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Abstract. Plasma membranes were detached from 
ejaculated bull spermatozoa by a brief sonication in a 
moderately hypotonic medium, and the released 
plasma membranes were partially purified by differen- 
tial centrifugation. The resulting fraction was enriched 
8- and 15-fold in alkaline phosphatase and 5' nucleo- 
tidase activities, respectively, compared with the start- 
ing sonicated spermatozoa. This total plasma mem- 
brane fraction was separated into two distinct frac- 
tions by equilibrium density centrifugation on a con- 
tinuous linear sucrose gradient. Two peaks of light 
scattering material were formed at densities of 1.117 
and 1.148 g/ml. The denser peak contained most of 
the protein of  the plasma membrane fraction, whereas 
nearly all the concanavalin A binding activity was 
found in the lighter peak. The two bands had dis- 
tinctly different polypeptide compositions when ana- 
lyzed by SDS PAGE. Polyclonal antibodies were 

raised in rabbits against a major integral membrane 
glycoprotein of  each fraction (Mr of 92,000 in the light 
peak and 98,000 in the dense peak). The two antigens 
were detected on the surface of intact spermatozoa by 
indirect immunofluorescence microscopy. The 92-kD 
protein (present in the lighter band) was detected only 
on the plasma membrane of the acrosomal and ante- 
rior postacrosomal regions of  the head. The 98-kD 
antigen, present in the heavier band, was localized to 
the surface of the postacrosomal region of the head, to 
the principal piece of the tail, and to the connecting 
piece between the head and tail. The exclusive local- 
ization of  the 92-kD polypeptide to the surface of the 
anterior portion of the head was confirmed by immu- 
noelectron microscopy. These data show that the two 
fractions isolated on the sucrose gradient originate 
from different regions of the sperm cell plasma mem- 
brane. 

T 
HE mammalian spermatozoon is a highly polarized cell 
that has several distinct morphological regions. Within 
the head, two distinct portions are represented by the 

acrosomal and postacrosomal regions, whereas the tail is 
characterized by an anterior portion, which contains mito- 
chondria (the midpiece), and a posterior region, which com- 
prises the principal and end pieces (for a review, see Fawcett, 
1975). A corresponding regional diversification of the sperm 
cell surface has been revealed by a variety of techniques, 
including freeze-fracture (Friend, 1982), lectin binding (Kin- 
sey and Koehler, 1976; Nicolson et al., 1977; Koehler, 1978; 
Aguas and da Silva, 1983), lipid probe binding (Bearer and 
Friend, 1982), and immunolocalization (Myles et al., 198 l; 
Gaunt et al., 1983; Primakoff and Myles, 1983; Naz et al., 
1984). 

Although the presence of different domains on the surface 
of the mammalian sperm cell is well established, the degree 
of compositional overlap between them is not known. To 
understand how these domains are generated and maintained, 
it is important to know the composition of the different 
domains. 

Plasma membrane (PM)~-enriched fractions from mam- 
1. Abbreviations used in this paper." Con A, concanavalin A; EM, electron 

malian spermatozoa have been obtained and characterized 
(Gillis et al., 1978; Peterson et al., 1980; Noland et al., 1983; 
Russell et al., 1983). However, the separation and composi- 
tional analysis of the different domains has not been reported 
so far. In this study, we report the separation from ejaculated 
bull spermatozoa of two membrane fractions that contain 
vesicles with distinct ultrastructure and polypeptide compo- 
sition. Major polypeptides of each fraction are localized within 
different regions of the cell surface of intact sperm, which 
indicates that the fractions contain membranes that originate 
from different domains of the spermatozoon surface. 

Materials and Methods 

Materials 

The following reagents were purchased from the following sources: Hanks' 
solution, Difco Laboratories Inc., Detroit, MI; iodoacetamide, DL-dithiothreitol, 
benzamidine, B-glyeerophosphate, wheat germ agglutinin, concanavalin A (Con 
A), N-benzoyl-L-arginineethylester-HC1, p-nitrocatecholsulfate, poly-L-lysine, L- 
cysteine sulfinic acid, 2,6-dichlorophenol-indophenol, phenazine methosulfate, 

microscopy; HTB, hypotonic Tris buffer; OAM, outer acrosomal membrane; 
P92, 92-kD polypeptide; P98, 98-kD polypeptide; PM, plasma membrane; 
TBS, Tris-buffered saline; TS, total sonicate. 
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Triton X-100, AMP sodium salt, barium hydroxide, l-0-methyl-a-D-glucopyr- 
anoside, and polyvinylpyrrolidone-360, Sigma Chemical Co., St. Louis, MO; 
Percoll, protein A, Sephadex G-50 medium, and FicoU-400, Pharmacia Fine 
Chemicals, Uppsala, Sweden; sucrose (RNAse-free), protein assay kit, Coomas- 
sic Brilliant Blue R-250, low molecular weight standards for SDS PAGE, and 
Biogel-P2, Bio-Rad Laboratories, Richmond, CA; p-nitrophenylphosphate, 
BDH Chemicals Ltd., Poole, England; 3H-AMP ammonium salt and Na~2SI, 
Amersham International plc, Amersham, England; N-acetylglucosamine, P-L 
Biocbemicals, Inc., Milwaukee, WI; nitrocellulose paper (type HAHY), Milli- 
pore Corp., Bedford, MA; bovine serum albumin (BSA, fraction V), Boehringer 
Mannheim GmbH, Mannheim, FRG; radioactive low molecular weight stand- 
ards for SDS PAGE, New England Nuclear, Langen, FRG; goat anti-rabbit 
rhodaminated IgG, Cappel Laboratories, Cochranville, PA. 

Cell Preparation 

Fresh ejaculates from fertile bulls were kindly supplied by the "Centro per il 
potenziamento zootecnico" (Zodesco, Milan). Sperm concentration, motility, 
and viability were checked by technicians of-the Center, and ejaculates with 
<40% motile sperm cells were discarded. Ejaculates were kept in a thermos 
bottle until use. Experiments were always initiated within 3 h after ejaculation. 

At the beginning of the experiment, the temperature of the ejaculates was 
slowly lowered to 4"C in the cold room, and all subsequent operations were 
done in the cold, unless otherwise specified. Ejaculates were diluted in Hanks' 
solution to obtain a sperm concentration of 5-8 x l0 ~ cell/ml. A self-generating 
Percoll gradient was used to separate viable spermatozoa from cytoplasmic 
droplets and soluble seminal plasma components. The gradient was obtained 
by eentrifugation, for 30 min at 21,000 g~w in a Beckman 50.2 Ti rotor 
(Beckman Instruments, Inc., Palo Alto, CA), of a mixture that contained 4 ml 
of sperm suspension in Hanks' and 20 ml of a Percoll solution (9 parts Percoll 
+ I part of 10× phosphate-buffered saline [PBS], pH 7.4). Two peaks were 
obtained: the less dense one contained cytoplasmic droplets, broken sperma- 
tozoa, and cellular debris, whereas the denser one was highly enriched (>99%) 
in viable spermatozoa, as checked by phase-contrast light microscopy. The 
latter fraction was used for cell fractionation experiments. 

Cell Disruption and Fractionation 

Spermatozoa obtained from the Percoll gradient were pelleted away from 
Percoll by dilution with Hanks' solution and centrifugation (at 350 g=~, 20 
min), followed by two washes with Tris-buffered saline, pH 7.4 (TBS). The 
final pellets were resuspended in hypotonic Tris buffer (HTB; 34 mM NaCI, 
0.1 mM KCI, 5 mM benzamidine, 1 mM EDTA, 2.5 mM Tris-HCl, pH 7.4) 
to a final protein concentration of 8-16 mg/ml. 2-ml aliquots of the cell 
suspension were sonicated for 3 s on ice with a Branson B-15 sonifier with a 
microtip (Branson Sonic Power Co., Danbury, CT) at a power of 50 W. The 
resulting total sonicate (TS) was centrifuged for l0 rain at 1,000 g ~ .  The pellet 
(low speed pellet) was saved for biochemical and morphological analyses, and 
the supernate was the starting material for plasma membrane purification. 1.3- 
ml aliquots of the supernate were centrifuged for l0 min at 6,000 g ~  in the 
Sorvall SA-600 rotor (DuPont Co., Wilmington, DE) to sediment sperm tail 
fragments. The pellets were resuspended in HTB and centrifuged for 15 rain at 
6,000 g ~ .  The pellets (6,000 g pellets) were saved, and the supernates, which 
resulted from the 2x 6,000 g centrifugation, were pooled and centrifuged for 
40 min at 100,000 gm~ in the Beckman 50 Ti rotor. The supernate was 
decanted, and the membrane pellet (PM) was resuspended by gentle homoge- 
nization with a Dounce homogenizer in 0.25 M sucrose, l mM EDTA, 5 mM 
benzamidine, 3 mM imidazole-HC1, pH 7.0, to a protein concentration of 1-2 
mg/ml. 

For further subfractionation, 1.5 ml of the PM suspension (containing ~3 
mg protein) was layered over a 16.5-ml continuous linear sucrose density 
gradient (0.5-1.8 M sucrose) that contained 1 mM EDTA, 3 mM imidazole- 
HCI, pH 7.0, and was centrifuged overnight in the Beckman SW 27. l rotor at 
24,000 rpm. 1.3-ml fractions were collected with an Auto Densiflow probe 
(Buchler Instruments Inc., Fort Lee, N J) connected to a peristaltic pump. 

For protein and enzyme assays, gradient fractions were analyzed directly. 
For SDS PAGE, they were first diluted with 3 vol of water, sedimented into 
pellets (45,000 rpm, l h, Beckman 50 Ti rotor), and then resuspended in small 
volumes of water. 

Carbonate Procedure 

Peripheral membrane proteins were extracted from vesicles of the PM fraction 
by incubation in 100 mM Na2CO3, pH 11 (Fujiki et al., 1982). The membrane 

vesicles were separated from the released proteins by centrifugation (1 h at 
230,000 g~,~). 

Biochemical Assays 
Protein determinations were done according to Bradford (1976) using the Bio- 
Rad protein assay kit. 

Enzyme activities were measured on freshly prepared fractions, or on frac- 
tions stored at -70"C (up to a month) and thawed once. There were no 
differences between the activities measured in fresh and stored, freeze-thawed 
samples. 

Acid phosphatase was determined according to Appelmans and de Duve 
(1955). The reaction was stopped by addition of trichloroacetic acid, and the 
inorganic phosphate released was determined by the method of Ames (1966). 
The activity of alkaline phosphatase was determined by the release of p- 
nitrophenol from p-nitrophenylphosphate. Incubation mixtures of 0.33 ml total 
volume, which contained 70 mM KCI, 5 mM Mg acetate, 15 mM p-nitrophen- 
ylphosphate, 5 mM glycine-KOH, pH 9, and various amounts of fractions, 
were incubated for 30 min at 37"C. The reaction was stopped by addition of 
0.5 ml of 0.16 N NaOH, and the generation of product was measured by the 
absorption at 400 rim. Arylsulfatase, 5'nucleotidase, and succinate dehydrogen- 
ase were measured as described by Yang and Srivastava (1974), Stanley et al. 
(1980), and Arrigoni and Singer (1962), respectively. 

For acrosin activity determinations, samples in TBS were sonicated for l0 s 
three times (at a power of 50 W), then acidified to pH 2.7 with HCl and 
incubated for 1 h, and finally centrifuged for 15 rain in a Microfuge B (Beckman 
Instruments, Inc.). The supernate, which contained released acrosin, was passed 
through a 3-ml Sephadex G-50 medium column equilibrated with 0.1 M 
glycine-HCl buffer, pH 2.7, to separate acrosin from its natural inhibitor present 
in the spermatozoon. 0.25-ml fractions were collected from the column, and 
0.l-ml aliquots of the fractions were assayed for acrosin activity by following 
the hydrolysis of N-benzoyl-L-arginineethylester in 0.9 ml of 50 mM CaCl2, 50 
mM Tris-HCl, pH 8.5. The reaction was started by addition of 2.5 ul ofa 100 
mM solution of the substrate, and ultraviolet absorption at 253 nm was 
monitored continuously on a double beam spectrophotometer. 

SDS PAGE 

For SDS PAGE, samples were solubilized by addition of 2 vol of a solution 
that contained 95 mM DL-dithiothreitol, 6.7% SDS, 0.005% bromophenol 
blue, 0.52 M sucrose, 0.3 M Tris-HCl, pH 8.9, boiled for 2 min, and then 
alkylated with a 10-fold excess of iodoacetamide. SDS PAGE was done essen- 
tially as described by Maizel (1971) on 8-15% gradients or 8% polyacrylamide 
slab gels, 1.5-mm thick. After electrophoresis, gels were stained with silver 
(Switzer et al., 1979). 

Preparation of Antibodies 
Polypeptides of the PM fraction were purified by preparative SDS PAGE and 
used to raise antibodies in rabbits. 0.5-1.2 mg of protein from the PM fraction 
or subfractions thereof were loaded onto a 1.5-mm-thick polyacrylamide gel in 
one, 15-cm-wide, slot. After electrophoresis, two strips on either side of the gel 
were rapidly stained with Coomassie Brilliant Blue, and the polypeptides of 
interest were excised from the remaining portion of the gel. The excised bands 
were homogenized in PBS with a Potter-EIvejhem homogenizer, using a motor- 
driven pestle. Homogenized gel bands were used immediately or stored at 
-20"C. Rabbits were immunized by multiple intradermal injections of the gel 
homogenates at biweekly intervals. Each rabbit received a total amount of 
protein deriving from two gels. 

lg fractions were prepared from immune and preimmune sera by repeated 
precipitations with 33% (NI-h)2SO4. The final lg solutions were dialyzed against 
PBS, 0.05% NaN3 and stored at 4"C. 

Radioimmunoblotting 

Electrophoretic transfer of polypeptides to nitrocellulose and radioimmuno- 
staining of the blots with rabbit Igs and ~2Sl-protein A were done as previously 
described (Borgese et al., 1982). 

Glycoprotein Identification with 125 I-labeled Con A 

SDS polyacrylamide gels, which contained the PM fraction or subfractions 
thereof, were fixed in 25% isopropanol, 7% acetic acid and washed extensively 
with water and then with 0.5 M Na + phosphate buffer, pH 6.5. Gels were then 
equilibrated in incubation buffer (0.5 M NaCl, 3% BSA, 0.05 M Na + phosphate 
buffer, pH 6.5) and incubated for 24 h in the same buffer that contained 2.5 x 
l06 cpm/ml of ~25I-Con A, iodinated by the method of Greenwood et al. 
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(1963). Gels were washed for a few days with several changes of incubation 
buffer. The last washes were without BSA. Gels were then dried and exposed 
to Kodak-Omat AR films. The specificity of Con A binding to sugar residues 
was determined by including l-O-methyl-a-l>glucopyranoside in the Con A 
incubation mixture. For a quantitative analysis, bands from autoradiograms 
were cut and treated for a spectrophotometric quantitation, according to Suissa 
( 1983). 

Preparation of Protein-Colloidal Gold Conjugates 

Colloidal gold particles of ~5-nm diam were prepared according to Faulk and 
Taylor (1971). Gold-protein A conjugation was done by the method of Slot 
and Geuze (1981), and Con A was conjugated by the method of Horisbergar 
and Rosset (1977). 

Immunolocalization of Sperm 
Surface Polypeptides 
2-4 × 109 spermatozoa were pelleted after dilution of fresh ejaculates with cold 
Hanks" solution and centrifugation for 5 rain at 350 g,,~. Ceils were washed 
twice with Hanks' and sedimented as above. The final pellet was suspended in 
freshly prepared 3% paraformaldehyde, 0.2% glutaraldehyde, 0.12 M phosphate 
buffer, pH 7.4 (for immunoelcctronmicroscopy), or in 3% paraformaldehyde 
alone in the same buffer (for indirect immunofluorescence), and fixed for l h 
at 0*C. The fixed cells were rinsed twice with 0.12 M phosphate buffer. 

For indirect immunolluoreseence, the fixed and washed cells were resus- 
pended in 0.12 M Tris-HC1, pH 7.4, and drops of the suspension were deposited 
on polylysine-covered glass slides for 30 min, to allow the spermatozoa to 
adhere to the substrate. Slides were then rinsed once with Tris-HCl buffer and 
twice with 0.12 M glycine-NaOH, pH 7.4. After incubation for 30 min in 0.5 
M NaCl, 5% BSA, 0.02 M Na + phosphate buffer, pH 7.4, the slides were 
covered with the same buffer that contained different dilutions of Ig fractions 
prepared from immune and preimmune rabbit scra, and incubated for 2 h at 
room temperature. Then they were washed five times with 0.5 M NaCI, 0.02 
M phosphate buffer, pH 7.4, and incubated for 90 rain with goat anti-rabbit 
rhodaminated IgG diluted 1:60 in chicken egg albumin buffer. The slides were 
then washed thoroughly with 0.5 M NaCI, 0.02 M phosphate buffer, pH 7.4, 
and finally with 5 mM phosphate buffer, pH 7.4. Slides were mounted and 
observed with a Zeiss Photomicroscope III (Carl Zeiss, Oberkochen, FRG). 

For immunolocalization at the electron microscope (EM) level, cells were 
first embedded in agarnse blocks (De Camilli et at., 1983). After two washes 
with 0.12 M glycine-NaOH, pH 7.4, small agarose pieces were incubated 
overnight at 4"C in the presence of Ig in 0.5 M NaCI, 5% BSA, 0.02 M Na + 
phosphate buffer, pH 7.4. The agarose blocks were then washed in 0.5 M NaCI, 
20 mM phosphate buffer, pH 7.4, for 3 h (five changes). Aider incubation for 2 
h with 0.3 ml of gold-protein A properly diluted in PBS that contained 0.5% 
BSA, blocks were rinsed twice withPBS--0.5% BSA and three times with PBS. 
The samples were then processed for EM (see below). 

Localization of Con A Binding Sites on the 
Sperm Surface 

6 x 107 spermatozoa, prepared as described under Cell Preparation, were 
incubated with 1 ml of gold-Con A complex (0.8 optical density at 520 nm) in 

TBS for 1 h at 4"C. Control samples were incubated with gold--Con A premixed 
with 0.1 M l-O-methyl-a-D-glucopyranoside. At~er the cells were washed three 
times in TBS, they were fixed and processed for EM (see below). 

Electron Microscopy 

Cells, subcellular fractions, or agarose blocks were fixed in suspension in ice- 
cold 2% gtutaraldehyde, 0.12 M eacodylate buffer, pH 7.4 for 1-2 h. Samples 
were then sedimented into pellets, which were washed and postfixed with ice- 
cold 1.5% osmium tetroxide, 0.12 M eacodylate buffer, pH 7.4, for 1 h. Block 
staining was in 0.5% Mg-uranyl acetate in Veronal buffer, pH 6.0. Dehydration 
was followed by embedding in Epon 812. Oriented, thin sections were cut on 
a Reichert Ultracut (C. Reiehert AG, Vienna, Austria), stained with uranyl 
acetate and lead citrate, and examined with a Philips 400 electron microscope 
(Philips Industries, Eindhoven, The Netherlands). 

Results 

Preparation and Characterization of a PM-enriched 
Fraction from Bull Spermatozoa 

To optimize conditions of cell disruption that lead to the 
most efficient and selective detachment of the PM from bull 
spermatozoa, the distribution of traditional PM marker en- 
zymes between a supernate and a low speed pellet (500 g, 10 
rain) was determined. The best disruption condition was 3 s 
of sonication (at a power of 50 W) of the cells suspended in a 
moderately hypotonic buffered solution (HTB). Under these 
conditions, ~25% and 40% of the PM marker enzymes 
alkaline phosphatase and 5'nucleotidase were recovered in 
the low speed supernate, respectively, whereas only -5% of 
the total protein was released (Table I). Other enzyme activi- 
ties were measured to test for the release of other cell com- 
ponents. Release of succinate dehydrogenase, a mitochondrial 
enzyme, was not detected (data not shown), which indicates 
that mitochondrial fragments had not been released to any 
great extent. 80% of the arylsulfatase, a marker of acrosomal 
content, was released to the supernate, which showed that the 
acrosomal membrane became leaky. Only ~5 % of the acrosin 
activity (measured in one experiment, in which the inhibitor 
benzamidine was omitted from the buffers) was released (data 
not shown). This enzyme is known to be difficult to solubilize 
and is thought to be in part associated with the inner acroso- 
mat membrane (Morton, 1976). The behavior of acid phos- 
phatase, also believed to be a marker for acrosomal content, 
was intermediate to that of the other two acrosomal enzymes 
(~ 19% release). 

The disruption procedure seemed to preferentially release 
the PM, also on the basis of morphological criteria. Fig. 1 

Table L Distribution of Protein and Enzyme Activities Between Bull Spermatozoon Subcellular Fractions* 

Alkaline phospbatase Acid phos- 
Fraction Protein (17)* (10) 5' Nucleotidase (5) Arylsulfatase (3) phatase (2) 

Retained with cells after sonication 
Low speed pellet 94.7 _ 3.0 74.6 ± 2.7 62.9 _ 2.5 19.0 _ 1.4 81.4 + 10.5 

Released by sonication 

6,000 g pellet 1.3 + 0.1 2.8 + 0.3 7.0 + 1.4 0.1 _ 0.1 3.6 _+ 1.4 
PM 1.5 _ 0.1 11.0 _ 0.9 20.6 _.+ 1.5 0.2 --+ 0.2 11.3 + 4.5 
I00,000 g supernate 2.5 _ 0.3 11.3 + 1.8 10.4 _+ 2.3 80.7 + 5.4 3.7 _ 3.6 

* Values given are percentage of recovered constituent in subcellular fractions + SE. Recoveries in the sum of the fractions of TS constituents were: protein, 94.3 
_ 3.0%; alkaline phosphatase, 86.3 --. 4.8%; 5' nucleotidase, 101.5 _+ 4.8%; arylsulfatase, 86.7 ± 4.8%; acid phosphatase, 103.4 __. 1.1%. The protein content of TS 
was 7.6 ± 0.6 mg/109 spermatozoa in the unfractionated ejaculate. Enzyme activities in the TS (in nmol product formed/min per 10 9 spermatozoa in the 
unfractionated ejaculate) were: alkaline phosphatase, 47.7 ± 8.6; 5' nucleotidase, 12.0 -+ 3.5; arylsulfatase, 112,150 - 9,140; acid phosphatase, 22.6 ± 12.1.35.2 ± 
4.9% of the spermatozoa of the fresh ejaculate were recovered in the TS (average of 10 experiments). 
* Numbers in parentheses indicate the number of experiments. 
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Figure 1. Electron micrographs of bull spermatozoa at various steps during cell disruption. (a) Longitudinal section of a washed bull 
spermatozoon fixed under isotonic conditions. The uitrastructure of a freshly ejaculated, untreated spermatozoon is shown. The anterior 
portion of the nucleus (N) is surrounded by the acrosome (asterisk). The PM and OAM are closely adjacent. The limits between the acrosomal 
region and the postacrosomal region are marked by arrowheads. The PM is also present on a cross-sectioned tail (arrow). (b) After Percoll 
gradient centrifugation, spermatozoa were resuspended in HTB. Swelling of the intracellular space between PM and OAM is evident. (c) After 
a 3-s sonication of the material shown in b, most of the cells are deprived of PM. Swelling of the acrosome has occurred in most of the 
spermatozoa (arrows). Sheets of PM are still present around some of the cross-sectioned tails (arrowheads). Some of the profiles represent only 
the postacrosomal region (stars). The curved arrow indicates the junctional point between the acrosomal and the postacrosomal region. (d) 
Higher magnification of one of the cells shown in c. The PM is no longer present on the acrosomal region, but has remained attached to the 
cell in the postacrosomal region (arrows). Note swelling of the acrosome, which is still limited by OAM (arrowheads). Bars: (a, b, and d) 0.5 
um, (c) 1 urn. 

illustrates the ultrastructure of spermatozoa at various stages 
of  the disruption procedure. Cells fixed in isotonic solution 
showed closely apposed PM and outer acrosomal membrane 
(OAM) (Fig. 1 a). Exposure of  the cells to hypotonic medium 
resulted in a swelling of  the space between PM and OAM, 
but most of  the cells retained their PM (Fig. 1 b). A 3-s 
sonication resulted in detachment of  PM from many of  the 
cells, swelling and clearing of  the acrosome, but retention of  
the acrosomal membrane (Fig. 1, c and d). 120 profiles for 

each sperm region were counted. The PM was absent from 
the acrosomal region of  74% of  the profiles, from the posta- 
crosomal region of  54% of the profiles, from 64% of  the 
observed profiles of  the principal piece of the tail, and from 
25% of  the tail midpiece profiles. The inner acrosomal mem- 
brane remained attached to the cell in 100% of  the profiles 
after sonication, and 95% of  the observed head profiles also 
had the OAM. Unfortunately, the low release of  OAM could 
not be confirmed biochemicaUy, because of  the lack of well- 
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established marker enzymes for the acrosomal membranes. 
A fraction enriched in PM was obtained by pelleting mem- 

branes from the low speed supernate obtained from the son- 
icated cells. Table I shows how various marker enzymes were 
distributed during the fractionation procedure. The relative 
specific activities of marker enzymes in the PM fraction can 
be derived from the data of the table, by dividing the enzyme 
recovery values by the protein recovery value (1.5%). Thus, 
the PM fraction contained - 1 0  and 20% of the total alkaline 
phosphatase and 5'nucleotidase, respectively, with relative 
specific activities o f - 7  and 14. The higher recovery of 5' 

nucleotidase than of alkaline phosphatase in the PM fraction 
can be explained by the localization of alkaline phosphatase 
to other membranes besides the PM (Gordon, 1973). Alter- 
natively, the two enzymes could be localized on different 
regions of the PM, which were released with different efficien- 
cies by the sonication procedure. Arylsulfatase, a marker of 
acrosomal contents, was recovered largely in the high speed 
supernatant. Unexpectedly, 11% of acid phosphatase was 
found in the PM fraction and had a relative specific activity 
of 7.5. 

Examination of the fractions by EM showed that the low 

Figure 2. Electron micrographs of  the PM fraction and subfractions thereof. (a) PM fraction. A mixed populat ion of  round-shaped and flattened 
vesicles is present. After equil ibration on a cont inuous  sucrose gradient, the PM fraction gives rise to two distinct peaks (b-d) .  (b) Peak II, 
which equilibrates at p = I. 148, is composed primarily of  round-shaped vesicles. (c) Peak I, which equilibrates at o = 1. l l 7, is enriched in 
flattened structures. (d) Enlargement  of  the area framed in c: flattened single-walled (arrowheads) or double-walled (arrows) vesicles are seen. 
Double-walled spherical vesicles (asterisks) are also characteristic of  this membrane  fraction. Bars: (a, b, and c) 2 um; (d) 0.4 t~m. 
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speed pellet contained the head and the midpiece of  the sperm 
cells, the 6,000 g pellet was enriched in fragments from the 
principal piece of  the tail, whereas the 100,000 g supernate 
contained small membrane fragments (micrographs not 
shown). These membrane fragments could explain the pres- 
ence of  PM marker enzymes in the 100,000 g supernate (Table 
I). The PM fraction (Fig. 2 a) was composed of  a heteroge- 
neous population of  round-shaped vesicles and flattened 
membranous structures. 

The PM fraction was enriched in polypeptides that were 
barely visible or not detectable at all in the TS (Fig. 3A). To 
determine which of  these polypeptides might be integral mem- 
brane proteins, the PM fraction was extracted with 0.1 M 
Na2CO3, pH 1 l, and the polypeptide compositions of  the 
membrane pellet and the alkaline extract were analyzed by 
SDS PAGE (Fig. 4). Only low molecular weight polypeptides 
(<21 kD) and some material not entering the gel were ex- 
tracted by the alkaline treatment. The major polypeptides, 
with M~ >21,000 in the PM fraction, are therefore candidates 
for integral membrane proteins. These polypeptides also par- 
titioned into the detergent phase of  Triton X-114 after phase 
separation (not shown), which also indicates that they are 
integral membrane proteins (Bordier, 198 l). 

Subfractionation o f  P M  Vesicles 

After equilibrium density centrifugation of  the PM fraction 
on a linear sucrose gradient, two bands of  light-scattering 
material could be seen (Fig. 5). Stars and asterisks show the 
positions of  the two peaks in Fig. 6. A minor peak (I) equili- 
brated at 1. l 17 g/ml and a major peak (II) equilibrated at a 
density of 1.148 g/ml. Most of  the protein of  the gradient 
fractions (Fig. 6a) was contained in the major peak (II). 

Figure 3. Silver-stained SDS polyacrylamide gra- 
dient gels (8-15%) ofTS, PM, and PM subfrac- 
tions. (A) Lane 1, TS (12 #g protein); lanes 2 and 
3, PM fraction (12 and 6 #g of protein, respec- 
tively). Arrowheads point to the principal poly- 
peptides, which are also schematically repre- 
sented in B. Their apparent molecular weights 
(x l0 -3) are indicated on the right side. (C) Lane 
1, PM fraction; lanes 2 and 3, fractions 5 and 6 
from the sucrose gradient, respectively (peak I); 
lanes 4 and 5, fractions 9 and 10 from the sucrose 
gradient (see Fig. 6), respectively (peak II). All 
lanes in this panel contained 6 #g of protein. 
Numbers on the left of A indicate molecular 
weights x l0 -a of standards (Bio-Rad, low molec- 
ular weight). 

Figure 4. Silver-stained SDS 1301- 
yacrylamide gel (8%) of the PM 
fraction before and after alkali 
treatment. Lane A, untreated PM 
fraction (7 ~g of protein); lane B, 
pellet deriving from carbonate 
treatment of 10 ug protein of the 
PM fraction; lane C, supernate 
deriving from carbonate treat- 
ment of 10 ~g protein of the PM 
fraction. Numbers on the left in- 
dicate the molecular weights (x 
10 -a) of Bio-Rad low molecular 
weight standards. 

Alkaline and acid phosphatase activities (Fig. 6, b and c) were 
enriched in the major peak 1.5-fold with respect to the starting 
PM fraction. The distribution of  5 '  nucleotidase could not be 
determined, because the activity was partially lost after the 
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Figure 5. Presence of two peaks of light-scattering material after 
sucrose gradient density equilibrium centrifugation of the PM frac- 
tion. Conditions of centrifugation are described under Materials and 
Methods. Arrow and arrowhead point to peaks I and II, respectively. 

sucrose gradient centrifugation. 
The morphologically heterogeneous structures in the total 

PM fraction were separated into two distinct sets of  vesicles 
on the sucrose gradient (Fig. 2). The higher density peak (II) 
contained mostly spherical vesicles (Fig. 2b), and the lower 
density peak (I) was enriched in flattened membranous struc- 
tures (Fig. 2c). 

Peaks I and II displayed very different polypeptide com- 
positions (Fig. 3 c). Most of  the major polypeptides of  the PM 
fraction were present in either one or the other of  the two 
peaks of  the gradient. In particular, the 92-, 73-, and 48-kD 
bands as well as the carbonate extractable 17-kD polypeptide 
were exclusive to peak I, whereas peak II contained the 98-,  
66-, 42-, and 21-kD polypeptides. 

lmmunocytochemical Localization o f  Polypeptides o f  
the Two Membrane Subfractions 

To determine the origin of  the two membrane fractions, 
polyclonal antibodies against major polypeptides exclusive to 
each of  the fractions were raised in rabbits and used for 
immunolocalization studies. Antibodies were raised either 
against the 92-kD polypeptide or the 98-kD polypeptide (P92 
and P98), characteristic of  peaks I and II, respectively (see 
Fig. 3). The specificities of  the antibodies for the immunogen 
were demonstrated by immunoblotting. When tested against 
the total M fraction, each antiserum reacted only with the 
polypeptide that had been used as immunogen (Fig. 7). Ad- 
ditional antigens were not revealed when the antisera were 
tested against TS (data not shown). The antibodies were then 
used to immunolocalize the two membrane antigens on intact 
ejaculated bull spermatozoa. Fig. 8 shows that the 92-kD 
antigen was localized on the anterior portion of the head 
region, which includes the acrosomal and part of the posta- 
crosomal region. Immunolocalization at the EM level con- 
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Figure 6. Distribution of constitu- 
ents of the PM fraction after su- 
crose density gradient centrifuga- 
tion. The results are presented as 
percentage of protein (a) or per- 
centage of enzyme activities (b, al- 
kaline phosphatase, and c, acid 
phosphatase) + SE (vertical bars) 
of the total recovered constituent. 
The percentage of protein and al- 
kaline phosphatase activity recov- 
eries (averages + SE of six and five 
experiments for protein and alka- 
line phosphatase, respectively) 
were 109 + 10 and 136 _+ 7, re- 
spectively. The recovery of acid 
phosphatase, determined in a sin- 
gle experiment, was 70% (protein 
recovery was 67% in this experi- 
ment). The continuous line in a 
shows the sucrose density distri- 
bution along the gradient (values 
are the means of five experiments). 

The dashed fines in b and c represent the distribution of specitic enzyme activity, relative to the starting PM fraction, along the gradients (i.e., 
percent recovery of enzyme activity/percent recovery of protein in each fraction for each experiment, with sum of constituents in each fraction 
--- 100%). Stars and asterisks indicate the positions of peaks I and I I ,  respectively; P indicates pellet. 
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Figure 7. Radioimmunostaining of electroblotted PM proteins with 
anti-P92 and anti-P98 antibodies. The total PM fraction (50 #g of 
protein/lane) was run on a 8% gel and then transferred to a nitrocel- 
lulose filter. Strips were incubated with the following Ig preparations: 
lane A, anti-P92 (0.02 mg/ml); lane B, preimmune lg from the same 
rabbit as in A (0.02 mg/ml); lane C, anti-P98 (0.05 mg/ml); lane D, 
preimmune lg from same rabbit as in C (0.05 mg/ml). Bound 
antibodies were revealed with ~251-protein A. The molecular weight 
(× 10 -3) of a standard is indicated on the left. 

firmed the immunofluorescence results (Fig. 8, e-i). P92 was 
found on the PM, delimiting the acrosomal region and the 
anterior part of the postacrosomal region, whereas labeling 
was low or completely absent on the rest of the cell surface. 
During the preparation for immunolocalization, cells occa- 
sionally lost their PM, exposing a ruptured OAM. However, 
no labeling of the OAM was ever observed (micrographs not 
shown). Thus, P92 was a component of the PM. Its localiza- 
tion to the acrosomal region indicated that the membranes in 
peak I came from the PM of the acrosomal region. 

The distribution of P98, enriched in peak II, was more 
complex (Fig. 9). Surface immunofluorescence localized this 
polypeptide to the surface of the postacrosomal region and 
on the principal piece of the tail (Fig. 9). A bright fluorescent 
spot was also present on the connecting piece, between the 
neck region of the head and the midpiece of the tail. This 
region was also weakly positive with preimmune Igs (Fig. 9 d). 
Postacrosomal region of the head, connecting piece, and 
principal piece of the tail also gave a positive signal with an 
antiserum raised against the 42-kD polypeptide of peak II 
(results not shown). Thus, these three noncontiguous regions 
may have these two polypeptides in common. 

Distribution of  Con A Receptors between the Two 
Membrane Subfractions 
Con A receptors are known to be concentrated mainly in the 
head region of mammalian spermatozoon PM (Koehler, 
1978; Virtanen et al., 1984). As shown in Fig. 10, we con- 
firmed this finding also for the bull spermatozoon. Con A- 
colloidal gold conjugate binding was restricted to the surface 
of the acrosomal (Fig. 10a) and, with a lower density, to the 
postacrosomal region (Fig. 10b) of the spermatozoon head, 
whereas gold particles were absent from the tail (Fig. 10, c 
and d). Cells incubated with Con A-gold in the presence of 
1-O-methyl-a-D-glucopyranoside showed no significant label- 
ing (not shown). 

A number of polypeptides of the PM fraction, with Mr of 
48,000 and above, bound 125I-labeled Con A (Fig. 11). The 
major Con A binding species (92, 73, and 48 kD) were 
recovered with the light fraction of the sucrose gradient (peak 
I: Fig. 11, lane C), while only two weakly positive polypeptides 
(135 and 98 kD) were enriched in the heavy fraction (peak II: 
Fig. 11, lane B). The major polypeptide of peak II (42 kD) 
showed hardly any labeling. The presence of ~10% of the 
other major Con A binding species of peak I in peak II 
(quantitated by spectrophotometry of silver grains: Suissa, 
1983) was probably due to a small degree of cross-contami- 
nation between the two membrane subfractions. 

Discussion 

The mammalian spermatozoon is one of the most striking 
examples of a polarized cell. In this study, we have separated 
and characterized two PM subfractions from bull spermato- 
zoa, and presented evidence that they derive from different 
domains of the cell surface. 

A very light sonication under moderately hypotonic con- 
ditions was found to be the most efficient and selective means 
to release the PM from the sperm. 38% of the activity of the 
traditional PM marker enzyme, 5' nucleotidase, was released 
into the low speed supernate. 8-fold and 15-fold enrichments 
with respect to the TS were obtained, respectively, for alkaline 
phosphatase and 5' nucleotidase activities in the final PM 
fraction, with a 10-20% recovery of their respective total 
activities. About 95% of the cells retained their OAM after 
this treatment. Thus, the membranes of the PM fraction were 
probably derived from the cell surface, with little contamina- 
tion by OAM and mitochondria. 

Nearly all the major polypeptides of the PM fraction were 
resistant to alkali extraction and therefore are likely to be 
integral membrane proteins. Only a group of low molecular 
weight components (M~ < 21,000) were extracted by the pH 
11 treatment. Russell et al. (1983) have described a group of 
polypeptides in that molecular weight range in the boar, which 
they believe to be peripheral components of the membrane 
contributed by the seminal plasma. Other more loosely bound 
peripheral components may have been lost during our frac- 
tionation procedure. 

When the PM fraction was subjected to density equilibrium 
centrifugation on a continuous linear sucrose gradient, it 
separated into two peaks: the lower density peak contained a 
small fraction of the total protein, but nearly all the Con A 
binding activity of the starting PM fraction, and the higher 
density peak contained most of the protein and phosphatase 
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Figure 8. lmmunolocalization of the 92-kD polypeptide of peak I. (a and c) Immunofluorescence images obtained with anti-P92 and preimmune 
Ig (both at 0.2 mg/ml), respectively. (b and d) Phase contrast images of the same fields shown in a and c, respectively. (e-i) Protein A-gold 
ultrastructural immunolocalization of P92. Cells were incubated with anti-P92 at a concentration of I mg/ml. Immunoreactivity is restricted 
to the PM of the acrosomal (e) and of the anterior part of the postacrosomal region (f). lmmunoreactivity is almost undetectable on the plasma 
membrane of the posterior pan of  the postacrosomal region (g) and on the midpiece (h) and principal piece (i) of the tail. Bars: (a-d) 25 ~m; 
(e-i) 0.2 ~m. 



Figure 9. Immunolocalization of the 98-kD polypeptide of peak II. (a and c) Immunofluorescence images obtained with anti-p98 at a 
concentration of 0.7 mg/ml. Immunofluorescence is restricted to the posterior part of the head, and to the connecting (arrows) and principal 
pieces of the tail. It is absent from the midpiece. At higher magnification (c), it can be seen that immunofluorescence on the principal piece of 
the tail is more intense on the borders, as expected for a PM antigen. Differences in the intensity of immunofluorescence on the positive 
segment are due to out-of-focus effects. (d) Immunofluorescence image obtained with preimmune Ig (0.7 mg/ml). (b and e) Phase contrast 
images of the same fields shown in a and d, respectively. Arrows indicate the connecting piece. Bars, 20/zm. 

activities of the PM fraction. Ultrastructural analysis revealed 
that the two peaks were composed of different kinds of 
vesicles. Flattened and/or double-walled vesicles were en- 
riched in peak I, whereas spherical vesicles bounded by single 
bilayers were concentrated in peak II. Striking differences 
between the polypeptide compositions of the two peaks were 
also observed. Each band contained specific polypeptides that 
were either absent or very poorly represented in the other 
one .  

Having obtained the separation of two different membrane 
populations, the problem was to determine whether both of 
them were derived from the PM, and if so, from which regions. 
Monospecific, polyclonal antibodies raised to specific poly- 
peptides of each fraction demonstrated that peak I contains 
membranes that derive from the PM of the anterior portion 
of the head of the spermatozoon. This conclusion was con- 
firmed by the observation that Con A receptors, which were 
shown by EM localization studies to be concentrated at the 
surface of the anterior portion of the head, were highly en- 
riched in peak I. In the case of peak II, antibodies against two 
of its major polypeptides stained the surface of the sperm cell, 

which demonstrates that this fraction also was derived from 
the cell surface. However, because of the triple localization of 
the two antigens, to the posterior portion of the head, the 
principal piece of the tail, and the connecting piece, we cannot 
decide whether the vesicles in peak II derive from all these 
three regions, or only from one or two of them. Because these 
three regions appear to share two antigens, one wonders 
whether they have identical polypeptide composition and 
derive from the same PM during biogenesis. However, in 
other species, these regions show differences in antigen com- 
position (Myles et al., 1981). The relationship between these 
three surface regions in the bull remains to be defined by 
further studies. 

Previous studies have been published on mammalian sperm 
cell PM isolation and characterization by other authors (Gillis 
et al., 1978; Peterson et al., 1980; Noland et al., 1983; Russell 
et al., 1983). However, until the present, the separation of 
vesicle populations that derive from different domains of the 
cell surface had not been reported. Noland et al. (1983) 
reported the separation of two membrane peaks from bovine 
epidydimal sperm disrupted by nitrogen cavitation, but con- 
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Figure 10. Thin section electron micrographs of ejaculated bull spermatozoa incubated with Con A-gold. Labeling of the PM was very intense 
over the acrosomal region (a), less intense on postacrosomal region (b), and almost undeteetable on the midpiece (c) and principal piece (d) of 
the tail. Bar, 0.2 #m. 

eluded that one of the peaks derived from cytoplasmic drop- 
lets. The ejaculated spermatozoa we used, purified on a Percoll 
gradient, were devoid of cytoplasmic droplets, as assessed by 
phase-contrast microscopy. The most extensive biochemical 
characterization of mammalian sperm cell PM has been done 
on the boar (Russell et at., 1983). 20 major polypeptides were 
detected on one-dimensional gels with Coomassie Blue stain- 
ing, in good agreement with our SDS PAGE pattern of the 
PM fraction. Two-dimensional gels, however, revealed at least 
250 spots. We do not know whether our PM fraction would 
also reveal such a complex pattern with a more refined 
analysis. 

The most striking finding of this study is the distinctly 
different polypeptide composition of two membrane fractions 
derived from the surface of the same cell. This different 
composition could be so clearly demonstrated because of the 

excellent separation between the two fractions, thanks to the 
homogeneous physical properties of each vesicle population. 
How domains with such different molecular components are 
generated and maintained remains a mystery. The problem 
of the generation of membrane domains in polarized cells has 
been investigated most intensely in epithelial cells, where it 
has been found that newly synthesized surface molecules 
characteristic of the basolateral or apical regions are delivered 
directly to their respective domains (Simons and Fuller, 1985). 
In epithelial cells, tight junctions have also been implicated 
in the maintenance of distinct membrane domains (Gumbi- 
ner and Louvard, 1985). Sperm cells, of course, do not have 
any intercellular junctions, and the definition of the different 
domains may thus be more complex. For example, it has 
generally been thought that acrosomal and postacrosomal 
regions represent two domains, and that some barrier to 
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Figure 11. Binding of ~25I-Con A to glycoproteins of the PM fraction 
and of PM subfractions, separated by SDS PAGE (7-10% polyacryl- 
amide gradient). Lanes contained: A and D, total PM fraction (79 ttg 
of protein); B and E, band II (45 t~g of protein); C and F, band I (16 
~zg of protein). Lanes D - F  were incubated with '2~l-Con A in the 
presence of 0.5 M 1.0-methyl-a-D-glucopyranoside. Numbers on the 
left indicate Mr (x 10 -3) of the major Con A binding species of the 
PM fraction (see Fig. 3 for reference). Asterisks indicate glycoproteins 
characteristic of band II, while all other glycoproteins were concen- 
trated in band I. Molecular weights (x 10 -~) of standards (Bio-Rad, 
low molecular weight) are indicated on the right. 

p ro te in  di f fus ion migh t  exist be tween  these two regions. How-  
ever, in the  present  s tudy it was found  t ha t  P92 ex tended  over  
the  ent i re  ac rosomal  region a n d  to par t  o f  the  pos tac rosomal  
region of  the  head,  which  suggests t ha t  a n  add i t iona l  ba r r ie r  
to  the  diffusion of  some  pro te in  species exists wi th in  the  
pos tac rosomal  region. T h e  exact  degree o f  spat ial  over lap  
be tween  P92 a n d  an t igens  character is t ic  of  the  pos tac rosomal  
region r e m a i n s  to  be  def ined by  double- labe l ing  at  the  E M  
level. 

A recent  s tudy (Virtanen et al., 1984) o n  the  cytoskeletal  
s t ruc ture  o f  h u m a n  spe rm cells has  shown  the  presence  of  
dis t inct  cytoskeletal  doma ins ,  wh ich  seem to co r re spond  well 
to the  surface regions observed  in th is  a n d  o ther  s tudies 
(Koehler ,  1978; Myles  et  al., 1981; Bearer  a n d  Fr iend,  1982; 
Eddy a n d  Koehler ,  1982; G a u n t  et  al., 1983; W o l f  a n d  Vogl- 
mayr ,  1984). Th i s  suggests a role for the  cytoskele ton in the  
o rgan iza t ion  o f  different  m e m b r a n e  domains .  The  possibil i ty 
of  pur i fying a n d  charac te r iz ing  different  P M  regions should  
represent  a s tar t ing po in t  for the  s tudy o f  the  biogenesis  o f  
these d o m a i n s  as well as o f  the  func t ions  t ha t  the i r  molecu la r  
cons t i tuen t s  play in the  biology o f  spe rm m a t u r a t i o n  a n d  
spe rm-egg  in terac t ion .  
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