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We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based
on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly
one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our
implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site
addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic
fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be
minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate
how atomic currents through the lattice provide an implementation of a qubit. This is realized either by
artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The
single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have
experimentally realized scaled ring-lattice potentials that could host, in principle, n , 10 of such ring-qubits,
arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme
of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address,
and read-out the qubit.

A
qubit is a two state quantum system that can be coherently manipulated, coupled to its neighbours, and

measured. Several qubit physical implementations have been proposed in the last decade, all of them
presenting specific virtues and bottlenecks at different levels1–6. In neutral cold atoms proposals the qubit

is encoded into well isolated internal atomic states. This allows long coherence times, precise state readout and, in
principle, scalable quantum registers. However, individual qubit (atom) addressing is a delicate point7,8. Qubits
based on Josephson junctions allow fast gate operations and make use of the precision reached by lithography
techniques9. The decoherence, however, is fast in these systems and it is experimentally challenging to reduce it.
For charge qubits the main problem arises from dephasing due to background charges in the substrate; flux qubits
are insensitive to the latter decoherence source, but are influenced by magnetic flux fluctuations due to impaired
spins proximal to the device3.

Here we aim at combining the advantages of cold atom and Josephson junction based implementations. The
basic idea is to use the persistent currents flowing through ring shaped optical lattices10–12,14,15 to realize a cold
atom analogue of the superconducting flux qubit (see10,16–19 for the different schemes that can be applied to induce
persistent currents). Recently, superpositions of persistent currents have been thoroughly investigated14,15.

Results
In this paper we demonstrate how persistent currents flowing in a ring shaped optical lattice can provide a
physical implementation of a qubit10,14,15. The lattice potential plays an important role in our approach. Indeed, it
makes strictly one dimensional the atoms’ dynamics. Further it provides the means for precise control of the
confinement and facilitates the qubit-qubit interaction. In our system we break the Galilean invariance. For a
single ring this is realized by creating a localized ‘defect’ barrier along a homogeneous lattice20. Additionally we
prove that a qubit can be achieved with two homogeneous interacting rings arranged vertically on top of each
other. In such a system the Galilean invariance is broken along the direction transverse to the two rings. For this
scheme we analyse the real time dynamics and time-of-flight density distributions. Based on our analysis, we
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provide viable protocols to initialize, address, and read-out the
qubits. Indeed, we have experimentally realized scaled ring-lattice
potentials that could host, in principle, n , 10 ring-qubits, arranged
in a stack configuration, along the laser beam propagation axis.

Single-ring-qubit: breaking the Galilean invariance on the single
ring with a site defect. We consider bosonic atoms loaded in a ring-
shaped potential with identical wells, but with a dimple located at the
site N 2 1 (see Fig. 1), and pierced by a ‘magnetic flux’ W. The system
is described by the Bose-Hubbard Hamiltonian

HBH~
U
2

XN{1

i~0

ni ni{1ð Þ{
XN{1

i~0

ti eiW=N a{i aiz1zh:c:
� �

ð1Þ

where ai’s are bosonic operators for atoms trapped in the ring and
ni ¼: a{i ai. The parameters ti describe the tunnelling between the
wells along the ring. Since the wells are all identical but one, ti 5 t,
mi 5 0…N 2 2 and tN 2 1 5 t9. Finally, U describes the s-wave

scattering interaction23. The ‘magnetic flux’ is W~

ðxiz1

xi

A zð Þdz,

where A(z) is the effective vector potential. The effect of the
dimple is to induce a phase slip at the site N 2 1. We assume that
the density of superfluid is large enough to neglect the fluctuation of
the number of atoms in each well. In this regime we can assume that
the system dynamics is characterized by the phases of the superfluid
order parameter wi’s, described by the quantum phase model24 with
Josephson coupling Ji , Ænæti (Ænæ is the average number of bosons in
each well). The magnetic flux W can be gauged away everywhere but
at the site (N 2 1)-th25. Accordingly, the phase difference along
nearest neighbour sites can be considered small in the ‘bulk’ and
the harmonic approximation can be applied. The partition

function can be written as a path integral: Z~

ð
w½ �e{S w½ �, where

the S[w] is the Euclidean action. Adapting from the approach
pursued by Rastelli et al.29, all the phases wi except h ¼: wN{1{w0

can be integrated out (the integrals are Gaussian). The effective
action reads

Seff ~

ðb

0
dt

1
2U

_h2z
J

2 N{1ð Þ h{Wð Þ2{J 0 cos hð Þ
� �

{
J

2U N{1ð Þ

ð
dtdt0h tð ÞG t{t0ð Þh t0ð Þ

ð2Þ

with the potential U hð Þ ¼: J
N{1

h{Wð Þ2{J 0 cos hð Þ. For large (N 2

1)J9/J and moderate N, U(h) defines a two-level system. The
degeneracy point is W 5 p: The two states are provided by the
symmetric and antisymmetric combination of counter-circulating
currents corresponding to the two minima of U(h). We observe
that breaking the Galilean invariance of the system provides an
independent parameter J9 facilitating the control of the potential
landscape. The interaction between h and the (harmonic) bulk
degrees of freedom provides the non local term with G tð Þ~X?

l~0
Y vlð Þeivlt, vl being Matsubara frequencies and Y vlð Þ~

v2
l

XN{2ð Þ=2

k~1

1zcos 2pk= N{1ð Þ½ �
2JU 1{cos 2pk= N{1ð Þ½ �ð Þzv2

l

. The external bath

vanishes in the thermodynamic limit and the effective action
reduces to the Caldeira-Leggett one29. Finally it is worth noting
that the case of a single junction needs a specific approach but it
can be demonstrated consistent with Eq.(2).

Two-rings-qubit: breaking the Galilean invariance with two
homogeneous coupled rings. We consider bosonic atoms loaded
in two coupled identical homogeneous rings Fig. 2. We will prove
that such a system effectively provides a qubit-dynamics (alterna-
tively to the one-ring qubit implementation discussed above). The

system is described by the Bose-Hubbard ladder: H~H að Þ
BHzH bð Þ

BHz

Hint , where H a,bð Þ
BH are the Hamiltonians as in Eq.(1) for the bosons in

the rings a and b respectively, and

Figure 1 | Experimental realization of a ring-lattice potential with an
adjustable weak link (red arrow). Measured intensity distribution with an

azimuthal lattice spacing of 28 mm and a ring radius of 88 mm (see

Methods section). The centre peak is the residual zero-order diffraction.

The effective dynamics of a condensate in such a system is governed by the

qubit potential as discussed in Eq.(2). The size of the structure is scalable

and a lower limit is imposed by the diffraction limit of the focusing optics

(see Methods section). Several rings can be arranged in a stack, along the

propagation axis of the laser beam (shown in Fig. 5).

Figure 2 | Setup for the ring-ring coupling. Two parallel Gaussian laser

beams (G1,G2) are produced by a combination of two polarizing

beamsplitter (BS1, BS2). The beam separation D can be controlled by

moving mirror M1. Both beams pass through a lens and interfere to form a

lattice in z-direction. The distance between the lattice planes is a function

of 1/D26 which can be varied. The resulting one dimensional lattice is

combined with vertical beams (LG1, LG2) providing horizontal

confinement for trapped atoms (See the Methods section). The inset shows

the ring lattice potentials separated by26 d 5 l1f/D. The ring-ring

separation is adjustable by varying the distance D. Such an arrangement

provides an effective two-level system that can be exploited as a qubit

(See text).
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Hint~{g
XN

i~1

a{i bizb{i ai

� �
: ð3Þ

We observe that along each ring the phase slips imply twisted
boundary conditions and therefore they can be localized to a
specific site, say the N 2 1-th. Following a similar procedure as
employed above, the effective action reads

Seff ~

ðb

0
dt

1
2U

X
a~a,b

_h2
azU ha,hbð Þ

" #

{
J

2U N{1ð Þ
X

a~a,b

ð
dtdt0ha tð ÞGa t{t0ð Þha t0ð Þ

ð4Þ

where each Ga(t) is given by the expression found above for the case
of a single ring. In this case the phase dynamics is provided by the
potential

U ha,hbð Þ ¼:
X

a~a,b

J
2 N{1ð Þ ha{Wað Þ2{J cos hað Þ
� �

{~J cos ha{hb{
N{2

N
Wa{Wbð Þ

� �
:

ð5Þ

with ~J~ nh ig28. We observe that, for large N, the potential U(ha, hb)
provides that effective phase dynamics of Josephson junctions flux
qubits realized by Mooji et al. (large N’s corresponds to large
geometrical inductance of flux qubit devices)27. In there, the
landscape was thoroughly analysed. The qubit is made with
superpositions of the two states jh1æ and jh2æ corresponding to the
minima of U(ha, hb). The degeneracy point is achieved by Wb 2Wa 5

p. We comment that the ratio ~J
�

J controls the relative size of the
energy barriers between minima intra- and minima inter-‘unit cells’
of the (ha, hb) phase space, and therefore is important for designing
the qubit. In our system~J

�
J can be fine tuned with the scheme shown

in Fig. 2.
Having established that the two tunnel-coupled homogeneous

rings, indeed, define a two level system, we now study its real-time
dynamics. We will show that the density of the condensate in the two
rings can display characteristic oscillations in time.

We make use of the mean field approximation to analyse the (real
time) dynamics of the Bose-Hubbard ladder Eqs.(1), (3) (assuming
that each ring is in a deep superfluid phase). Accordingly Gross-
Pitaevskii equations are found for the quantities depending on the
time s. Qa,i(s) 5 Æai(s)æ and Qb,i(s) 5 Æbi(s)æ. Assuming that
ha ¼: Qa,iz1{Qa,i in each ring is site-independent, we obtain

Lz
L~s

~{
ffiffiffiffiffiffiffiffiffiffiffiffi
1{z2
p

sinH

LH
L~s

~Dzlrzz
zffiffiffiffiffiffiffiffiffiffiffiffi

1{z2
p cosH

ð6Þ

where z 5 (Nb 2 Na)/(Na 1 Nb) is the normalized
imbalance between the populations Na and Nb of the two rings,
H 5 ha 2 hb and ~s ¼: 2gs �h~1ð Þ. The parameters are D~

ma{mbzt cos
Wa

N
{cos

Wb

N

� 	� �

g, l 5 U/(2g), and r 5 (Na 1

Nb)/N is the total bosonic density (we included the chemical potential
ma). Eqs.(6) can be solved analytically in terms of elliptic func-
tions28,30. Accordingly, the dynamics displays distinct regimes (oscil-
lating or exponential) as function of the elliptic modulus k,
depending in turn on D, l, and on the initial population imbalance
z 0ð Þ ¼: z0. Here we consider the dynamics at lr=D, i.e. small U/g
(the analysis of the solutions of the Eqs.(6) in different regimes will be
presented elsewhere). The results are summarized in Fig. 3. We

comment that, comparing withD5 0, the oscillations do not average
to zero (therefore yielding a macroscopic quantum self trapping
phenomenon30) and they are faster. The pattern of the circulating
currents along the two coupled rings can be read out through the
analysis of the time-of-flight density. As customarily, the spatial
density distribution in the far field corresponds to the distribution
in the momentum space at the time when the confinement potential
is turned off:

r kð Þ~
w kx,ky,kz
� � 2

N

XN{1

i~0

XN{1

j~0

X
q[ 2pn=Nf g

cos kE:xEz qz
Wa

N

� 	
wi{wj

� �� �
a{qaq

D E�
z

cos kE:xEz qz
Wb

N

� 	
wi{wj

� �� �
b{qbq

D E
z

2 cos kE:xEzkzDz qz
Wa

N

� 	
wi{ qz

Wb

N

� 	
wj

	� �
a{qbq

D E�
ð7Þ

where w(kx,ky,kz) are Wannier functions (that we considered ident-
ical for the two rings), kE:xE ¼: kx xi{xj

� �
zky yi{yj

� �
, xi 5 coswi, yi

5 sinwi fix the positions of the ring wells in the three dimensional
space, wi 5 2pi/N being lattice sites along the rings; the expectation
values involving the Fourier transforms of operators

aq ¼: 1
. ffiffiffiffi

N
p X

l
e{iwi lal and bq ¼: 1

. ffiffiffiffi
N
p X

l
e{iwlqbl are obtained

for U/t 5 0. The density Eq.(7) is displayed in Fig. 4.

Discussion
We proposed a construction of flux qubits with atomic neutral cur-
rents flowing in ring-shaped optical lattice potentials. Persistent cur-
rents had been experimentally observed in a narrow toroidal trap
with a weak link31. The effective action of the system studied in32 can
provide a two level system. In contrast with31–33, we emphasize how
we make explicit use of the lattice in our construction, both to confine
the particles in the rings and to drive the ring-ring interaction. The
qubits are realized by breaking the Galilean invariance of the system

Figure 3 | Population imbalance in two coupled rings. We focused on the

case D?lr. For moderate z0, oscillations are obtained, with

v~2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1zD2

p
zlr z0D{

ffiffiffiffiffiffiffiffiffiffiffiffi
1{z2

0

q� 	
2D2{1
� �.

2 1zD2� �3=2
h i� �

corresponding to macroscopic quantum self trapping (blue dashed line).

The dynamics can be visualized with the help of the mechanical system

provided by a rotator of length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{z sð Þ2

q
, driven by the external force D.

The constant solution z(s) 5 const corresponds to vanishing pendulum

length (magenta solid line). For D 5 0 (inset), the dynamics is

characterized by Rabi oscillation with v0 ¼: 2g 1zlr
ffiffiffiffiffiffiffiffiffiffiffi
1{z0
p �

2
� �

vv.

Here lr 5 0.1 and D 5 4 implying that v < 4v0.
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either by adding an additional barrier along a single ring lattice
Eqs.(2), or by tunnel coupling of two homogeneous rings, Eq.(5).
The latter is proposed to be realized with the scheme in Fig. 2. We
observe that a suitable variation of such set-up can be exploited also
to create two qubit gates (each qubit provided by Fig. 1); alternatively,
a route described in the Methods section can be pursued.

The analysis of the real time dynamics of such system can be recast
to a type of coupled Gross-Pitaevskii equations that are characteristic
for double well potentials, this providing a further proof that the
system indeed defines a qubit. Accordingly, the basic phenomeno-
logy of the tunnel-coupled homogeneous rings is demonstrated to be
characterized by macroscopic quantum self trapping. Since different
flow states lead to characteristic density patterns in the far field,
standard expansion of the condensate can be exploited to detect
the different quantum states of the system (See Fig. 4).

Our work provides a feasible route to the implementation of a
functional flux qubit based on persistent atomic currents. For an
extensive discussion on the one and two qubit gates, please refer to
the Methods section. The initialization of our qubit can be accomp-
lished, for example, imparting rotation by exploiting light induced
torque from Laguerre-Gauss (LG) beams carrying optical angular
momentum. A two-photon Raman transition between internal
atomic states can then be used to transfer coherently �h orbital angular
momentum to the atoms. With this method, transfer efficiencies of
90% to the rotating state had been demonstrated31,34. Owing to the
coherent nature of the Raman process, superpositions of different
angular momentum states can be prepared37. Measurements of the
decay dynamics of a rotating condensate in an optical ring trap
showed remarkable long lifetimes of the quantized flow states on

the order of tens of seconds even for high angular momentum (l 5

10). Phase slips - the dominant decoherence mechanism - condens-
ate fragmentation and collective excitations which would destroy the
topologically protected quantum state are strongly suppressed below
a critical flow velocity. Atom loss in the rotating condensate doesn’t
destroy the state but leads to a slow decrease in the robustness of the
superfluid where phase slips become more likely36,39.

We comment that, because of the lattice confinement, the gap
between the two levels of the qubit displays a favourable scaling with
the number of atoms in the system (assuming that the temperature is
low enough we can describe the system with Eq.(1))14,15,35. Besides
making the inter-ring dynamics strictly one dimensional, the lattice
confinement provides the route to the inter-rings coupling. Indeed,
the light intensity results to be modulated along the (nearly) cylin-
drical laser beam. Analysing our experimental configuration, we
conclude that it is feasible to arrange n , 10 ring-qubits in stacks
configuration (as sketched in Fig. 5) along the beam propagation
axis. To allow controlled tunnelling between neighbouring lattice
along the stack, the distance between the ring potentials needs to
be adjustable in the optical wavelength regime (the schematics in
Fig. 2 can be employed). A trade-off between high tunnelling rates
(a necessity for fast gate operations) and an efficient read out and
addressability of individual stack sites, needs to be analysed.
Increasing the lattice stack separation after the tunnelling interaction
has occurred well above the diffraction limit while keeping the atoms
confined, optical detection and addressing of individual rings
becomes possible.

This arrangement produces equal, adjustable ring-ring spacing
between individual vertical lattice sites and can therefore not readily

Figure 4 | Time-of-flight expansion for the two-coupled-rings-qubit. (a,c), vanishing inter-ring tunnelling rate g/t 5 0. In (b,d), g/t 5 0.9. In the (kx, ky)

plane the interference fringes with the ring symmetry are due to the momenta of the quantum degenerate gas; the inter-ring tunnelling suppresses the

interference fringes. In the (ky, kz) plane, g induces structured interference fringes. The Eq. (7) is calculated for the Bose-Hubbard ladder with ‘fluxes’ Wa and

Wb, with U 5 0, and at quantum degeneracy. Results are shown for Wa 5 80, Wb 5 70, T 5 0.05kB and N 5 14 with filling fractions of 10 bosons per site.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4298 | DOI: 10.1038/srep04298 4



be used to couple two two-ring qubits to perform two-qubit
quantum-gates. The SLM method, however, can be extended to pro-
duce two ring-lattices in the same horizontal plane, separated by a
distance larger than the ring diameter. The separation between these
two adjacent rings can then be programmatically adjusted by updat-
ing the kinoform to allow tunnelling by mode overlap46. Combined
with the adjustable vertical lattice (shown in Fig. 2) this would allow,
in principle, two-ring qubit stacks to be circumferential tunnel-
coupled to form two-qubit gates.

Read out of the angular momentum states can be accomplished
experimentally with interference of different flow states (i.e. corres-
ponding to a fragmented superfluid) which maps the phase winding
into a density modulation that can be measured using time-of-flight
imaging36. In the lower panel of Fig. 4 it is shown that different flow
states lead to characteristic density patterns in the far field.

We believe that our implementation combines the advantages of
neutral cold atoms and solid state Josephson junction based flux
qubits for applications in quantum simulation and computation.
This promises to exploit the typically low decoherence rates of the
cold atom systems, overcoming the single site addressing40, and har-
ness the full power of macroscopic quantum phenomena in topo-
logically non trivial systems. The characteristic fluctuations in the
magnetic fields affecting Josephson junction based flux qubits are
expected to be minimized employing neutral atoms as flux carriers.

Methods
Experimental realization of the ring-lattice potential with weak link. We created
the optical potential with a liquid crystal on silicon spatial light modulator (LC-R
2500 phase only SLM, Holoeye Photonics AG) which imprints a controlled phase
onto a collimated laser beam from a 532 nm wavelength diode pumped solid state
(DPSS) laser. The SLM acts as a programmable phase array and modifies locally the
phase of an incoming beam. Diffracted light from the computer generated phase
hologram then forms the desired intensity pattern in the focal plane of an optical

system (doublet lens, f 5 150 mm). The resulting intensity distribution is related to
the phase distribution of the beam exiting the SLM by Fourier transform. Calculation
of the required SLM phase pattern (kinoform) has been carried out using an improved
version of the Mixed-Region-Amplitude-Freedom (MRAF) algorithm20,21 with
angular spectrum propagator. This allows us to simulate numerically the wavefront
propagation in the optical system without resorting to paraxial approximation. A
region outside the desired ring lattice pattern (noise region) is dedicated to collect
unwanted light contributions resulting from the MRAF algorithm’s iterative
optimization process. This can be seen in the measured intensity pattern in Fig. 1 as
concentric, periodic structures surrounding the ring-lattice and can be filtered out by
an aperture.

The ring-lattice potential shown in Fig. 2 and Fig. 5 can be readily scaled down from
a radius of ,90 mm to 5–10 mm by using a 503 microscope objective with NA 5 0.42
numerical aperture (Mitutoyo 503 NIR M-Plan APO) as the focusing optics for the
SLM beam and with l2 5 830 nm light, suitable for trapping Rubidium atoms.
Accounting for the limited reflectivity and diffraction efficiency of the SLM, scat-
tering into the noise region and losses in the optical system only about 5% of the laser
light contributes to the optical trapping potential. However this is not a limiting factor
for small ring-lattice sizes in the tenth of micrometer range as discussed here where
,50 mW laser power is sufficient to produce well depths of several Erec. The gen-
erated structures are sufficiently smooth, with a measured intensity variation of 4.5%
rms, to sustain persistent flow-states31. The barrier height can be dynamically
modified at a rate up to 50 ms per step, with an upper limit imposed by the frame
update rate of the SLM LCD panel (60 Hz).

Setup for the adjustable ring-ring coupling. To allow controlled tunnelling between
neighbouring lattice stacks the distance between the ring potentials needs to be
adjustable in the optical wavelength regime. Small distances allow high tunnelling
rates, a necessity for fast gate operations. This makes it less efficient to read out and
address individual stack sites, however. Increasing the lattice stack separation after the
tunnelling interaction has occurred well above the diffraction limit (,l) while
keeping the atoms confined, optical detection and addressing of individual rings
becomes possible. Fig. 2 in the main text illustrates the experimental arrangement to
produce two adjustable 1d ring-lattices by intersecting two Gaussian beams (G1,G2)
with wavelength l1. The inset in Fig. 2 shows two vertically spaced ring lattice
potential separated by26 d 5 l1 f/D. The ring-ring separation is controllable by
changing the beam spacing D between beams G1 and G2, allowing adjustment of the
ring-ring tunnelling.

In an experimentally feasible arrangement using light from a Ti:Sa laser at l1 <
830 nm, with a beam separation adjustable between D 5 10–40 mm and a lens focal

Figure 5 | Effect of an axial translation on the ring lattice potential. (a) Ring lattice intensity distribution measured at various positions along

the beam propagation axis around the focal plane (Z 5 0). Note that the initial beam, phase modified by the SLM, is not Gaussian any more. The

optical potential remains undisturbed by a translation of 2.2 times the ring-lattice radius centred around the focal plane (Z 5 0). Here R designates the

ring-lattice radius of 87.5 mm. (b) This is in contrast to a Gaussian laser beam which exhibits a marked dependence on the axial shift from the focal plane

where the beam waist v(z) scales with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z z=z0ð Þ2

q
and Rayleigh range z0.
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length f 5 75 mm, the ring-ring separation can be varied from d 5 1.5–6.2 mm. This
compares to a inter-ring well spacing of 1.5 mm for a ring lattice with 20 lattice sites
and ring radius of 5 mm. Taking advantage of a large ring-ring separation of 5 mm
facilitates addressing of individual rings to generate different effective flux-states in a
stack. Circulation can be created, for instance, with a pulsed pair of Raman beams
where one of the Raman beams carry �h orbital angular momentum. By Raman
coupling the jF 5 2, mF 5 0æ and jF 5 2, mF 5 2æ Zeeman ground-states manifolds of
87Rb and employing a magnetic gradient field along the vertical axis, the effective two-
photon Raman detuning can be shifted out of resonance for atoms in rings other than
the addressed one. The differential Zeeman energy shift between the two Raman
ground states leads to a magnetic field dependent shift d 5 mBgFDmFB of the two-
photon Raman detuning. Here mB denotes the Bohr magneton, gF the Landé g-factor,
DmF the difference between the magnetic spin-quantum numbers of the two Raman
states and B the magnetic field strength. With a magnetic field gradient of 180 G/cm –
a typical value for magnetic traps in BEC experiments – the two-photon Raman
detuning of a ring which is 5 mm separated from the addressed one with d 5 0 would
be shifted by d 5 126 KHz. As was shown by Wright et al.38, with appropriate choices
of the magnitude, intensity ratio and detuning of the Raman beams, fractional
population transfer between the j2,2æ « j2,0æ states can be accurately controlled by
varying the two-photon Raman detuning d in a range of less than 200 KHz. This was
demonstrated for Raman beams with Gaussian beam profiles and hence no orbital
angular momentum was transferred onto the atoms but it can, in principle, be
adapted for a combination of Gaussian and Laguerre-Gaussian beams to generate
atomic flux states.

With a SLM arbitrary optical potentials can be produced in a controlled way only in
a 2d-plane – the focal plane of the Fourier transform lens – making it challenging to
extend and up-scale this scheme to 3d trap arrangements. The experiment, however,
showed (see Fig. 5) that axially the ring structure potential remains almost undis-
turbed by a translation along the beam propagation axis of Dz 5 62.2 ? R, where R
denotes the ring-lattice radius. The ring-lattice radius is only weakly affected by an
axial shift along z and scales withDR/R 5 0.0097 ? z, where z is normalized to the ring-
lattice radius. For larger axial shifts from the focal plane the quality of the optical
potential diminishes gradually. Based on our measurements this would allow
implementation of ring-lattice stacks with more than 10 rings in a vertical arrange-
ment, assuming a stack separation comparable to the spacing between two adjacent
lattice sites. Propagation invariant beams may allow a potentially large number of
rings to be vertically arranged44.

Tunnelling rate estimation for the two coupled ring lattices. The ring lattice
potential shown in the inset in Fig. 2 can be written as

Vlatt~4E2
0 f 2

pl cos kLGzð Þ2zcos kGzð Þ2
�

2fpl cos kLGzð Þcos kGzð Þcos wlð Þ
�
,

where fpl are related to Laguerre functions10. Such a potential with l lattice sites can be
created directly by diffraction from a SLM or by superposition of two Laguerre-
Gaussian beams with a positive and negative azimuthal index 6l, respectively22. The
WKB estimate of the tunnelling rate gives

tz~4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�h
ffiffiffiffiffiffiffi
2m
p

s
V3=4

0ffiffiffi
d
p e{

ffiffiffiffiffiffiffi
2mV0
p

p�h d ð8Þ

where d 5 l f/D is the lattice spacing along z-direction.

Demonstration of the one qubit and two qubit unitary gates. The aim of this
section is to show how the effective phase dynamics of optical ring-lattices with
impurities serves the construction of one - and two-qubit gates - a necessity for
universal quantum computation. Here, we adapt results which were obtained by
Solenov and Mozyrsky41 for the case of homogeneous rings with impurities. It results
that a single ring optical lattice with impurity is described by the following effective
Lagrangian (see Eq. (2) and Supplemental information):

L~
1

2U
_h2z

J
N{1

h{Wð Þ2{J 0 cos h ð9Þ

Then we introduce the canonical momentum P in a usual way:

P~
LL

L _h
~

1
U

_h ð10Þ

After performing a Legendre transformation we get the following Hamiltonian:

H~J 0
P2

2m
{

J
J 0 N{1ð Þ h{Wð Þ2zcos h

� 	
, ð11Þ

where m 5 J9/U is an effective mass of the collective particle. The quantization is

performed by the usual transformation P R 2d/dh. For d~
J 0 N{1ð Þ

2J
w1 the

effective potential in (11) can be reduced to a double well; for W 5 p, the two lowest
levels of such double well are symmetric and antisymmetric superpositions of the
states in the left and right wells respectively (See the Supplemental material). The
effective Hamiltonian can be written as

H^esz ð12Þ

and the lowest two states are jygæ 5 (0,1)T and jyeæ 5 (1,0)T. An estimate for the gap
energy can be found employing the WKB approximation45

e^
2
ffiffiffiffiffiffiffi
UJ 0
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1
d

� 	s
e{12

ffiffiffiffiffiffiffi
J 0=U
p

1{1=dð Þ3=2

, ð13Þ

where d . 1. From this formula we can see that the limit of weak barrier and strong
interactions is most favourable regime to obtain a finite gap between the two energy
levels of the double level potential12–14,35. We also note that the gap energy splitting can
be controlled by the height of the impurity barrier.

Single qubit gates. For the realization of single-qubit rotations, we consider the
system close to the symmetric double well configuration W^p. In the basis of the two
level system discussed before the Hamiltonian takes the form:

H^eszz
W{p

d
hh i01sx , ð14Þ

where Æhæ01 is the off-diagonal element of the phase-slip in the two-level system basis.
It is easy to show that spin flip, Hadamard and phase gates can be realized by this
Hamiltonian. For example, a phase gate can be realized by evolving the state through
the unitary transformation Uz(b) (tuning the second term of Eq.(14) to zero by
adjusting the imprinted flux)

Uz bð Þ~exp ietszð Þ~
eiet 0

0 e{iet

� 	
: ð15Þ

After tuning the gap energy close to zero (adjusting the barrier height of the impurity),
we can realize the following rotation

Ux bð Þ~exp iatsxð Þ~
cos a i sin a

i sin a cos a

� 	
ð16Þ

where a~
W{p

d
hh i01t. When a 5 p/2 and a 5 p/4 the NOT and Hadamard gates are

respectively realized.

Two-qubit coupling and gates. The effective dynamics for two coupled qubits, each
realized as single ring with localized impurity (as in Fig. 1), is governed by the
Lagrangian

L~
X

a~a,b

1
2U

_h2
az

J
2 N{1ð Þ ha{Wað Þ2{J 0 cos hað Þ
� �

{~J 00 cos ha{hb{
N{2

N
Wa{Wbð Þ

� � ð17Þ

Where J0 is the Josephson tunnelling energy between two rings. When Wa 5 Wb 5 W

and J 00=J 0 the last term reduces to {J 00
ha{hbð Þ2

2
and the Lagrangian takes the form

L~J 0
X

a~a,b

1
2J 0U

_h2
az

"
1

2J 0 N{1ð Þ ha{Wað Þ2{ cos hað Þ
� �

z
J 00

J 0
ha{hbð Þ2

2

�
: ð18Þ

By applying the same procedure as in the previous section, we obtain the following
Hamiltonian in the eigen-basis of the two-level systems of rings a and b

H~HazHbz
J 00

J 0
s1

xs2
x hh i201, ð19Þ

Ha~esa
z z

W{p

d
z

J 00p
J 0

� 	
hh i01sa

x : ð20Þ

From this equations it follows that qubit-qubit interactions can be realized using our

set-up. If we choose the tuning e R 0 and W?p{
dJ 00p

J 0
the natural representation of

a (SWAP)a gate42 can be obtained:

U tð Þ~exp {i
J 00

J 0
s1

xs2
xt

� �
, ð21Þ

where a~
tJ 00

J 0
. A CNOT gate can be realized by using two

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gates. It is well

known that one qubit rotations and a CNOT gate are sufficient to implement a set of
universal quantum gates43.
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