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In this study, we introduce StructmRNA, a new BERT-based model that was designed for the 
detailed analysis of mRNA sequences and structures. The success of DNABERT in understanding 
the intricate language of non-coding DNA with bidirectional encoder representations is extended to 
mRNA with StructmRNA. This new model uses a special dual-level masking technique that covers 
both sequence and structure, along with conditional masking. This enables StructmRNA to adeptly 
generate meaningful embeddings for mRNA sequences, even in the absence of explicit structural 
data, by capitalizing on the intricate sequence-structure correlations learned during extensive pre-
training on vast datasets. Compared to well-known models like those in the Stanford OpenVaccine 
project, StructmRNA performs better in important tasks such as predicting RNA degradation. Thus, 
StructmRNA can inform better RNA-based treatments by predicting the secondary structures and 
biological functions of unseen mRNA sequences. The proficiency of this model is further confirmed by 
rigorous evaluations, revealing its unprecedented ability to generalize across various organisms and 
conditions, thereby marking a significant advance in the predictive analysis of mRNA for therapeutic 
design. With this work, we aim to set a new standard for mRNA analysis, contributing to the broader 
field of genomics and therapeutic development.
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Bioinformatics, which combine machine learning with genomics, is driving breakthroughs. Using linguistic 
parallels in genetic sequences1 and mRNA therapeutic advances against SARS-CoV-22, researchers have 
addressed key challenges, such as mRNA sequence representation learning and predicting sequence features. 
Predicting mRNA degradation is vital for understanding mRNA functionality, and crucial for biological 
processes such as vaccine development and therapeutic research. However, traditional statistical models and 
neural networks3 struggle to capture semantic dependencies and long-range context in mRNA sequences. While 
there is growing interest in advanced neural networks, they face challenges such as data scarcity and limited 
sequence-structure understanding. Thus, the lack of high-quality mRNA datasets with detailed structural 
annotations hinders model progress.

To address these challenges, we introduce StructmRNA in this study. This computational model leverages 
the Bidirectional Encoder Representations from Transformers (BERT) framework4,5, traditionally a linchpin 
of natural language processing (NLP), to interpret and predict the nuanced language of mRNA sequences and 
structures. BERT’s bidirectional context analysis is excellent for capturing nuanced language contexts, which 
is analogous to understanding nucleotide dynamics in mRNA. Thus, StructmRNA predicts mRNA structures 
and functions robustly, even without explicit structural data. StructmRNA, as a representation learning 
method, utilizes BERT for mRNA sequences and structures. It employs dual-level masking to enhance mRNA 
representation. Inspired by BERT’s training, it deciphers complex mRNA relationships, advancing bioinformatics 
and therapeutic research. However, the novelty of StructmRNA lies in its integration of mRNA sequence and 
structural data for representation learning, using a dual-level masking technique and trained on a large dataset 
of sequences and structures. This approach enables improved accuracy and versatility in RNA-related tasks, 
especially in RNA degradation prediction. Its precision expedites the development of mRNA-based treatments 
and vaccines development, which is crucial for enabling rapid  responses to emerging infectious diseases6,7.

The impact of StructmRNA goes beyond therapeutics, significantly advancing mRNA virus research by 
elucidating mRNA structure-function relationships and aiding in synthetic mRNA design8. This versatility, 
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particularly in personalized medicine9 and cross-species generalization, positions StructmRNA as a key player in 
shaping the future of molecular biology and medicine. Furthermore, integrating StructmRNA with extracellular 
vesicle (EV) RNA data could greatly enhance RNA research. StructmRNA’s capabilities in mRNA structure-
sequence representation learning offer promising applications in conjunction with resources like exoRBase 
2.0, which supports the study of long RNAs (exLRs) from biofluids and advances biomarker discovery10–12. 
Characterizing EV RNA species has implications for disease mechanisms13, with exLR signatures improving 
cancer diagnostics, including in SCLC and CRC14,15. Profiling cancer subtypes via EV-derived RNAs, such as in 
PDAC, can refine prognostics16. EV-origin analysis reveals patterns that reflect disease progression17, supporting 
EV integration into StructmRNA for diagnostics. Further research is needed to enhance StructmRNA with EV 
data.

In this study, we conducted a case study on mRNA degradation prediction, demonstrating StructmRNA’s 
adaptability. This highlights the potential of interdisciplinary approaches to uncover the complexities of 
biological systems.

Literature review
mRNA molecules play a crucial role in various biological processes, including gene expression, regulation, 
and viral pathogenesis. Traditional However, complete structural data are often needed for traditional mRNA 
analysis model’s18, which limits their application in analyzing novel mRNA sequences; additionally they often 
lack the predictive power of modern machine learning models. Thus, innovative computational methods have 
become essential for overcoming these challenges19. Specifically, the development of a model that can infer 
mRNA structure complexity and function with the mRNA sequence in the absence of explicit structural data is 
critical.

The evolution of computational RNA analysis methods has been well documented in recent works20. These 
methods, while innovative, often struggle with the complexity and variability of mRNA structures. Recent 
advancements in machine learning, particularly deep learning, have opened new avenues for addressing these 
challenges, providing a significant shift from traditional sequence analysis methods4,21. The field of representation 
learning has grown significantly over the past decade22. Notable advancements have been made in sequence 
analysis techniques, particularly for those for RNA23. The use of sequence-to-sequence autoencoder models24, 
CNNs, LSTMs25, Variational Autoencoders (VAEs)26, and Graph Neural Networks (GNNs)27,28 demonstrates 
the diversification of approaches in understanding the complexity of RNA structures. Additionally, transformer-
based models, such as BERT, have revolutionized the analysis of biological sequences, including DNA and 
proteins, although they do not account for structural information1,26. Moreover, techniques such as dna2vec and 
rna2vec have been specifically developed for gene embeddings29. Embedding methods, including adaptations of 
NLP techniques such as Word2Vec, have significantly advanced sequence representation in bioinformatics30–32.

CNNs are excellent at detecting local sequence patterns, while attention graph convolutions (AGCs) harness 
graph structures to capture intricate RNA relationships. Transformers, such as BERT excel at sequence tasks due 
to self-attention, which captures long-range dependencies better than LSTMs can33,34, making BERT ideal for 
mRNA sequence analysis. However, many models overlook mRNA secondary structure, reducing performance 
in RNA degradation prediction35. The advancements in bioinformatics have highlighted the potential of the 
abovementioned approaches in predicting mRNA degradation, a crucial factor in designing stabilized RNA 
therapeutics36–38. RNA degradation prediction is crucial for mRNA stability, therapeutic applications, gene 
expression, and viral RNA research and is impacted by RNA secondary structure, with specific motifs affecting 
rates with recent advances, sequence and structural data have been integrated to improve prediction accuracy, as 
in COVID-19 vaccine mRNA stability models.

However, scalable, generalizable models that combine both sequence and structure are still lacking. Limited 
data, especially for specific mRNA types, challenges model generalizability, and public datasets such as Stanford’s 
OpenVaccine are often small and diverse. The OpenVaccine Kaggle competition39, a collaborative effort 
involving 1636 teams, aimed at predicting RNA degradation rates using computational models. This competition 
highlighted a variety of approaches, including linear regression models such as DegScore40 and a version of 
the DegScore featurization with XGBoost41, graph-based distance embeddings, and complex architectures 
combining autoencoders, GNNs, GRUs, and CNNs2.

Traditional degradation prediction methods, such as those based on one-hot encoding, work for small-scale 
problems but struggle with biological relevance, high dimensionality, and scalability, so they are unsuitable 
for complex RNA sequences42. Techniques such as DegScore use statistical models with handcrafted mRNA 
features, which oversimplify nucleotide-degradation relationships and fail to capture RNA secondary structures 
vital for stability. These methods are limited in flexibility and scalability, especially for large, diverse datasets 
in RNA therapeutics and viral RNA research. Models such as CNNs and GCNs, including Nullrecurrent from 
Kaggle’s OpenVaccine2, excel with local features but struggle with global context. Kazuki2, using LSTMs, GRUs, 
and CNNs, captures both local and long-range dependencies but faces high computational costs and vanishing 
gradients. These models predict RNA degradation but struggle with dataset-specific structures, so generalizability 
is limited. Transformer models such as BERT could enhance RNA degradation prediction using representation 
learning that captures sequence, structure, and their dependencies, leading to more refined results.

Data augmentation techniques such as noise injection offer limited gains due to simple sequences43,44. 
Generative Adversarial Networks (GANs), which generate more realistic synthetic sequences45, show promise 
but are underexplored in relation to mRNA. Though effective in protein and virus generation, concerns remain 
about the biological viability and functionality of synthetic mRNA sequences.

An in-depth analysis of existing works reveals the following key challenges in mRNA representation learning 
and analysis: 1. Complexity and Variability: the complexity of mRNA sequences hinders traditional models 
(e.g., CNNs, RNNs) from capturing crucial long-range contextual information20,35. 2. Data Limitations: Existing 
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methods  rely on existence of structural data, limiting their applicability to novel mRNA sequences18. Thus, 
a model that can infer structure and function without explicit structural data is needed19. 3. Integration of 
Machine Learning: The effective integration of machine learning with genomics is essential yet developing, so 
innovative approaches are needed. 4. Advanced Computational Tools: More sophisticated computational tools 
are needed for the design and comprehension of evolving mRNA therapeutics2,26. 5. Interdisciplinary Challenges: 
Leveraging insights across domains, such as applying NLP techniques in bioinformatics, presents challenges1,29. 
The advanced training techniques employed in StructmRNA are a response to the challenges. By implementing 
a dual-level masking process, StructmRNA addresses the need for a more nuanced understanding of mRNA 
sequence-structure relationships. StructmRNA’s ability to represent mRNA sequence and structure enhances the 
predictive power of downstream tasks, such as mRNA degradation prediction without explicit structural data. 
This has profound implications in various fields, including therapeutic research, vaccine development, and the 
study of mRNA viruses.

Methodology
StructmRNA uses advanced computational techniques to analyze and embed mRNA sequences and 
structures. It employs a comparative framework for RNA degradation prediction using BERT with a dual-level 
masking strategy. This approach includes masking thresholds, model architecture, training protocols, dataset 
configuration, and data loader setup to enhance mRNA sequence analysis.

Dual-level masking process
The dual-level masking process in StructmRNA integrates sequence and structural data for accurate mRNA 
sequence embeddings. This section details sequence-level masking, and structure-level masking. Sequence-level 
masking is inspired by BERT, in which nucleotides are randomly replaced by a masking token, prompting the 
model to predict them based on the surrounding context and learn sequence dependencies. It is grounded in 
the methodology of4. Complementing sequence-level masking, structure-level masking targets elements of the 
mRNA structure. This approach helps the model learn how sequences fold into structural motifs, highlighting 
the role of structural context in understanding mRNA function. We set a 25% masking probability for each 
nucleotide or structural element to balance uncertainty with informative data. Our random sequence masking 
strategy evaluates each nucleotide against a random number for masking, which can be described as follows:

For a sequence of nucleotides S = {s1, s2, . . . , sn}, each nucleotide si is compared against a randomly 
generated number ri uniformly distributed between 0 and 1. If ri < p (where p is the masking probability), then 
si is replaced with a [MASK] token. This is formalized as Eq. (1):

 
s′i =

{
[MASK] if ri < p,

si otherwise.  (1)

Advanced masking techniques like conditional and dynamic pattern masking address nucleotide-specific 
significance and replicate RNA variability. There is a moderate positive correlation between sequence and 
structure masking, indicating that increased sequence masking often leads to increased structure masking, 
emphasizing the need to integrate both in modeling. The Pearson correlation coefficient ρseq, struct is computed 
as Equation (2).

 
ρseq, struct =

cov(seqD, structD)
σseqD · σstructD

, (2)

where cov represents covariance, and σ denotes standard deviation. The model’s interdependence shows its 
ability to predict masked parts using context, improving generalization. With dual-level masking and mRNA-
specific complexities, this model identifies key patterns such as secondary structure motifs, regulatory elements, 
splice sites, codon biases, and degradation signals. This capability facilitates RNA structure prediction from 
sequences alone, which is crucial when structural data is missing, and enhances mRNA sequence and structure 
analysis to provide a better understanding of their functional roles.

Figure 1 illustrates the dual-level masking process applied to a sample mRNA sequence, showcasing the approach 
we employ to mimic the natural variability in RNA sequences.

Fig. 1. A sample mRNA sequence and structure after dual-level masking. (A) Before masking. (B) After 
masking.
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Conditional masking
This technique employs  variable masking likelihood based on nucleotide type, facilitating conditional masking 
tailored to molecular structures and functions. It selectively targets nucleotides such as guanine, which are crucial 
for stability and function, reflecting their biological significance and variability in RNA sequences. This approach 
enhances realism by simulating natural variability observed in RNA sequences. To formalize this process, we 
introduce a function P (si) that defines the probability of masking for each nucleotide type. For example, for 
guanine (G), we have the following relationship between the probabilities: P (G) > P (A) = P (C) = P (U). The 
masking decision for a nucleotide si is then based on whether a random number ri is less than P (si).

Data preparation and processing pipeline for StructmRNA
In applying dual-level masking to our RNA dataset, we generate two key columns: masked_sequence and 
masked_structure, containing modified RNA sequences and structures. Both use the same masking token. We 
use the BERT tokenizer to map RNA sequences into token formats for training and prediction. Additionally, 
we developed a custom PyTorch Dataset class, RNADataset, to manage “PyTorch mRNA Dataset,” which was 
specifically designed for our mRNA data. It handles masked sequences and structures to align seamlessly with 
BERT model requirements. To optimize training, we integrate a DataLoader with a custom collate function for 
batch-wise processing of tokenized RNA sequences and structures, ensuring efficient grouping while preserving 
BERT input integrity. We use a batch size of 16 to balance computational efficiency with learning capability. 
Larger batches might speed up training but reduce learning detail, while smaller ones slow training. This data 
configuration supports streamlined, effective training, ensuring accurate and efficient model predictions.

Tokenizer Configuration In our study, we developed a tokenization method for RNA sequence and structural 
data. Each nucleotide and structural symbol is converted into unique numerical identifiers using a custom 
dictionary, token2int, which includes a special [MASK] token. This [MASK] token is crucial for training, akin 
to BERT’s masked language modeling, enabling context-based prediction. This method bridges RNA sequence 
complexity with transformer models, ensuring effective model training.

We optimized the hyperparameters of the StructmRNA model to improve prediction accuracy, as measured 
by MCRMSE, while ensuring efficient training. We performed automatic hyperparameter tuning using a grid 
search and conducted an ablation study to evaluate the importance of various model components. The optimal 
settings were as follows: hidden layer size 256, 8 layers, 8 attention heads, and intermediate layer size 500. More 
layers or attention heads offered minimal MCRMSE improvement but increased training time. A vocabulary 
size over 800 led to overfitting, longer training times, and higher memory use. The AdamW initial learning rate 
of 1e-5, OneCycleLR max learning rate of 1e-4, and 50 epochs with early stopping yielded the best results. This 
tuning ensures optimal performance and efficiency. The specific hyperparameters are highlighted in Table 1.

Figure 2 presents the flowchart of the data configuration and model training process used in our StructmRNA 
research. It begins with the “Original RNA dataset,” which undergoes a “Masking Process” to generate the 
mentioned data columns, masked_sequence and masked_structure. These modified columns simulate scenarios 
in which certain nucleotides or structural elements are unknown, thus providing a realistic training environment 
for our model. “BERT Tokenization” follows this masking process and breaks down sequences and structures into 
forms that are usable for model training and prediction. The tokenized data are then managed within a custom 
PyTorch Dataset Class that has been specifically designed to handle the complexities of RNA data and facilitate 
efficient management during the training phase. The DataLoader, set with a batch size of 16, processes the 
“Pytorch mRNA Dataset” in batches using a custom collate function, optimizing the batch-wise processing and 
maintaining the integrity of the sequences. The final step, “Model Training,” involves training the BERT-based 
deep learning model using the prepared data, translating computational preparations into practical outcomes 
and advancing our understanding of RNA degradation mechanisms. Figure 3 illustrates the architecture of the 
BERT model used in the StructmRNA, designed for sequence and structural prediction in a masked language 
modeling context. It shows the progression from the input of original sequences, through embedding layers and 
multiple transformer blocks to the final prediction of masked tokens.

Data augmentation with generative adversarial networks
In bioinformatics, limited datasets constrain predictive models. StructmRNA leverages GANs to augment data 
by replicating real mRNA sequences’ statistical properties, enriching datasets with diverse samples. In this 

Model Hyperparameters

StructmRNA
Vocabulary size: 800, Hidden layer size: 256, Hidden layers count: 8, Attention heads: 8, Intermediate layer size: 500, 
AdamW initial learning rate: 1e-5, OneCycleLR max learning rate: 1e-4, Training epochs: 50, optimizer: AdamW, Loss 
function: CrossEntropyLoss, Early stopping patience: 5

Word2Vec Window Size: 5, Embedding Dimensions: 50

ELMo Number of Layers: 3, Hidden Units: 256, Activation Function: tanh, Dropout Rate: 0.4, Transformation Layer: sigmoid

LSTM Number of Hidden Units: 256, Activation Function: Swish, Number of Layers: 3, Dropout Rate: 0.4

CNN Kernel Size: 3, Filters per Layer: mean, Activation Function: ReLU, Pooling Size: 300

VAE Latent Dimension: 256, 128, 64, 32, 16, Activation Function: LeakyReLU and sigmoid, Dropout Rate: 0.3, 0.2, 0.1

AGC Number of Filters: 256, Filter Size: 7, Number of Layers: 4, Dropout Rate (embedding layer): 0.6/0.4

Table 1. Hyperparameters and training parameters for the StructmRNA model and various baseline models 
utilizing embedding methods for the RNA degradation prediction task over 400 training epochs.
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way, dataset scarcity is addressed, and synthetic sequences in research are explored. GAN-generated sequences 
enhance training data volume and model generalization, improving robustness and biological relevance. 
Combining BERT’s context-sensitive learning with GANs’ data augmentation makes StructmRNA a pioneering 
advancement in bioinformatics, highlighting the potential of interdisciplinary strategies in analyzing mRNA 
sequences and structures. The use of GANs in StructmRNA raises concerns about the biological viability of 
generated sequences. Rigorous validation is crucial for ensuring these sequences are statistically accurate and 
biologically plausible46. Examining the biological significance of GAN-generated sequences highlights our 
commitment to responsibly and effectively harnessing the full potential of synthetic biology45,47.

We chose a transformer-based GAN because it can handle sequential data with self-attention, which 
is crucial for mRNA sequences. It maintains nucleotide order and sequence structure through positional 
encoding, enhancing biological plausibility over simpler GANs such as CycleGAN. Figure 4a shows the process 
of integrating GAN data augmentation into our StructmRNA model. Figure 4b details the generator and 
discriminator architecture in the transformer GAN framework for synthetic mRNA sequence generation.

Fig.  3. StructmRNA’s sequence and structure masking process: (1) Original sequence and structure, (2) 
Masked, (3) Token embedding, (4) Positional embedding, (5) Concatenation, (6) MLM prediction, (7) 
Predicted vs. original tokens.

 

Fig. 2. StructmRNA pipeline from mRNA generation to model evaluation. NCBI and GAN-generated 
sequences undergo structure prediction via ViennaRNA, followed by sequential, structural, and conditional 
masking. Tokenized data is organized into a PyTorch dataset, processed through a DataLoader, and used for 
model training. Evaluation uses the OpenVaccine dataset with MCRMSE for mRNA degradation prediction.
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Experiments
Our study provides a comprehensive exploration of computational strategies for RNA degradation prediction, 
spanning from traditional statistical model DegScore2 to more sophisticated neural network architectures such as 
CNNs, LSTMs, and transformer-based models (Table 1). We benchmark the StructmRNA model against various 
baseline models with different embedding and modeling techniques. This comparison validates our findings 
and highlights the advantages and limitations of each method for RNA degradation prediction. Our goal is to 
establish StructmRNA as a significant advancement in bioinformatics, offering improved predictive capabilities 
for mRNA-related tasks. In this study, we explored RNA degradation prediction using various computational 
strategies: DegScore, DegScore-XGBoost, Nullrecurrent, Kazuki2, Genetic algorithm, and Ensemble top two 
models2. Moreover we compared StructmRNA model with Word2vec, ELMo, LSTM, CNN, VAE, and AGC 
models (Table 1) to highlight its strengths and improvements. To validate StructmRNA, we used cross-validation 
with 80% of the data for training and 20% for validation. Performance was assessed using MCRMSE and 
ANOVA tests to analyze significant differences in loss among models. This metric ensures direct comparison 
with established benchmarks. These methods confirmed the robustness and comparative of StructmRNA in 
predicting advantages in RNA degradation.

Before passing the data to StructmRNA, we handled missing or incomplete mRNA structural information by 
applying a linear regression model to predict and impute the gaps. To achieve this, RNA sequences and structures 
were transformed into numerical formats. This imputation technique is robust for real-world datasets and 
improves the performance of predictive models like StructmRNA when dealing with incomplete annotations.

Generative adversarial network design
For our GAN architecture, we used PyTorch and included a Generator with 256-dimensional embeddings, 
positional encoding, and a transformer encoder with 10 layers and 64 heads (automatic parameter tuning with 
grid search). The Discriminator evaluated synthetic mRNA sequences versus real ones. A Naive Bayes classifier, 
trained with k-mer size 6, distinguished mRNA-like from non-coding sequences. mRNA-like sequences were 
concatenated, non-coding DNA was converted to mRNA-like sequences, and both were combined with real 
mRNA to enrich the training dataset.

Dataset
We built the StructmRNA model with 3.46 billion nucleotides of human mRNA data from NCBI and added 
2,400 sequences from the Stanford OpenVaccine project to improve accuracy, especially for mRNA viruses. 
Vienna mRNA package annotations were used to enhance training and evaluation.

The BERT training dataset features nucleotide sequences from NCBI with characters ‘A’, ‘U’, ‘G’, and ‘C’, and 
secondary structure annotations using ‘(’, ‘)’, and ‘.’. For the mRNA degradation prediction task, each sequence 
in the dataset is accompanied by several key attributes, including a unique identifier (id), nucleotide sequence 
(sequence). Additionally, numerical arrays such as reactivity, deg_pH10, deg_Mg_pH10, deg_50C, and deg_
Mg_50C represent the degradation likelihood under different experimental conditions, which is essential for 
understanding RNA degradation behavior. Error values associated with these measurements are provided 
under the error attribute. For more details on the data format, please refer to the Supplementary Materials. To 
ensure processing efficiency and improve model training, we standardized all sequences to 107 nucleotides. 
This uniform length facilitated streamlined training. Additionally, a GAN model was used to generate mRNA 
sequences, and synthetic sequences from NCBI DNA sources were added to enhance dataset diversity and 
robustness. We utilized 1.125 million nucleotides from human DNA, sourced from NCBI48 and Stanford 
COVID Vaccine dataset39, categorized into non-coding and coding segments. Then, we segmented mRNA 
sequences, including those from NCBI, into 107-nucleotide chunks using standard bioinformatics methods. To 
ensure data reliability, we applied stringent quality controls, including error filtering and sequence validation, 
especially on degradation-related attributes. Sequences that did not meet specific thresholds for quality and 
noise were excluded from the final dataset. This ensured that only high-confidence sequences were used to train 
the model. Additionally, the structural annotations were generated using established bioinformatics tools such 
as the ViennaRNA package, further enhancing the reliability of the dataset.

Figure 5 provides a comprehensive visual overview of the data preparation process that was central to our 
study on RNA sequences and structures. The first subfigure (Fig. 5a) presents the distribution of nucleotides 

Fig. 4. (a) Workflow diagram for augmenting mRNA sequence and structure: Train mRNA classifier, apply to 
training set, generate synthetic sequences with transformer GAN, evaluate with classifier. (b) Generator and 
discriminator architecture of the transformer GAN for synthetic mRNA generation.
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across different sequences, highlighting the variability and common patterns that our model must learn to 
recognize. The second (Fig. 5b) and third (Fig. 5c) subfigures depict the frequency distribution of masking in 
RNA sequences and structure positions, respectively, providing insights into how masking varies across different 
structural components. These visuals not only provide a better understanding of the complexity of the data but 
also highlight the rigor of our methodological framework for RNA degradation prediction (Fig. 6).

Results
We rigorously tested our StructmRNA model against baseline models, include Ensemble models, Genetic 
algorithm, Nullrecurrent, Kazuki2, DegScore-XGBoost, and DegScore from kaggle openVaccine competition, 
using the OpenVaccine dataset2. We also added some baseline methods focusing on their mRNA embedding 
skills with various neural networks (e.g., Word2Vec, ELMo, CNN, LSTM, VAE, and AGC), and top-performing 
Kaggle entries served as our reference points. We assessed our model across diverse baselines, using MCRMSE 
to measure RNA degradation prediction accuracy. This metric ensures direct comparison with established 
benchmarks. Table 2 summarizes the performance of these models on the OpenVaccine dataset, including 
results from our StructmRNA model. In our study, we evaluated the structmRNA model against various 
machine learning models based on three criteria: (1) improvement in training and Public Test set losses, (2) 
absolute difference (generalization gap) between end training and Public Test set losses, and (3) lowest achieved 
end losses. Findings from the OpenVaccine dataset highlight advancements in RNA degradation prediction 
across various modeling techniques.

Significantly, the StructmRNA + OpenVaccine_Data model, which utilizes the StructmRNA architecture 
pre-trained on OpenVaccine mRNA sequences along with a secondary structure dataset, demonstrates 
superior performance compared to alternative models with the lowest MCRMSE of 0.07, indicating superior 
predictive accuracy. Following closely behind is StructmRNA + GAN_Data, along with StructmRNA + 
NCBI_Data, demonstrating the efficacy of integrating embedding methods with StructmRNA. These models 
achieved impressive MCRMSE scores of 0.11 and 0.10, respectively. StructmRNA + GAN_Data utilizes the 
StructmRNA framework, which is pre-trained on synthetic mRNA sequences generated by GAN, combined 
with secondary structures provided by the Vienna tool. On the other hand, StructmRNA + NCBI_Data 
leverages the StructmRNA architecture, pre-trained on mRNA sequences sourced from NCBI, in conjunction 
with a secondary structure dataset. Among the models from the Kaggle OpenVaccine Competition, the Genetic 

Fig. 6. StructmRNA performance in RNA degradation prediction. The figure shows training and validation 
MCRMSE losses (Y-axis) over 400 epochs (X-axis) for five target metrics averaged across four folds.

 

Fig. 5. Comprehensive overview  of the data preparation process for RNA sequences and structures.
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Algorithm and Kazuki2 perform competitively, with MCRMSE scores of 0.22 and 0.23, respectively. The Genetic 
Algorithm, focused on optimization rather than deep learning, shows moderate accuracy but struggles with 
generalizing to complex RNA structures. Kazuki2, leveraging LSTMs, CNNs, and GRUs, captures both local and 
global dependencies. However, its higher computational costs and the risk of vanishing gradients contribute to its 
slightly elevated MCRMSE. The combination of CNNs and GCNs enables Nullrecurrent to achieve an MCRMSE 
of 0.23, indicating better accuracy compared to CNN-only models. The GCN’s ability to model the secondary 
structure adds an extra layer of context that improves predictions, especially in tasks such as RNA degradation, 
where both sequence and structure play a vital role. Traditional embedding models such as Word2Vec and ELMo 
register higher MCRMSE values (0.41 and 0.44). While these methods are effective for use in NLP, they cannot 
account for the critical secondary structure and sequence of RNA molecules, and they require more data to 
perform well. This reflects their limitations in RNA degradation prediction. Similarly, DegScore and DegScore-
XGBoost, though effective with small-scale features, oversimplify RNA sequence, structure, and nucleotide 
relationships, and rely on fixed feature sets, resulting in only moderate performance. Other neural networks such 
as CNNs, LSTMs, and VAEs improve on these methods, with MCRMSE values ranging from 0.35 to 0.26 and 
0.21. However, they still fall short due to limited structural integration and also require more data to perform 
well. AGC performs better by capturing RNA secondary structures but faces computational challenges. Figure 6 
shows training and validation losses of various sequence embedding models for predicting RNA degradation. It 
evaluates five metrics-reactivity, deg Mg pH10, deg pH10, deg Mg 50C, and deg 50C-averaged across four folds, 
comparing predicted and actual values.

Furthermore, although pre-training the StructmRNA with synthetic data does not improve the results of the 
RNA degradation task, the convergence observed in our customized BERT model (Fig. 7) shows that both models 
achieve similar convergence patterns within 30 epochs, indicating the model’s robustness and the synthetic data’s 
fidelity to real sequences. Thus, we can infer that the synthetic data mimic real mRNAs very closely from a 
statistical  standpoint. These results highlight the potential of advanced machine learning techniques, particularly 
those employing sophisticated embedding methods, in enhancing predictive performance in bioinformatics. 

Our study compared the StructmRNA model with other machine learning models, focusing on training 
improvements, generalization gaps, and achieved losses. ANOVA tests showed a significant difference in 
training loss improvement (F = 8.76, p = 0.021), indicating varied effectiveness in reducing training loss. 
However, Public Test set loss improvements were similar across models. The generalization gap also varied 
significantly, showing differences in models’ ability to generalize. Minimal training and Public Test set losses 
were 0.06 and 0.07, respectively, demonstrating effective loss minimization by the end of training (Fig.  8a, 
b). Moreover, Fig. 8c shows final training and Public Test set losses across various machine learning models, 
depicting improvements from initial to final values. Error bars indicate loss reduction over training iterations, 
highlighting each model’s learning effectiveness. Blue and red markers denote training and Public Test set losses 
for nine models: StructmRNA variants (NCBI, OpenVaccine, GAN Data), Word2vec, ELMo, LSTM, CNN, VAE, 
and AGC. Bars indicate model learning and generalization: shorter bars mean less improvement, while longer 
bars show significant loss reduction. StructmRNA shows better training efficiency but inconsistent Public Test 
set performance. The generalization gap reveals varying overfitting or underfitting, highlighting complexities in 
NLP and machine learning model evaluation.

Models
MCRMSE
(Public test set)

Models From Kaggle OpenVaccine Competition

 Experimental error 0.12

 DegScore 0.39

 DegScore-XGBoost 0.36

 Nullrecurrent 0.23

 Kazuki2 0.23

 Genetic algorithm (10 of top 100 selected) 0.22

 Ensemble top two models 0.22

Models in respect to embedding methods

 Word2vec 0.41

 ELMo 0.44

 LSTM 0.26

 CNN 0.35

 VAE 0.21

 AGC 0.25

StructmRNA + OpenVaccine_Data 0.07

StructmRNA + NCBI_Data 0.10

StructmRNA + GAN_Data 0.11

Table 2. Performance of RNA degradation models on OpenVaccine dataset, including StructmRNA pretrained 
on OpenVaccine, NCBI, and GAN datasets (rounded to two decimals). Significant values are in bold.
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During training, the GPU handles numerical computations, while the CPU manages data tasks and pre-
training for StructmRNA. The detailed training loop and model complexity lead to higher CPU usage. For 
instance, pretraining BERT on the Open Vaccine dataset took 220 hours, used dual GPU T4s, had 70% CPU 
usage, and operated with a batch size of 64.

Discussion
We evaluated the StructmRNA model against various machine learning models based on three criteria: training 
and Public Test set loss improvement, the generalization gap (difference between training and Public Test 
set losses), and the lowest end losses achieved. ANOVA tests revealed a significant difference in training loss 
improvement among models, but no significant difference in Public Test set loss improvement (F-value = 0.98, p 
value = 0.354). The generalization gap showed significant variance (F-value = 5.52, p value = 0.047), indicating 
differences in models’ ability to generalize from training to Public Test sets. The lowest end training and Public 
Test set losses were 0.06 and 0.07, respectively. These results suggest that while StructmRNA may improve 
training efficiency, this does not extend to Public Test set loss reduction. The generalization gap variance indicates 
different levels of overfitting or underfitting among the models. These findings help refine model selection and 
improvement for specific applications.

Previous studies show that combining neural network architectures improves RNA degradation prediction, 
like models integrating LSTMs and CNNs, which capture complex RNA features but struggle with efficiency 

Fig. 7. Comparison of GAN model convergence in two scenarios.
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and overfitting. Genetic Algorithms optimize feature selection but miss RNA secondary structure details. Our 
StructmRNA model addresses these issues by using advanced embedding techniques and secondary structure 
information, achieving better accuracy with lower MCRMSE scores. This demonstrates the effectiveness of 
hybrid models and sophisticated embeddings in enhancing RNA degradation predictions.

We also compared training a BERT model on mixed synthetic (GAN-generated) and real RNA sequences from 
NCBI with training on only real NCBI data. Both scenarios converged within 30 epochs and performed similarly 
on RNA degradation tasks, indicating that BERT generalizes well across data types. Synthetic sequences exhibit 
high fidelity and can augment real datasets effectively. This highlights the need for optimizing synthetic and real 
data integration and refining GAN processes. Consistent performance underscores the importance of diverse 
metrics for evaluating synthetic data’s impact. These results validate the use of synthetic data in bioinformatics 
and suggest that synthetic biology has potential in machine learning with challenging data acquisition.

Conclusion
The StructmRNA model significantly advances mRNA degradation prediction in bioinformatics. Our evaluation 
shows the superior performance and generalization of StructmRNA over various machine learning models, with 
notable improvements in training loss. However, Public Test set loss across different models remained similar, 
indicating comparable proficiency in mRNA degradation prediction. Exploring the generalization gap revealed 
differences in model adaptability from training to Public Test sets. Incorporating GAN-generated synthetic data 
into the training did not improve downstream performance but maintained model convergence within 30 epochs, 
highlighting the robustness of the BERT model and synthetic data’s high fidelity to actual mRNA structures. 
This suggests the potential of integrating synthetic and real data without compromising predictive accuracy. 
StructmRNA addresses unique challenges by enhancing efficacy through regularization techniques, dropout 
layers, and optimized algorithms. Diverse Public Test sets ensure generalizability, and continuous evaluations 
highlight adaptability. Advanced preprocessing and regular updates maintain data quality and bias mitigation. 
Compatibility with existing bioinformatics tools and ongoing optimization efforts refine the training process, 
balancing complexity with performance.The mRNA degradation predictions of StructmRNA contributes to 

Fig. 8. Overview of training and Public Test set loss improvements and generalization gap. Overview: (a) 
Training and test loss improvements. (b) Generalization gap analysis: Box plot insights into model capabilities 
and overfitting. (c) Comparative visualization across models.
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therapeutic research by identifying targets for mRNA-based drugs. This research highlights the role of advanced 
machine learning in bioinformatics and sets a new standard for degradation prediction. Synthetic and real data 
provide a model for future research, improving mRNA control in data-scarce fields for medical use.

Data  availibility
The RNA degradation task used the OpenVaccine: COVID-19 mRNA Vaccine Degradation Prediction dataset 
from a Kaggle competition https://www. kaggle.com/c ompetitions/ stanford-co vid-vaccine/data. The  S t r u c t m R N 
A model, trained on NCBI Homo sapiens mRNAs, can be downloaded here (5 GB):  h t t p s :  / / w w w .  k a g g l e  . c o m /  
d a t a s e t s / s p n a h a l i / s e q u e n c e s - n c b i - a u t o / d a t a     . The GAN dataset for DNAs used NCBI Homo sapiens DNAs and 
the GAN dataset is available at https://www.kaggle.com/datasets/spnahali/rna-seq-  str. For more details, contact 
Sepideh Nahali at sepidnah@yorku.ca.
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