necessary step in hepatic inflammation. ITGβ1 inhibition
reduces liver injury (31). In addition, it has been reported
that exosomes isolated from melatonin-treated adipocytes
significantly attenuate liver steatosis induced by a high-fat diet
and resistin-mediated ER stress. Further research has shown
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that melatonin reduces the level of exosomal resistin derived
from adipocytes through Bmal1 transcription inhibition and
M6A RNA demethylation in adipocytes (81). Several studies
have observed that macrophage-derived exosomes contribute to
insulin resistance through paracrine or endocrine mechanisms
(55, 82, 83). Another study found elevated levels of exosomes
derived from natural killer T cells and macrophages among
patients with NAFLD or NASH (84). Moreover, lipids have
been shown to stimulate death receptor 5, promoting the release
of EVs from hepatocytes; subsequently, these EVs activate the
inflammatory phenotype in macrophages, which ultimately
causes NASH (30). Cholesterol damages the lysosomal function
of hepatocytes, leading to the secretion of hepatocyte-derived
exosomal miR122-5p, which enters macrophages to promote
M1 polarization and the occurrence of inflammation (32).
Hepatocytes treated with ezetimibe can inhibit inflammasome
formation in macrophages and IL-1 secretion as well as alleviate
NASH liver inflammation through exosomes (85).

ACUTE LIVER FAILURE

Acute liver failure (ALF), a clinical syndrome characterized
by jaundice, ascites, hepatic encephalopathy, and coagulation
dysfunction, refers to the extensive necrosis of hepatocytes or
severe liver function damage caused by various factors, such
as viruses, drugs, and toxins. The treatments for ALF are liver
transplantation and artificial liver therapy. However, there are
limitations associated with liver transplantation due to a lack
of appropriate donor livers and a variety of complications.
Additionally, the efficacy of artificial liver therapy is relatively
limited (86).

The transplantation of mesenchymal stem cells (MSCs) might
become a potential approach for treating liver disease (87).
Researchers administered human umbilical cord MSC-derived
exosomes (hucMSC-Ex) to mice via their tail vein or oral
gavage. The hucMSC-Exs exhibited antioxidant functions and
antiapoptotic effects and rescued the mice from liver failure
induced by CCl4 (88). Another study further explored the role
of macrophages in this process. The researchers treated mice
with LPS and D-galactosamine (LPS/GalN) and immediately
injected adipose MSC (AMSC)-derived exosomes (AMSC-
Exos) intravenously. AMSC-Exos colocalized with hepatic
macrophages and reduced the secretion of inflammatory
factors by inhibiting the activation of inflammatory factors in
macrophages. Exosome-encapsulated miR-17 plays an important
role in the treatment of ALF by targeting TXNIP and inhibiting
the activation of inflammatory factors in hepatic macrophages
(33). Exosomes secreted by MSCs may improve the therapeutic
efficacy of MSCs by mediating intercellular communication and
transporting paracrine factors (89).

HCC

The incidence of liver cancer is on the rise worldwide, with the
number of newly diagnosed cases increasing by 75% between
1990 and 2015 (90). It is predicted that liver cancer will be

the sixth most common cancer in the world and the fourth-
largest cause of cancer-related death. According to statistics
by the International Agency for Research on Cancer, there
were approximately 842,080 new cases of liver cancer and
781,631 deaths in 2018. Liver cancer includes HCC (75–85%
of cases), intrahepatic cholangiocarcinoma (10–15% of cases)
and other rare types (91). Because patients with early HCC
exhibit no obvious clinical symptoms, early diagnosis is quite
difficult. Currently, screening methods for HCC rely on mainly
serum tumor markers and imaging tests. Clinical serological
tests include α-fetoprotein (AFP), des-γ-carboxy prothrombin,
and the AFP-L3 fraction. Imaging-based diagnostic methods
include computed tomography andmagnetic resonance imaging.
If necessary, pathological examination may be used, but this
method is not ideal in early HCC monitoring (92–94). Surgical
resection is suggested as the first choice for the treatment of
HCC patients with non-cirrhosis. However, those who undergo
surgery have a recurrence rate of 70% (95). Therefore, a need
exists for improved diagnostic and treatment methods for
liver cancer.

Recent studies have shown that tumor-derived exosomes
can be absorbed by fibroblasts and macrophages in the tumor
microenvironment, change their phenotype, and ultimately
promote tumor progression and metastasis (96). Several studies
have noted that HCC-derived exosomes can be ingested
by macrophages and thereby promote tumor progression.
A recent study showed that exosomes derived from HCC
contain a large amount of the lncRNA TUC339, which is
taken up along with exosomes by macrophages in the tumor
microenvironment, reducing the secretion of pro-inflammatory
cytokines from these macrophages, increasing the secretion
of anti-inflammatory cytokines, and causing the phenotypic
conversion of macrophages. These phenotypically transformed
macrophages can inhibit immune-mediated tumor cell death and
promote tumor immune escape, thus facilitating rapid tumor
growth progression (34). The exosomes secreted by hepatoma
cells and released by melatonin-induced hepatoma cells can
be phagocytosed and ingested by macrophages. The immune
response is affected by regulating the expression of PD-L1 and
the inflammatory factors IL-6, IL-10, and TNF-α. The melatonin-
induced release of exosomes from HCC cells downregulates the
expression of PD-L1 in macrophages by downregulating the
protein expression of STAT3 (20). Another HCC study showed
that endoplasmic reticulum (ER)-stressed HCC cells release
exosomes, upregulate PD-L1 expression in macrophages, and
then inhibit T cell function through the exosomal miR-23a-
PTEN-AKT pathway. These results provide new insights into
how tumor cells escape antitumor immunity (35). Hepatoma
cells transmit miRNA-21 to hepatic stellate cells and activate
the tumor suppressor gene PTEN through exosomes to activate
the transition of hepatic stellate cells into cancer-associated
fibroblasts (CAFs) via the PDK1/AKT signaling pathway.
Activated CAFs further secrete angiogenic cytokines, including
vascular endothelial growth factor (VEGF), MMP2, and MMP9,
increasing the number of blood vessels and promoting the
development of HCC (97). In contrast, the expression of miR-
122 in serum or circulating exosomes is lower in HCC patients

Frontiers in Medicine | www.frontiersin.org 6 September 2020 | Volume 7 | Article 583691

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shen et al. Macrophages and Exosomes in Liver

FIGURE 3 | Roles of exosomes and macrophages in liver diseases. Exosomal miRNAs, lncRNAs, and MtdsRNAs released from injured hepatocytes promote the

differentiation of macrophages into the M1 or M2 phenotype and the secretion of cytokines, thereby promoting inflammation.

than in healthy subjects (98, 99). In tumor-bearing mice,
propofol inhibits the invasion of HCC cells by stimulating the
transfer of microvesicular miR-142-3p from tumor-associated
macrophages to HCC cells (36). ER stress induces the release
of exosomes from HCC cells, and by regulating the expression
of programmed death ligand 1 in macrophages, the mir-23a-
PTEN-AKT pathway inhibits T cell function and weakens
antitumor immunity (35). Macrophages and exosomes also play
an important role in tumor metastasis. Some scholars have
found that in pancreatic ductal adenocarcinoma cells, tumor-
derived exosomes can recruit bonemarrow-derivedmacrophages
to form a preliver metastatic environment and promote tumor
metastasis (100).

EXOSOME ROLES IN PROGNOSIS AND
TREATMENT

In the process of HCV infection, the interaction between
retained macrophages and hepatocytes is an important part of
liver innate immunity. Exosomes derived from macrophages
play a key role in inhibiting the replication of HCV. Further
study shows that TLR3-activated macrophages release exosomes
containing anti-HCV miRNA-29 family members (23). Virus
entry mechanisms and pathways have also been applied
to study the exosome-mediated transfer of antiviral activity
between cells. In HBV infection, macrophage-derived exosomes
can use hepatitis A virus receptors to enter liver cells.
Subsequently, exosomes utilize clathrin-mediated endocytosis
and macrophage phagocytosis and then fuse with endosomes

to effectively transmit the anti-HBV activity induced by IFN-α
(66). Together, these studies suggest that exosomes have great
potential as delivery vehicles for disease treatment. Exosomes
can also be used for prognostic analyses. Circulating EV
concentrations and sphingolipid carrier characteristics can be
used not only for the diagnosis and differentiation of AH,
decompensated alcoholic cirrhosis, and other end-stage liver
diseases but also for the prediction of the 90-day survival
time (101).

CONCLUSIONS AND PERSPECTIVES

Macrophage activation is an important force driving liver
injury. Exosomes are important vesicles that are released
by almost all cell types and play an important role in
intercellular communication. Increasing evidence indicates
that exosomes have outstanding functions, suggesting
their potential use for future applications. In all liver
diseases, studies on the effects and connections between
macrophages and exosomes have concentrated on ALD,
NAFLD, and HCC areas and have provided ideas for the
non-invasive diagnosis and treatment of these diseases
(Table 1). Generally, exosomes from damaged hepatocytes
or tumors can promote the activation and differentiation
of macrophages, thereby promoting inflammation. On the
other hand, macrophage-derived exosomes also play a role in
target hepatocytes (Figure 3). Nevertheless, the identification
of novel specific biomarkers is required. In addition, it is
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worth investigating macrophages and exosomes in other
liver diseases.
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