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Cis-regulatory variants affect gene
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Abstract Evolution of cis-regulatory sequences depends on how they affect gene expression

and motivates both the identification and prediction of cis-regulatory variants responsible for

expression differences within and between species. While much progress has been made in relating

cis-regulatory variants to expression levels, the timing of gene activation and repression may also

be important to the evolution of cis-regulatory sequences. We investigated allele-specific

expression (ASE) dynamics within and between Saccharomyces species during the diauxic shift and

found appreciable cis-acting variation in gene expression dynamics. Within-species ASE is

associated with intergenic variants, and ASE dynamics are more strongly associated with insertions

and deletions than ASE levels. To refine these associations, we used a high-throughput reporter

assay to test promoter regions and individual variants. Within the subset of regions that

recapitulated endogenous expression, we identified and characterized cis-regulatory variants that

affect expression dynamics. Between species, chimeric promoter regions generate novel patterns

and indicate constraints on the evolution of gene expression dynamics. We conclude that changes

in cis-regulatory sequences can tune gene expression dynamics and that the interplay between

expression dynamics and other aspects of expression is relevant to the evolution of cis-regulatory

sequences.

Introduction
Noncoding cis-regulatory sequences control gene expression and are thought to play a central role

in evolution (Carroll, 2005). However, genetic analysis of phenotypic variation frequently uncovers

changes in protein coding sequences rather than in regulatory regions (Stern and Orgogozo, 2008;

Fay, 2013). One explanation might be that genetic mapping and transgenic studies tend to identify

large effect mutations. If evolution predominantly occurs through numerous changes of small effect

(Rockman, 2012), the role of cis-regulatory sequences is harder to discern. Even so, cis-regulatory

changes have been shown to be important in polygenic adaptation (Bullard et al., 2010;

Fraser et al., 2010; Fraser et al., 2011; Fraser et al., 2012; Naranjo et al., 2015), the accumulation

of multiple changes at evolutionary hotspots (Frankel et al., 2011; Engle and Fay, 2012, 1;

Martin and Orgogozo, 2013; Li and Fay, 2019), and variation in fitness and disease (Boyle et al.,

2017; Sharon et al., 2018). Regardless of the relative role of coding and noncoding sequences in

phenotypic evolution, understanding how variation in cis-regulatory sequences generates variation in

gene expression is important to understanding the evolution of gene regulation.

Across organisms, there is an abundance of cis-acting sequence variation that affects gene

expression levels (Hill et al., 2021). The causes of cis-regulatory variation are not as easily character-

ized. Transcription factor binding sites are often found to play important roles (Zheng et al., 2011).

However, the number, identity, and position of binding sites can also vary without affecting expres-

sion. The flexibility of cis-regulatory sequences is shown by genes with similar expression patterns

but different cis-regulatory sequences (Berman et al., 2002). In the case of orthologous genes from

different species, binding site turnover and transcription factor re-wiring explain substantial diver-

gence in cis-regulatory sequences without expression divergence (Ludwig et al., 2000;
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Dermitzakis and Clark, 2002; Hare et al., 2008; Tuch et al., 2008; Venkataram and Fay, 2010;

Swanson et al., 2011; Bergen et al., 2016). Consequently, predicting changes in gene expression

based on variation in individual transcription factor binding sites has proven difficult (Doniger and

Fay, 2007; Doniger et al., 2008).

Despite the flexibility of binding sites within cis-regulatory sequences, sequences flanking binding

sites evolve under constraints and can affect expression. For example, over a third of yeast inter-

genic sequences are estimated to be under selective constraint (Chin et al., 2005; Doniger et al.,

2005). This fraction is greater than that expected from either conserved or experimentally identified

binding sites (Doniger et al., 2005; Venkataram and Fay, 2010). Sequences flanking binding sites

have also been shown to affect expression, potentially related to DNA shape, nucleosome position-

ing, or weak binding sites (Tanay et al., 2005; White et al., 2013; Abe et al., 2015; Levo et al.,

2015; Inukai et al., 2017). Consequently, conservation scores have proven important for predicting

cis-regulatory variants (Huang et al., 2017; Kircher et al., 2019; Renganaath et al., 2020).

Cis-regulatory sequences can affect other aspects of gene regulation besides expression levels.

Stochastic noise in gene expression provides a mechanism for bet-hedging strategies (Raj and van

Oudenaarden, 2008) and is encoded by and evolves through changes in cis-regulatory sequences

(Richard and Yvert, 2014). Cis-regulatory variants that alter noise in expression levels have been

shown to be under selection and can occur both within and outside of known binding sites

(Carey et al., 2013; Sharon et al., 2014; Metzger et al., 2015; Schor et al., 2017; Duveau et al.,

2018).

Gene expression dynamics, which include the timing and rate of gene activation and repression,

are also important aspects of gene regulation (López-Maury et al., 2008; Yosef and Regev, 2011).

Gene expression dynamics can be altered by transcription factors and their interactions with pro-

moters, but also depend on nucleosomes and their positions relative to binding sites (Lam et al.,

2008; Hager et al., 2009; Dadiani et al., 2013; Hansen and O’Shea, 2015). Notably, chromatin

mutants slow gene activation without compromising final levels of gene expression (Barbaric et al.,

2001; Floer et al., 2010). Variation in cis-regulatory sequences can also affect gene expression

dynamics, but these dynamics are only sometimes captured (Ackermann et al., 2013;

Francesconi and Lehner, 2014; Strober et al., 2019). Thus, the causes of cis-regulatory variation in

gene expression dynamics have neither been characterized nor related to variation in gene expres-

sion levels.

In this study, we investigate cis-acting variation in gene expression dynamics. We survey and find

allele-specific differences in expression dynamics both within and between Saccharomyces species

during the diauxic shift when there is major transition from the expression of genes involved in fer-

mentation to respiration (DeRisi et al., 1997). Using these data, we associated allele-specific expres-

sion (ASE) with promoter variation and individual variants using a high-throughput reporter assay.

Our results inform our understanding of variation in gene expression dynamics and point towards an

integrated view of gene expression and how it evolves.

Results

Cis-regulatory variation in gene expression levels and dynamics
To identify cis-regulatory variation in gene expression dynamics, we measured ASE in three intra-

specific and two inter-specific diploid hybrids. Hybrids were generated by crossing a North American

Saccharomyces cerevisiae strain (Oak) to an S. cerevisiae wine strain (Wine) and two strains from

China (China I and China II), as well as to a strain of Saccharomyces paradoxus and Saccharomyces

uvarum (Table S1 in Supplementary file 1), enabling us to examine a range of divergence in gene

regulation. To capture temporal differences in ASE that occur during the diauxic shift, we generated

RNA-sequencing data from 19 timepoints for each hybrid, spanning the shift from fermentation to

respiration as measured by glucose depletion (Figure 1—figure supplement 1).

ASE requires RNA-sequencing reads that can be distinguished as coming from one of the two

parental strains. To measure ASE while avoiding mapping bias (Degner et al., 2009;

Stevenson et al., 2013), we mapped reads to the combined parental genomes and enumerated

allele-specific reads. The proportion of reads mapping to each parental genome was equivalent

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 2 of 23

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68469


across all five hybrids, except for one arm of chromosome XIII in the China I hybrid consistent with

aneuploidy (Figure 1—figure supplement 2), which we removed from subsequent analysis.

Two statistical tests were used to separately identify genes exhibiting differences in ASE levels

and changes in ASE dynamics over time. Genes with ASE dynamics were identified by testing for an

autocorrelation in the ratio of allele-specific reads over time. Under the null model, the ratio of the

two alleles is constant over time but not necessarily equal to 1. Genes with ASE levels were identi-

fied by testing for differences between the expression of the two alleles across all timepoints. Using

these tests, we found that more genes showed ASE levels compared to ASE dynamics and the num-

ber of genes with either ASE levels or dynamics increased with divergence (false discovery

rate [FDR] < 0.01, Table 1). As expected, genes with ASE levels showed larger average allele differ-

ences across timepoints, and genes with ASE dynamics showed larger standard deviations in allele

differences across timepoints (Figure 1—figure supplement 3). Genes with ASE levels and genes

with ASE dynamics were relatively evenly distributed across genes whose expression increased/

decreased or showed a peak/trough during the diauxic shift (Figure 1 in Supplementary file 1).

Changes in ASE over time can result from a variety of differences in the dynamics of the two

alleles. To illustrate this variety, we consider a gene that is activated during the diauxic shift

(Figure 2A, B). ASE can be condition-specific due to an allele difference in the presence but not

absence of glucose, or vice versa. ASE can also differ specifically during the diauxic shift due to a dif-

ference in the timing or rate of gene activation that does not require ASE differences before or after

the shift. To characterize ASE, we applied k-means clustering to ASE allele frequencies and found

two types of patterns (Figure 2C, Table S3 in Supplementary file 1). The majority of genes (72%)

showed environment-dependent ASE and the remaining genes showed an ASE maximum or mini-

mum during the transition (clusters 6, 9, 10, and 12, Figure 2C).

ASE is associated with SNPs and InDels
ASE is caused by cis-acting single-nucleotide polymorphisms (SNPs) or insertion deletion polymor-

phisms (InDels) that affect gene expression. In yeast, cis-acting variants most likely occur within the

small (~500 bp) intergenic region upstream of a gene, but could also occur within the coding or 30

region of a gene. For each hybrid, we tested whether the number of variants in these regions pre-

dicts significant ASE levels or ASE dynamics using logistic regression.

Both ASE levels and dynamics were associated with the number of SNP and InDel variants, but

these associations varied by hybrid and the type of variant. Within intra-specific hybrids, upstream

SNPs and InDels were associated with both ASE levels and dynamics, but InDels showed stronger

associations as measured by the odds ratio and the significance (Figure 3). SNPs and InDels within

coding and downstream regions were also associated with ASE, but the associations were similar for

ASE levels and dynamics (Table S4 in Supplementary file 1). Although the odds ratio is high for

downstream variants, this could be due to either larger effects or a higher fraction of functional var-

iants within the 80 bp of downstream sequence examined. To examine the magnitude of ASE differ-

ences, we split the genes into three groups and found that upstream InDels have a similar ability to

predict ASE levels and dynamics for genes with large ASE differences, but predict ASE dynamics

better than ASE levels for genes with small ASE differences (Figure 3—figure supplement 1).

Table 1. Number of genes with allele-specific expression.

Intra-specific hybrids‡ Inter-specific hybrids‡

S. cerevisiae (Oak � Wine) S. cerevisiae (Oak � China II) S. cerevisiae (Oak � China I)†
S. cerevisiae �
S. paradoxus

S. cerevisiae �
S. uvarum

Group* YJF1460 YJF1455 YJF14542 YJF1453 YJF1484

Dynamics 671 699 911 2055 1827

Levels 1964 2088 2260 2930 3237

Both 371 375 501 1260 1253

*Genes with significant (false discovery rate < 0.01) allele-specific differences in dynamics, levels, or both dynamics and levels.
†The total number of genes is 4703 except for 358 genes on chromosome 13R of the China I hybrid that were removed.
‡Oak is most closely related to the Wine strain, followed by China II, China I, S. paradoxus, and S. uvarum.
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Inter-specific hybrids only showed significant associations between ASE dynamics and upstream

SNPs and InDels. Association between ASE and divergence may be weak or absent if most substitu-

tions between species do not affect gene expression or if there are many substitutions that affect

expression but they have random effects that cancel each other out. The inter-specific hybrids have

much higher rates of divergence compared to the intra-specific hybrids: an average of 15 and 107

upstream InDels and SNPs, respectively, compared to 1.2 and 6.0 InDels and SNPs within the intra-

specific hybrids (Table S5 in Supplementary file 1). For the intra-specific hybrids, the frequency of

ASE increases linearly with the number of variants (Figure 3—figure supplement 2), suggesting that

regulatory variants are rare enough to consistently increase the frequency of ASE at low divergence.

Intra-specific cis-regulatory variants
The associations between ASE and the number of upstream intergenic variants indicate that pro-

moter polymorphism is a significant contributor to ASE. To specifically measure the effects of pro-

moter polymorphism and identify causal variants, we used a high-throughput cis-regulatory element

(CRE-seq) reporter assay (Mogno et al., 2013). In this assay, promoter sequences are synthesized

and the resulting pooled library is cloned and integrated into a single site in the yeast genome (Fig-

ure 4—figure supplement 1). The synthesized sequences include a 10 bp barcode that can be used

as a tag to measure gene expression through RNA-sequencing and relative abundance through

DNA-sequencing.

We designed a CRE-seq library to test promoter variants upstream of 69 genes that exhibited

ASE levels and/or dynamics in the Oak � ChII hybrid. Because the synthesized promoters were lim-

ited to 130 bp, we designed five overlapping CRE sequences per gene to test all variants within the

250 bp region upstream of the transcription start site (TSS). There were a total of 337 variants, an

average of 4.2 SNPs and 0.72 InDels per gene. For any CRE sequences with more than a single dif-

ference between the Oak and ChII alleles, we also generated CREs for each ChII variant in the Oak

allele and vice versa (Figure 4—figure supplement 1). The total library contained 1818 CREs with

Figure 1. Gene expression dynamics. Each line shows the average expression of genes in each k-means cluster

over timepoints. Clustering is based on the expression of 4703 genes from each hybrid. The arrow indicates the

timepoint when glucose was depleted.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sampling scheme for gene expression dynamics during the diauxic shift.

Figure supplement 2. Chromosome 13R aneuploidy in YJM1454 (Oak � ChI).

Figure supplement 3. Characteristics of differentially expressed genes.
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four barcode replicates per CRE and included all variants within the 334 regions upstream of the 69

genes.

We first tested whether the synthetic promoter regions could recapitulate expression of the

endogenous genes. We measured CRE expression over 19 timepoints during the diauxic shift in the

same hybrid background as RNA-seq. Out of 334 regions, 137 were correlated with RNA-seq

expression (FDR < 0.05) and 17 genes had no region correlated. CRE-seq regions correlated with

RNA-seq tended to lie further away from the TSS, and in some cases showed a gradual increase in

correspondence (Figure 4). We also barcoded and measured expression from full-length promoters

of three genes (Figure 4—figure supplement 2). All three genes showed good correspondence

between the full-length promoter and a shorter CRE-seq region. However, one of the genes, ALD5,

showed both short- and full-length reporter expression notably different from the endogenous RNA-

seq expression. One explanation for this difference is that we used an annotated TSS 515 bp

upstream of the ATG, whereas some studies indicate a site much closer (78–84 bp) to the ATG

(Zhang and Dietrich, 2005; Pelechano et al., 2013).

To determine whether any of the CRE regions contained variants that affect expression, we exam-

ined the 281/334 regions upstream of the 69 genes with one or more differences between the Oak

and ChII alleles. One of the regions showed significant differences in expression levels between the

Oak and ChII alleles, and 31 showed differences in expression dynamics (FDR < 0.05, Table 2).

Eleven of these regions had only a single variant that differentiated the two parental alleles and the

rest had between 2 and 9 variants. For regions with multiple variants, we tested each using CREs

containing the Oak variant in the ChII background and vice versa. For expression levels, we found

significant effects for one of the two variants tested, and for expression dynamics we found 35 out

of 70 variants (FDR < 0.05, Table 2), 4 of which were detected by multiple regions.

Promoter regions that showed allele-specific differences in expression dynamics had high rates of

polymorphism and often multiple variants that affected expression. The rate of variants in the 31

CRE regions with differences in expression dynamics (2.1%) was higher than that of intergenic

regions across the genome (1.4%; Fisher’s exact test, p=0.0038). Out of the 22 genes with one or

more CRE regions showing differences in expression dynamics between the Oak and ChII alleles, 8

Figure 2. Patterns of allele-specific expression (ASE) dynamics. (A) Three hypothetical types of differences in expression dynamics in comparison to a

common reference (black) are shown by a time delay (blue), rate change (orange), and condition-specific expression difference (red). (B) ASE based on

the three types of differences in comparison to the common reference. (C) Average ASE across 19 timepoints of k-means clustering of 6135 genes with

significant ASE dynamics. Clusters 6, 9, 10, and 12 (bottom panels) show maximum deviation during the diauxic shift, whereas the others generally show

increasing or decreasing ASE differences over time consistent with condition-specific ASE.
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had two or more significant variants, 12 had only a single variant, and 2 had no significant variants.

While the number of InDels with significant effects on expression dynamics was small, the ratio of

significant SNPs to InDels (6.0) was not different from that of intergenic regions across the genome

(4.8; Fisher’s exact test, p>0.05).

Variants with significant effects on CRE-seq expression were not always consistent with patterns

of RNA-seq ASE (Figure 5). Only 16 of the 31 regions showing CRE-seq expression dynamics corre-

lated with RNA-seq expression. For example, region 4 of the YPS6 promoter showed increased

expression over time in the RNA-seq data but not in the CRE-seq data. Even so, the Oak allele

exhibited higher expression levels than the ChII allele in both the RNA-seq and CRE-seq assays, a

difference that can be attributed to one of the two variants in the region. The ICL2 promoter showed

increased expression over time in both the RNA-seq and CRE-seq assays, but not all CRE-seq allele

differences were consistent with the RNA-seq allele differences. Region 1 of the ICL2 promoter

showed ASE differences consistent with RNA-seq and multiple variants with effects on expression

dynamics. However, region 3, which had only a single variant, showed allele differences in expression

dynamics inconsistent with RNA-seq, whereby the Oak allele responded more strongly than the ChII

allele to the diauxic shift.

Cis-regulatory variants that affect expression levels have been associated with conserved pro-

moter regions and disruption of transcription factor binding sites (Renganaath et al., 2020). We

found no difference in PhastCons conservation scores or change in binding site scores between the

35 variants associated with expression dynamics and those that were not associated (Figure 5—fig-

ure supplement 1). Because the number of variants is small, we also examined whether PhastCons

scores or binding site scores improved the genome-wide logistic regression. Binding site scores did

Figure 3. Allele-specific expression (ASE) is associated with intergenic single-nucleotide polymorphisms (SNPs)

and insertions/deletions (InDels). The odds ratio (OR) and 95% confidence interval for associations between the

number of SNPs or InDels and significant ASE levels (triangles) and dynamics (circles). The OR of each hybrid is

shown separately for upstream (50) and downstream (30) intergenic variants.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Allele-specific expression (ASE) associations with single-nucleotide polymorphisms (SNPs)
and insertions/deletions (InDels) for genes with small (A), medium (B), and large (C) expression differences.

Figure supplement 2. The frequency of significant allele-specific expression (ASE) dynamics (A) and ASE levels (B)
as a function of the number of variants.
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not improve the odds ratios. While PhastCons scores improved the association between SNPs and

ASE levels and dynamics, it did not improve InDel associations (Table S6 in Supplementary file 1).

Inter-specific cis-regulatory variation
We also designed a CRE-seq library to test promoter divergence of 98 genes that exhibited ASE lev-

els and/or dynamics in the S. cerevisiae � S. uvarum hybrid. We used the same design of five over-

lapping 130 bp CRE sequences covering 250 bp upstream of the TSS. There was an average of 32

substitutions and 4.0 InDels per region. Because there were too many differences to test individually,

we generated chimeric CRE sequences containing either the first or second half of the sequence

from the S. cerevisiae allele and the remaining half from the S. uvarum allele (Figure 4—figure sup-

plement 1). The total library contained 1808 CREs with four barcode replicates per CRE and covered

452 regions upstream of the 98 genes.

We again tested whether the synthetic promoter regions could recapitulate expression of the

endogenous genes and whether there were differences in expression levels or dynamics between

the S. cerevisiae and S. uvarum alleles. We measure CRE expression during the diauxic shift in the

same hybrid background used to measure RNA-seq. Out of 452 regions, 220 were correlated with

RNA-seq expression (FDR < 0.05) and 28 genes had no region correlated. Similar to intra-specific

Figure 4. Intra-specific cis-regulatory elements (CREs) recapitulate endogenous expression dynamics. (A) Histogram of the correlations between CRE

expression and the endogenous (RNA-seq) expression of 69 genes. Correlations are shown separately for CRE regions 0–4, ordered proximal to distal

of the transcription start site with shifts of 30 bp. CREs with a significant (false discovery rate < 0.05) correlation are shown in red, the rest in blue. (B)

CRE expression of five regions upstream of HXT5 as well as its endogenous expression from RNA-seq.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Design and cloning of cis-regulatory element (CRE-seq) libraries.

Figure supplement 2. Short cis-regulatory elements (CREs) recapitulate longer CRE expression.

Table 2. CRE regions and variants affecting gene expression.

Library Type Genes Regions SNPs InDels

Intra-specific Levels 1/59 1/240 0/1 1/1

Intra-specific Dynamics 22/50 31/201 30/57 5/13

Inter-specific Levels 2/86 2/317 -/68 -/12

Inter-specific Dynamics 59/72 113/257 -/3560 -/479

Genes, regions, SNPs, and InDels are the number significant out of the number tested. Individual SNPs and InDels

were not tested for the inter-specific library.

CRE: cis-regulatory element; SNPs: single-nucleotide polymorphisms; InDels: insertions/deletions.
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comparisons, more regions showed differences in expression dynamics (113) than expression levels

(2) between the two species’ alleles (Table 2).

Expression driven by chimeric sequences may lie within the range of the two parental species and

can be used to map parental differences to the proximal or distal portion of the cis-regulatory region

(Figure 6—figure supplement 1). However, chimera expression may also lie outside of the parental

Figure 5. Intra-specific cis-regulatory elements (CREs) show differences in expression levels and dynamics. (A) YPS6 shows allele differences in

endogenous expression levels and dynamics. (B) CRE region 4 of the YPS6 promoter shows allele differences in expression levels, but is not correlated

with endogenous expression patterns. Substituting the Oak insertions/deletions (InDel) into the ChII allele (Oak v1) increases expression levels, but

substituting the Oak single-nucleotide polymorphism (SNP) into the ChII allele (Oak v2) has no effect. (C) ICL2 shows allele differences in endogenous

expression dynamics. Of the four SNPs and one InDel that differentiate the region 1 CRE alleles, two SNPs (v2 and v4) alter expression dynamics in both

the Oak and ChII background (D, E). (F) CRE region 3 of ICL2 has a single InDel between the Oak and ChII alleles and also shows allele differences in

expression dynamics. For panels (B), (D), and (E), CRE alleles are shown by rectangles with colored ticks to indicate the Oak and ChII variants. Bars

indicate standard errors. Arrows indicate the approximate time of glucose depletion.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Binding site and conservation scores of variants.
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range if recombination brings together variants with effects in the same direction or if there are epi-

static interactions between variants. Such cis-regulatory interactions are thought to be common due

to binding site turnover (Zheng et al., 2011) and do not require expression divergence between the

parental species.

To map expression divergence and identify chimeras outside of the parental range, we tested

each of the two chimeras for differences with each parent. Out of the 113 regions with parental spe-

cies differences in expression dynamics, 57 were consistent with the proximal and 14 were consistent

with the distal region explaining the difference. For example, the proximal region of SDH4 can

explain the entire difference between the parental species’ alleles (Figure 6A, D). Examining all the

regions (n = 348), 88 chimeras showed expression dynamics that differed from both parents (FDR <

0.05). The majority of these chimeras are not intermediate between the two parents; in 63 cases, the

expression distance between the two parents was less than the average distance of the chimera to

either parent, and in 56 cases there was no difference between the two parents. As examples,

MDM36 shows chimera expression between the two parents (Figure 6B, E), and IDP2 shows chimera

expression outside the parental range (Figure 6C, F). For the 63 chimeras with high expression

Figure 6. Inter-specific cis-regulatory elements (CREs) show differences in expression dynamics. (A–C) Endogenous expression of S. cerevisiae (Scer)

and S. uvarum (Suva) alleles of SDH4, MDM36, and IDP2. (D–F) CRE-seq expression of region 3 (SDH4), region 1 (MDM36), and region 4 (IDP2) for

parental S. cerevisiae (red) and S. uvarum (blue) CRE alleles and both chimeric CREs. SDH4 shows expression divergence maps to the proximal

promoter region, MDM36 and IDP2 show chimera expression that differ from both parents, with the MDM36 chimeras being between the two parents

and IDP2 chimeras being outside the two parents. Bars indicate standard errors. Arrows indicate the approximate time of glucose depletion.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Identification of significant differences for the intra-specific and inter-specific cis-regulatory element sequence (CRE-seq)
libraries.

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 9 of 23

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68469


distance from both parents, the expression of the chimera was outside the two parental values for

most (21.6/27) of the timepoints.

Discussion
Cis-regulatory sequences control the activation and repression of genes in response to cellular and

environmental signals, and the consequences of variation within these sequences are relevant to our

understanding of evolution and human disease. Much progress has been made in identifying cis-reg-

ulatory variants responsible for changes in gene expression levels. In this study, we identified and

characterized cis-acting variation in gene expression dynamics. We find that while gene expression

dynamics are interrelated to expression levels, they differ in the types and identities of variants per-

turbing them. Below we discuss the relationship between gene expression dynamics and other

aspects of gene regulation and how this fits into our understanding of regulatory evolution.

Gene expression dynamics are an integrated component of cis-
regulatory variation
We find, as expected, abundant cis-acting variation in gene expression dynamics. Despite the poten-

tial importance of changes in gene expression dynamics, they are not easily disentangled from other

aspects of gene expression such as levels and noise. In our data, roughly one-third of genes that

exhibit ASE dynamics also exhibit ASE levels (Table 1). This overlap is not unexpected as the tests

for ASE dynamics and levels are not mutually exclusive. For example, genes that exhibit differences

in expression levels after but not before the diauxic shift by definition also exhibit differences in

expression dynamics during the diauxic shift. While less common, we do find genes where ASE dif-

ferences are greatest during the diauxic shift, consistent with a change in the rate or timing of gene

activation/repression (Figure 2). How can the rate or timing of expression be altered without affect-

ing levels? Prior work has shown that chromatin mutants can slow gene activation without impacting

levels (Barbaric et al., 2001; Floer et al., 2010). While this does not exclude the possibility of

changes in binding sites, it points to changes in nucleosome positioning sequences in mediating

expression dynamics.

Gene expression dynamics may also be interrelated to stochastic noise in expression. During the

diauxic shift, there is cell-to-cell heterogeneity in gene expression and this leaky regulation can give

the appearance of a slower rate of activation at the population level (New et al., 2014;

Venturelli et al., 2015). Put differently, an increase in noise is expected to blur a sharp transition

between activated and repressed states. However, noise, levels, and dynamics are also not entirely

dependent on one another. For example, gene expression often occurs in bursts with expression lev-

els more dependent on burst size, noise more dependent on burst frequency (Cai et al., 2006;

Carey et al., 2013), and timing dependent on both changes in burst size and frequency. Thus, the

covariation between expression levels, dynamics, and noise likely shapes how gene expression

evolves within and between species.

Cis-regulatory variants underlying expression dynamics
Previous studies have characterized cis-regulatory variants underlying gene expression levels. We

find a number of results from studies of gene expression levels also hold for expression dynamics: (i)

a weak or no association between expression divergence and sequence divergence between species

(Tirosh et al., 2008; Zeevi et al., 2014; Li and Fay, 2017); (ii) 5’ InDels are more strongly associated

with expression differences than 5’ SNPs within species (Massouras et al., 2012); and (iii) within spe-

cies, the number of 5’ variants is associated with ASE and multiple cis-regulatory variants occur

within the same promoter region (Renganaath et al., 2020). One notable difference between ASE

levels and dynamics is that 5’ InDels show a stronger association with ASE. Below, we discuss these

results and some of the limitations of our study.

Based on the genome-wide logistic regression, we found InDels have larger odds ratios than

SNPs, indicating either larger effects or a higher proportion of variants affect expression. This result

is consistent with a larger effect of InDels found in an eQTL mapping study in Drosophila

(Massouras et al., 2012). However, a limitation of our genome-wide associations is comparing 5’,

coding and 3’ regions. First, the number of SNPs and InDels is correlated among 5’, coding and 3’

regions, making it hard to quantify their relative contribution. Second, the low odds ratios for 5’
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compared to 3’ region SNPs could be a consequence of the size of the region. The small (80 bp) 3’

regions may have a higher proportion of functional variants than the larger 5’ regions, which likely

contain a mixture of large effect promoter variants diluted by more numerous non-functional variants

outside of the promoter region. In a yeast eQTL study where direct comparison of 5’ and 3’ regions

was possible, the strongest associations were for regions immediately upstream and downstream of

the transcription start and termination sites, respectively (Kita et al., 2017). For the association with

3’ variants, it is worth noting that ASE may be driven by variants that affect mRNA decay rather than

transcription (Cheng et al., 2017).

We also found that 5’ InDels have stronger associations with ASE dynamics compared to ASE lev-

els. However, this difference was not present for genes with large allele differences, where both ASE

levels and dynamics were strongly associated with 5’ InDels (Figure 3—figure supplement 1). The

strong and more equivalent associations could be a consequence of the higher coincidence of both

ASE levels and dynamics for genes with large allele differences. We did not find an over-representa-

tion of InDels among causal variants identified in the CRE-seq assay. This difference may be a conse-

quence of a small sample size (n = 35). But it could also reflect our selection of genes with the

largest differences in ASE dynamics to test, and promoters with multiple SNPs being more likely to

cause large ASE differences than those with multiple InDels, which are more rare.

A previous study of cis-regulatory variants that affect expression levels in yeast found multiple cis-

regulatory variants per gene, and that cis-regulatory variants are more likely to disrupt conserved

sequences and alter transcription factor binding sites (Renganaath et al., 2020). We found that

nearly half of the genes (8/20) had more than one variant (2–5) associated with ASE dynamics, but

cis-regulatory variants associated with ASE dynamics were not associated with conserved sequences

or changes in predicted transcription factor binding sites. Beyond technical differences, the absence

of association with conserved sequences and binding sites could be related to differences in cis-reg-

ulatory variants underlying ASE levels versus dynamics, to the strains used in each study, or to our

smaller sample size. Strain differences may be relevant since we used variants between two wild

strains Oak and ChII, whereas Renganaath et al., 2020 used a wine and laboratory strain, the latter

of which has evolved under relaxed selection and has more deleterious variants (Gu et al., 2005;

Doniger et al., 2008). Consistent with a sample size explanation, we found that PhastCons conserva-

tion scores improved the odds ratios from genome-wide logistic regression of SNPs with ASE levels

and dynamics (Table S6 in Supplementary file 1).

Although powerful in throughput, the CRE-seq reporter assay has a number of limitations relevant

to our results. First, 130 bp CRE sequences do not capture the entire promoter and different regions

of a promoter often generate different patterns of expression. For example, a variant that modulates

expression may have little or no effect unless upstream activation sequences are also included in the

CRE. However, it is also possible that a variant affects expression regardless of the presence or

absence of other elements. The extent to which the effects of individual binding sites are dependent

on other sites forms the basis for the difference between the enhanceosome and billboard models

of cis-regulatory sequences (Arnosti and Kulkarni, 2005). A second limitation of our study is that

high-throughput reporter assays perform better with high levels of replication. Prior high-throughput

reporter assays have used tens or hundreds of barcode replicates per allele (Tewhey et al., 2016;

Renganaath et al., 2020). Our use of only four barcode replicates per allele likely limited our ability

to detect variants that affect ASE levels. This limitation applies less to ASE dynamics that are unaf-

fected by the mean expression of any single barcoded CRE. Given these limitations, not all cis-regu-

latory variants assayed by CRE-seq may have been detected.

Evolution of cis-regulatory sequences
Chimeric cis-regulatory sequence from different species often shows loss of function and supports

the binding site turnover model, whereby the chance gain of a redundant binding site enables loss

of another site without adverse effects on expression (Ludwig et al., 2000; Ludwig et al., 2005;

Arnold et al., 2014). We find that chimeric promoter regions from S. cerevisiae and S. uvarum often

generate expression dynamics outside of the parental species’ range. The chimeras thus provide evi-

dence for constraints on gene expression dynamics. However, we also find that cis-regulatory var-

iants within S. cerevisiae are not greatly enriched at conserved sites. These two observations are

consistent with a neutral model of expression divergence (Fay and Wittkopp, 2008), whereby small

changes in dynamics within species are neutral, but when neutral changes in different lineages are
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brought together they yield expression patterns that lie outside of the parent range and are unlikely

to be tolerated within a species. It is also possible that constraints on expression dynamics depend

on expression levels or noise. Indeed, the fitness effects of noise depend on expression levels

(Duveau et al., 2018). This emphasizes the importance of characterizing how fitness altering cis-reg-

ulatory variants affect all aspects of gene expression to understand the evolution of cis-regulatory

sequences.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Saccharomyces
cerevisiae)

ALD5 Saccharomyces
Genome Database

SGD:S000000875

Gene
(Saccharomyces
cerevisiae)

GND2 Saccharomyces Genome Database SGD:S000003488

Gene
(Saccharomyces
cerevisiae)

PHO3 Saccharomyces Genome Database SGD:S000000296

Strain, strain
background
(Saccharomyces
cerevisiae)

Oak; YJF153 PMID:12702333 YPS163 background

Strain, strain
background
(Saccharomyces
cerevisiae)

Wine; YJF1442 PMID:16103919 UCD2120 background

Strain, strain
background
(Saccharomyces
cerevisiae)

ChI; YJF1373 PMID:22913817 HN6 background

Strain, strain
background
(Saccharomyces
cerevisiae)

ChII; YJF1375 PMID:22913817 SX6 background

Strain, strain
background
(Saccharomyces
paradoxus)

YJF694 PMID:19212322 N17 background

Strain, strain
background
(Saccharomyces
uvarum)

YJF1450 PMID:22384314 CBS7001
background

Recombinant
DNA reagent

pIM202 PMID:23921661 CRE cloning vector

Sequence-
based reagent

S288c genome PMID:22384314

Sequence-
based reagent

N17 genome PMID:22384314

Sequence-
based reagent

CBS 7001 genome PMID:22384314

Sequence-
based reagent

Oak genome This paper YJF153.fasta;
YJF153.gff

https://doi.org/
10.17605/OSF.
IO/Y5748

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

Wine genome This paper BC217.fasta;
BC217.gff

https://doi.org/
10.17605/OSF.
IO/Y5748

Sequence-
based reagent

ChI genome This paper HN6.fasta; HN6.gff https://doi.org/
10.17605/OSF.
IO/Y5748

Sequence-
based reagent

ChII genome This paper SX6.fasta; SX6.gff https://doi.org/
10.17605/OSF.
IO/Y5748

Sequence-
based reagent

Intra-specific
CRE-library

This paper CRE_Libraries.
YJF1455.csv

https://doi.org/
10.17605/OSF.
IO/Y5748

Sequence-
based reagent

Inter-specific
CRE-library

This paper CRE_Libraries.
YJF1484.csv

https://doi.org/
10.17605/OSF.
IO/Y5748

Commercial
assay or kit

Dynabeads
mRNA Direct kit

Invitrogen Invitrogen:61011

Commercial
assay or kit

YeaStar DNA kit Zymo Research Zymo:D2002

Commercial
assay or kit

YeaStar RNA kit Zymo Research Zymo:R1002

Commercial
assay or kit

Dynabeads
mRNA Direct kit

Zymo Research Zymo:D2002

Commercial
assay or kit

Glucose (GO) Assay Kit Sigma Sigma:GAGO20

Software,
algorithm

BWA v0.7.5 PMID:19451168 RRID:SCR_010910 https://github.
com/lh3/bwa

Software,
algorithm

PicardTools v1.114 Broad Institute RRID:SCR_006525 https://github.com/
broadinstitute/picard

Software,
algorithm

GATK Haplotype
Caller v3.3–0

Broad Institute RRID:SCR_001876 https://github.com/
broadinstitute/gatk/

Software,
algorithm

liftOver UCSC Genome
Browser

RRID:SCR_018160 https://genome-
store.ucsc.edu/

Software,
algorithm

Fastx-toolkit Hannon Lab RRID:SCR_005534 https://github.com/
agordon/fastx_
toolkit

Software,
algorithm

Bowtie2 v2.1.0 PMID:22388286 RRID:SCR_016368 https://github.com/
BenLangmead/
bowtie2

Software,
algorithm

Htseq-count PMID:25260700 RRID:SCR_011867 https://github.
com/htseq/htseq

Software,
algorithm

DESeq2 PMID:25516281 RRID:SCR_015687 https://doi.org/
10.18129/B9.
bioc.DESeq2

Software,
algorithm

Patser PMID:10487864 http://stormo.wustl.
edu/software.html

Software,
algorithm

Custom R scripts This paper https://doi.org/
10.17605/OSF.
IO/Y5748

Strains
Three strains of S. cerevisiae, one of S. paradoxus, and one of S. uvarum were crossed to a common

reference YJF153, a derivative of an S. cerevisiae oak isolate from North America (Table S1 in

Supplementary file 1). The three intra-specific hybrids were generated through crosses to a wine
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strain from North America (UCD2120 � YJF153 = YJF1460) and two wild strains from China (HN6 �

YJF153 = YJF1454 and SX6 � YJF153 = YJF1455). Strains were chosen to reflect a range of diver-

gence. The two strains from China are from two of the most divergent S. cerevisiae lineages: China I

(HN6) and China II (SX6) (Wang et al., 2012). The inter-specific hybrids were generated using S. par-

adoxus (N17 � YJF153 = YJF1453) and S. uvarum (CBS7001 � YJF153 = YJF1484). Diploid hybrids

were generated by mixing strains of opposite mating type and selecting for dominant drug resis-

tance markers present at the HO locus.

RNA-sequencing time course
Each hybrid strain was cultured in 125 mL YPD at 250 rpm at 30˚C with an initial density of ~3 � 106

cells/mL. Approximately 3 � 108 cells were taken at each timepoint, centrifuged, supernatant

removed, and flash frozen in liquid nitrogen. A total of 19 samples were collected during the switch

from fermentation to respiration with the most intense sampling occurring every 15 min after glu-

cose depletion (Figure 1—figure supplement 1). Glucose depletion was measured using a Glucose

(GO) Assay Kit (Sigma-Aldrich). RNA was extracted with phenol-chloroform and mRNA purified by

oligo-dT (Dynabeads mRNA Direct kit, Invitrogen). cDNA libraries were made by reverse transcrip-

tion, fragmentation, and adaptor ligation by Washington University’s Genome Technology Access

Center (GTAC). Adaptors contained 7 bp indexes for multiplexing samples. The pooled equimolar

libraries of 95 samples (19 sampling time � 5 strains) were paired-end sequenced (2 � 40 bp) using

three runs of an Illumina NextSeq. A total of 1255.9 million paired-end reads were generated.

Reference genomes and variants
The genomes of the three S. cerevisiae strains were sequenced to generate reference genomes for

mapping RNA-sequencing reads and to identify variants associated with ASE. DNA was extracted

(YeaStar DNA kit, Zymo Research), libraries were generated by GTAC, and paired-end (2 � 101 bp)

reads were generated using an Illumina HiSeq 2500, resulting in 5.2–5.9 million paired reads per

strain. Reads were mapped to the S288c reference genome (R64-1-1) using BWA v0.7.5 (Li, 2013),

and duplicates were marked using PicardTools v1.114 (http://broadinstitute.github.io/picard/). SNPs

and InDels were called using GATK’s HaplotypeCaller v3.3-0 (Van der Auwera et al., 2013) follow-

ing InDel realignment, base recalibration, and variant recalibration using an independently derived

set of SNPs and InDels. The independent set of SNPs (21,327) and InDels (4748) was identified using

GATK after BWA mapping of 27 assembled genomes (Table S7 in Supplementary file 1) to the

S288c reference genome. Variants were filtered to remove variable sites with calls in fewer than 20

strains and minor allele frequencies of less than 15%. Using GATK’s tranche filter set to 99.9 (percent

sensitivity to the independent set of variants), we identified 222,589 SNPs and 20,485 InDels within

the three S. cerevisiae strains and S288c. The Oak strain is most closely related to the Wine strain

(76,659 variants), followed by China II (111,591 variants) and China I (128,346 variants).

Variants were used to generate reference genomes for mapping RNA-sequencing reads. Refer-

ence genomes were generated using the S288c genome as a template and GATK’s FastaAlternateR-

eferenceMaker command to incorporate variants present in each strain. Genome annotations were

generated using liftOver (Hinrichs et al., 2006) to transfer S288c annotations to each of the three

other genomes. For mapping inter-specific hybrid reads, we used reference genomes and annota-

tions (Scannell et al., 2011) for S. cerevisiae (S288c), S. paradoxus (N17), and S. uvarum (CBS7001).

Gene expression measurements
RNA-sequencing reads were mapped to combined reference genomes containing the genomes of

both parental strains used to generate the hybrid in order to avoid mapping bias. Reads were

demultiplexed using the Fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and then mapped to

combined reference genomes using Bowtie2 v2.1.0 (Langmead and Salzberg, 2012) using the local

alignment setting (–local) and a maximum of one mismatch in the seed alignment (-N 1). Duplicate

reads were marked using PicardTools. Htseq-count (Anders et al., 2015) was used to quantify ASE

by counting reads that mapped to each allele in the combined reference genomes. Reads mapping

to overlapping features (-mode union) and reads with a mapping quality less than 10 (default) were

not counted. Thus, reads that mapped equivalently to both alleles of a gene and assigned mapping

quality of 0 or 1 by Bowtie2 were removed. For inter-specific hybrids, we used previous definitions
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of orthologous genes (Scannell et al., 2011). The fraction of mappable reads used for ASE was

81.58%, 82.62%, and 83.11% for the intra-specific hybrids YJF1454, YJF1455, and YJF1460, and

86.16% and 86.57% for the inter-specific hybrids YJF1450 and YJF1484, respectively. None of the

intra-specific hybrids showed any mapping bias, except in YJF1454 genes on chromosome XIII R

showed uniformly higher expression of the Oak compared to the ChI allele consistent with aneu-

ploidy (Figure 1—figure supplement 2). The fraction of reads mapping to the common reference

YJF153 was 52.58% (50.59%, after removing chrXIII R), 50.11%, 49.78%, 49.11%, and 46.90% for

YJF1454, YJF1455, YJF1460, YJF1453, and YJF1484. The median number of allele-specific reads per

timepoint was 2.9 million reads (range: 1.5–4.8) for intra-specific hybrids and 2.0 million reads

(range: 1.4–3.3) for inter-specific hybrids.

Statistical analysis of differentially expressed alleles
ASE counts were normalized using DESeq’s blind method (Love et al., 2014). Differences in expres-

sion levels were tested using a weighted linear model: fi ¼ 0:5þ b0 þ e, where fi is the normalized

frequency of the YJF153 reference allele over timepoint i, b0 is the deviation from 0.5, and e is the

error with weights based on the total number of reads at each timepoint. Differences in expression

dynamics were tested using a weighted Durbin–Watson test for an autocorrelation across timepoints

of the allele differences. The weighted Durbin–Watson test is based on the lmtest package of R

where the residuals (e) from the same linear model used above are used to calculate the test

statistic:

weighted� dw¼

PT�1

i¼1
wiþ1eiþ1�wieið Þ2

PT
i¼1

wieið Þ2

where wi and ei are the weights (read counts) and residuals for sample i out of T timepoints. For

both tests, we used FDR cutoffs of 0.01. For all analyses, FDR was calculated using the method of

Benjamini and Hochberg, 1995.

Ten permutations of the data were used to validate the statistical cutoffs. Permuting the counts

for the two alleles independently at each timepoint yielded an average of between 0.3 and 2.0 false

positive across the five hybrids at an FDR cutoff of 0.01 for the test of ASE levels. Permuting the

timepoints yielded an average of between 2.3 and 7.7 false positives across the five hybrids at an

FDR cutoff of 0.01 for the test of ASE dynamics.

Genes with low read counts were removed from the analysis: either those with less than an aver-

age of 20 reads per timepoint or more than seven timepoints with no reads. This filter eliminated an

average of 692 genes per hybrid and left a total of 4703 genes with data in all five hybrids.

Gene expression clusters
k-means clustering was used to group genes by their combined allele expression profile and by their

allele imbalance profile. For the combined gene expression profiles, 19,633 genes from all five

hybrids with a significant (FDR < 0.01) autocorrelation in the combined (both alleles) profile over

time were normalized (centered and scaled) and clustered into 12 groups. For the allele imbalance

profiles, allele frequencies were centered but not scaled for genes with significant ASE dynamics

(n = 6135) and clustered into 12 groups. For both, 336 genes without any reads at one or more time-

points were removed since k-means clustering does not handle missing data.

Association with variants
The numbers of SNPs and InDels for intra-specific hybrids were obtained from variant calling, and

the corresponding counts for inter-specific hybrids were obtained from multiple sequence align-

ments without correction for multiple hits (Scannell et al., 2011). Upstream intergenic regions were

defined by sequences between adjacent coding regions, except for cases of short (< 5 bp) or over-

lapping coding sequences where we extended the region to the next upstream gene. Downstream

intergenic regions were defined as 80 bp downstream of the stop codon. Coding regions included

all variants within them. Variant counts were obtained for all of the 4703 genes with expression data

except for 11 genes that only had counts for the intra-specific hybrids.

For logistic regression, we predicted genes with differences in ASE levels and dynamics

using logit pð Þ ¼ b0 þ b1xþ e, where p indicates whether a gene shows significant ASE or not, b1 is
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the regression coefficient, x is the predictive variable, and e is the error. We used a Bonferroni cutoff

for significance to correct for the 60 different regressions based on 6 predictive variables: number of

SNPs and InDels within upstream, downstream, and coding regions, and 10 response variables: ASE

dynamics and ASE levels in each of the five hybrids.

CRE-seq
A high-throughput reporter assay (CRE-seq) was used to measure the activity of CREs by sequencing

(Mogno et al., 2013). In this assay, a pool of synthetic cis-regulatory sequences are cloned en

masse, YFP is inserted between the CRE and the barcode, and the reporter library is then integrated

into the genome. The activity of each CRE is measured by the ratio of barcode sequencing reads

from an RNA relative to a DNA library of the pooled transformants. As described below, we used

this reporter assay to measure expression of 7268 and 7232 synthetic CRE sequences, representing

intra-specific and inter-specific allele differences upstream of 69 and 98 genes, respectively.

Synthesis
CREs were synthesized as part of a library of 200 bp oligos (Agilent). The synthetic oligos include a

forward primer, RS1, CRE, RS2, RS3, RS4, BC, RS5, reverse primer, where CRE is the cis-regulatory

element, RS1–5 are restriction sites, and BC is a barcode (Figure 4—figure supplement 1). The

barcodes were random 10 bp sequences with a minimum of two differences and no restriction sites.

The selected barcodes were checked to ensure no base composition bias. Target CRE sequences

were defined by the 250 bp region upstream of the TSS (Venters et al., 2011). For each target CRE,

five 130 bp sliding windows of the sequence were generated using a 30 bp step size. Any 130 bp

regions containing coding sequence of the next upstream gene were removed. Four replicates with

different barcodes were generated for each CRE. CREs were generated separately for each strain

allele unless the CRE window was identical between the strains. TSSs (Xu et al., 2009) were found

by liftOver from the reference (S288c) genome to the coordinates in the strain of interest. In cases

where the CREs contained InDels, extra sequence was added to the gapped allele between RS2 and

RS4 to keep the oligo length constant. CREs were also synthesized for intra-specific variants

between the Oak (YJF153) and China II strain (SX6). These CREs were designed by replacing a single

Oak variant by the China II variant and vice versa (Figure 4—figure supplement 1). Inter-specific chi-

meric CREs were generated by recombining the S. cerevisiae allele with S. uvarum allele at the cen-

ter of each CRE (Figure 4—figure supplement 1). The intra-specific and inter-specific libraries

respectively represented 334 and 452 regions upstream of 69 and 98 genes after removing regions

that overlapped with upstream genes, and contained a total of 7268 and 7232 synthetic CRE

sequences. Genes were chosen based on:the absence of restriction sites within the target CRE, an

annotated TSS, significant ASE levels and/or ASE dynamics, and inspection of the ASE differences.

For the 69 genes used for the intra-specific libraries, 19 showed ASE levels, 10 showed ASE dynam-

ics, and 40 showed both. For the 98 genes used in the inter-specific library, 23 showed ASE level, 10

showed ASE dynamics, and 65 showed both.

Cloning
CRE-seq libraries were amplified (eight separate reactions of 10-cycle amplification), digested, gel

purified, and ligated into pIM202 (Mogno et al., 2013). This differs from the original protocol that

used higher-resolution acrylamide gel extraction since sequencing the amplified library showed only

a small portion (<1%) of sequences were outside of the 200+/�5 bp resolution of the acrylamide

gel. Ligated products were transformed into bacteria using electroporation and 80–100k colonies

were pooled and the plasmid library was extracted. YFP along with 69 bp of the TSA1 core pro-

moter (Mogno et al., 2013) was inserted between the CRE and the barcode and then transformed

back into bacteria by electroporation. At each step, PCR was used to ensure a low frequency of

empty vector.

Transformation into yeast
The reporter gene (YFP) with synthetic CREs and corresponding barcodes were integrated at the

URA3 locus (Figure 4—figure supplement 1). BstBI-digested plasmids were transformed into the

Oak strain (YJF186) using the LiAc method (Gietz et al., 1995). We collected ~100k colonies on
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complete minimal plates without uracil, and integration was confirmed by PCR for 20/20 randomly

selected colonies. The yeast strains transformed with intra-specific library were co-cultured with SX6

(YJF1375) in YPD at 30˚C overnight to allow mating, and HygB and dsdA were used to select diploid

cells. The pool of yeast strains transformed with inter-specific library was co-cultured with the S. uva-

rum strain (YJF1450) in YPD overnight at 30˚C to allow mating. Double selection with nourseothricin

and dsdA was used to select diploid cells.

Full-length promoters
Three genes, ALD5, GND2, and PHO3, were chosen to compare short- and full-length promoter

constructs. Full-length promoters from the Oak (YJF186) and ChII (SX6) strains were amplified from

the TSS to the next upstream coding sequence. Four barcodes per construct and restriction sites

were incorporated into the primers used for PCR. Each full-length promoter with barcodes was

cloned into the pIM202 plasmid and YFP was inserted between the full-length promoter and the bar-

code. BstBI-digested plasmids were transformed into the Oak strain at the URA3 locus. Each of the

transformed strains were mated with SX6 to form diploids.

CRE-seq expression measurements
Pooled libraries were shaken at 250 rpm in 125 mL YPD at 30˚C with an initial density of 3 � 106

cells/mL. Samples of 3 � 108 cells were taken for DNA and RNA extraction between 6 hr and 15 hr,

which spans the switch from fermentation to respiration. A total of 19 samples were taken for RNA

measurements for the intra-specific library, and a total of 27 samples were taken for the inter-specific

library. For both libraries, sampling corresponded to the RNA-sequencing timepoints but with more

dense sampling for the inter-specific library. For each library, samples were taken for DNA measure-

ments at the first and last timepoints. Cells were centrifuged for 30 s at 1000 g, and the pellets were

immediately frozen with liquid nitrogen.

The abundance of each CRE in the library was measured by sequencing the barcodes from DNA,

and the expression of each CRE was measured by sequencing the barcodes from RNA extracts.

DNA was extracted from the first and the last timepoints using YeaStar Genomic DNA Kit (Zymo

Research). RNA was extracted by YeaStar RNA Kit (Zymo Research) and residual DNA digested with

DNase (Promega). mRNA was purified by oligo-dT (Invitrogen), and cDNA was made using Super-

Script II Reverse Transcriptase (Invitrogen). mRNA was removed after first-strand DNA synthesized

with RNase H (New England BioLabs). Combinations of indexed Ion Torrent primers were used to

amplify barcodes in the library for each timepoint (Figure 4—figure supplement 1) using Phusion

High-Fidelity PCR (New England BioLabs). To avoid sampling bias during PCR amplification, each

sample was amplified with 4 PCR reactions and 20 cycles and then pooled. PCR pools were gel-

extracted and cleaned individually, then pooled together at equivalent concentrations. Libraries

were sequenced on an Ion Torrent Proton machine at St. Louis University’s Genomics Core Facility.

After demultiplexing the samples using the indexed Ion Torrent primer pairs, perfect matches to

the CRE barcodes were found for 401 and 97 million reads from the intra- and inter-specific libraries.

For one sample, three technical replicate libraries was generated (PCR and sequencing). The techni-

cal replicates showed an average correlation of 0.96 for barcode counts and were subsequently com-

bined. We removed CREs that had either zero reads in more than a third of the RNA timepoint

samples or those with less than 100 reads on average in either the RNA or DNA samples. This filter

left 6820 intra-specific and 5013 intra-specific CREs with an average of 16.4 and 3.2 million reads

per timepoint and a median of 1278 and 357 reads per barcode across all timepoints for the intra-

and inter-specific libraries, respectively. The read count distribution of intra- and inter-specific librar-

ies was normalized using DESeq2’s blind method (Love et al., 2014). Expression of each CRE allele

was measured by the ratio of RNA to DNA counts. Barcodes with zero counts were treated as miss-

ing data in statistical models.

Identification of significant expression differences
CRE-seq regions were tested for correlations (Pearson) with RNA-seq using the average expression

of all barcodes for a given CRE region. For inter-specific CRE-seq, correlations were measured

between the 19 timepoints closest to the RNA-seq timepoints. CREs with significant differences in

expression levels and dynamics were tested using the weighted linear model and weighted Durbin–
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Watson test, respectively. When testing for differences in expression levels using the linear model,

we used the average expression across all timepoints for each barcode rather than treating each

timepoint as an independent measure of expression levels. We chose this more conservative test to

avoid cases where one barcoded CRE had substantially higher or lower expression across all time-

points compared to the other replicate barcodes. Consequently, the power to detect differences in

average CRE expression levels based on four barcode replicates was reduced. The test for expres-

sion dynamics was not affected by this problem since expression dynamics was measured by

changes in the ratio of expression levels over time.

Identification of variant and chimera differences
For the intra-specific library, we tested individual variants for those CREs with more than one differ-

ence between the Oak and ChII alleles. We used the same weighted tests for differences in expres-

sion levels and dynamics, but tested each variant genotype separately (Figure 6—figure

supplement 1). For the inter-specific library, we used the chimeric CREs to map differences to the

proximal or distal part of each region showing significant differences between the parental S. cerevi-

siae and S. uvarum alleles. The left (distal) and right (proximal) promoter regions were separately

tested using the genotype of the left and right portions of the CRE, respectively (Figure 6—figure

supplement 1). Parental differences were classified as mapping to the proximal region if the proxi-

mal but not the distal genotype was significant. Distal mapping was similarly classified. Chimeric

CREs that showed significant differences from both parents were also identified, and subsequently

classified as outside or inside the parental range if their average expression distance (Euclidean) to

each parent was greater or less than the distance between the two parents, respectively. A flow dia-

gram of the number of CREs tested along with genotypes tests for significant variants and chimeras

is presented in Figure 6—figure supplement 1.

Associations with variant annotations
Variants were annotated with PhastCons and transcription factor binding site scores. PhastCons

scores (Siepel et al., 2005) were obtained for yeast from the USCS Genome Browser. Scores were

extracted for each SNP, and the average score was obtained for InDels based on the two sites flank-

ing the InDel and any scores within the InDel. Transcription factor binding motifs were obtained for

196 factors (Spivak and Stormo, 2012). For each variant, we extracted 30 bp of sequence from the

Oak and ChII genome on either side of the variant. We used Patser (Hertz and Stormo, 1999) to

scan each sequence with each motif model and the best hit was recorded. A background nucleotide

frequency of 36% GC was used, and scores less than zero (equivalent likelihood between the motif

and background model) were set to zero. The difference in score between the two alleles was calcu-

lated for each motif model, and the maximum difference across all motif models was used as the

binding site annotation score for each variant. PhastCons scores and binding site scores were each

tested for association with CRE variants that were positive (n = 35), negative (n = 35), and all other

intergenic variants (n = 44,514) by ANOVA.

Acknowledgements
We thank Feng-Yan Bai for sharing yeast strains and members of the Fay lab for their suggestions

and comments.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health GM080669 Justin Fay

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 18 of 23

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68469


Author contributions

Ching-Hua Shih, Data curation, Software, Formal analysis, Investigation, Writing - original draft, Writ-

ing - review and editing; Justin Fay, Conceptualization, Formal analysis, Funding acquisition, Writing

- original draft, Writing - review and editing

Author ORCIDs

Justin Fay https://orcid.org/0000-0003-1893-877X

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.68469.sa1

Author response https://doi.org/10.7554/eLife.68469.sa2

Additional files

Supplementary files
. Supplementary file 1. Supplementary tables. Table S1: strains used in this study. Table S2: k-means

clusters of gene expression dynamics. Table S3: k-means clusters of allelic differences in expression.

Table S4: logistic regression of allele-specific expression (ASE) dynamics and levels. Table S5: aver-

age number of single-nucleotide polymorphism (SNP) and insertion/deletion (InDel) differences

within hybrids. Table S6: logistic regression with binding site and conservation scores. Table S7:

genome assemblies used to identify variants.

. Transparent reporting form

Data availability

Genome sequencing and assembly data were deposited into NCBI, see Table S1 and S7 in Supple-

mentary file 1 for accessions. RNA sequencing data were deposited into NCBI’s GEO database

under GSE165594. Analysis scripts, data and summary files are available at https://doi.org/10.

17605/OSF.IO/Y5748.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and Identifier

Shih CH, Fay J 2021 Cis-regulatory variation affects
gene expression dynamics

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE165594

NCBI Gene Expression
Omnibus, GSE165594

Shih CH, Fay J 2021 Gene expression dynamics https://osf.io/y5748/ Open Science Framework,
10.17605/OSF.IO/Y5748

References
Abe N, Dror I, Yang L, Slattery M, Zhou T, Bussemaker HJ, Rohs R, Mann RS. 2015. Deconvolving the recognition
of DNA shape from sequence. Cell 161:307–318. DOI: https://doi.org/10.1016/j.cell.2015.02.008, PMID: 25
843630

Ackermann M, Sikora-Wohlfeld W, Beyer A. 2013. Impact of natural genetic variation on gene expression
dynamics. PLOS Genetics 9:e1003514. DOI: https://doi.org/10.1371/journal.pgen.1003514, PMID: 23754949

Anders S, Pyl PT, Huber W. 2015. HTSeq–a Python framework to work with high-throughput sequencing data.
Bioinformatics 31:166–169. DOI: https://doi.org/10.1093/bioinformatics/btu638, PMID: 25260700

Arnold CD, Gerlach D, Spies D, Matts JA, Sytnikova YA, Pagani M, Lau NC, Stark A. 2014. Quantitative genome-
wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover
during cis-regulatory evolution. Nature Genetics 46:685–692. DOI: https://doi.org/10.1038/ng.3009, PMID: 24
908250

Arnosti DN, Kulkarni MM. 2005. Transcriptional enhancers: intelligent enhanceosomes or flexible billboards?
Journal of Cellular Biochemistry 94:890–898. DOI: https://doi.org/10.1002/jcb.20352, PMID: 15696541

Barbaric S, Walker J, Schmid A, Svejstrup JQ, Hörz W. 2001. Increasing the rate of chromatin remodeling and
gene activation–a novel role for the histone acetyltransferase Gcn5. The EMBO Journal 20:4944–4951.
DOI: https://doi.org/10.1093/emboj/20.17.4944, PMID: 11532958

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 19 of 23

Research article Evolutionary Biology Genetics and Genomics

https://orcid.org/0000-0003-1893-877X
https://doi.org/10.7554/eLife.68469.sa1
https://doi.org/10.7554/eLife.68469.sa2
https://doi.org/10.17605/OSF.IO/Y5748
https://doi.org/10.17605/OSF.IO/Y5748
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165594
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165594
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165594
https://osf.io/y5748/
https://doi.org/10.1016/j.cell.2015.02.008
http://www.ncbi.nlm.nih.gov/pubmed/25843630
http://www.ncbi.nlm.nih.gov/pubmed/25843630
https://doi.org/10.1371/journal.pgen.1003514
http://www.ncbi.nlm.nih.gov/pubmed/23754949
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1038/ng.3009
http://www.ncbi.nlm.nih.gov/pubmed/24908250
http://www.ncbi.nlm.nih.gov/pubmed/24908250
https://doi.org/10.1002/jcb.20352
http://www.ncbi.nlm.nih.gov/pubmed/15696541
https://doi.org/10.1093/emboj/20.17.4944
http://www.ncbi.nlm.nih.gov/pubmed/11532958
https://doi.org/10.7554/eLife.68469


Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society: Series B 57:289–300. DOI: https://doi.org/10.1111/j.
2517-6161.1995.tb02031.x

Bergen AC, Olsen GM, Fay JC. 2016. Divergent MLS1 promoters lie on a fitness plateau for gene expression.
Molecular Biology and Evolution 33:1270–1279. DOI: https://doi.org/10.1093/molbev/msw010, PMID: 26782
997

Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, Rubin GM, Eisen MB. 2002. Exploiting
transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in
the Drosophila genome. PNAS 99:757–762. DOI: https://doi.org/10.1073/pnas.231608898, PMID: 11805330

Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:
1177–1186. DOI: https://doi.org/10.1016/j.cell.2017.05.038, PMID: 28622505

Bullard JH, Mostovoy Y, Dudoit S, Brem RB. 2010. Polygenic and directional regulatory evolution across
pathways in Saccharomyces. PNAS 107:5058–5063. DOI: https://doi.org/10.1073/pnas.0912959107, PMID: 201
94736

Cai L, Friedman N, Xie XS. 2006. Stochastic protein expression in individual cells at the single molecule level.
Nature 440:358–362. DOI: https://doi.org/10.1038/nature04599, PMID: 16541077

Carey LB, van Dijk D, Sloot PM, Kaandorp JA, Segal E. 2013. Promoter sequence determines the relationship
between expression level and noise. PLOS Biology 11:e1001528. DOI: https://doi.org/10.1371/journal.pbio.
1001528, PMID: 23565060

Carroll SB. 2005. Evolution at two levels: on genes and form. PLOS Biology 3:e245. DOI: https://doi.org/10.
1371/journal.pbio.0030245, PMID: 16000021
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Schor IE, Degner JF, Harnett D, Cannavò E, Casale FP, Shim H, Garfield DA, Birney E, Stephens M, Stegle O,
Furlong EE. 2017. Promoter shape varies across populations and affects promoter evolution and expression
noise. Nature Genetics 49:550–558. DOI: https://doi.org/10.1038/ng.3791, PMID: 28191888

Sharon E, van Dijk D, Kalma Y, Keren L, Manor O, Yakhini Z, Segal E. 2014. Probing the effect of promoters on
noise in gene expression using thousands of designed sequences. Genome Research 24:1698–1706.
DOI: https://doi.org/10.1101/gr.168773.113, PMID: 25030889

Sharon E, Chen SA, Khosla NM, Smith JD, Pritchard JK, Fraser HB. 2018. Functional genetic variants revealed by
massively parallel precise genome editing. Cell 175:544–557. DOI: https://doi.org/10.1016/j.cell.2018.08.057,
PMID: 30245013

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards
S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. 2005. Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15:1034–1050. DOI: https://doi.
org/10.1101/gr.3715005, PMID: 16024819

Spivak AT, Stormo GD. 2012. ScerTF: a comprehensive database of benchmarked position weight matrices for
Saccharomyces species. Nucleic Acids Research 40:D162–D168. DOI: https://doi.org/10.1093/nar/gkr1180,
PMID: 22140105

Stern DL, Orgogozo V. 2008. The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–
2177. DOI: https://doi.org/10.1111/j.1558-5646.2008.00450.x

Stevenson KR, Coolon JD, Wittkopp PJ. 2013. Sources of Bias in measures of allele-specific expression derived
from RNA-sequence data aligned to a single reference genome. BMC Genomics 14:536. DOI: https://doi.org/
10.1186/1471-2164-14-536, PMID: 23919664

Strober BJ, Elorbany R, Rhodes K, Krishnan N, Tayeb K, Battle A, Gilad Y. 2019. Dynamic genetic regulation of
gene expression during cellular differentiation. Science 364:1287–1290. DOI: https://doi.org/10.1126/science.
aaw0040, PMID: 31249060

Swanson CI, Schwimmer DB, Barolo S. 2011. Rapid evolutionary rewiring of a structurally constrained eye
enhancer. Current Biology 21:1186–1196. DOI: https://doi.org/10.1016/j.cub.2011.05.056, PMID: 21737276

Tanay A, Regev A, Shamir R. 2005. Conservation and evolvability in regulatory networks: the evolution of
ribosomal regulation in yeast. PNAS 102:7203–7208. DOI: https://doi.org/10.1073/pnas.0502521102, PMID: 15
883364

Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, Andersen KG, Mikkelsen TS, Lander ES, Schaffner SF,
Sabeti PC. 2016. Direct identification of hundreds of Expression-Modulating variants using a multiplexed
reporter assay. Cell 165:1519–1529. DOI: https://doi.org/10.1016/j.cell.2016.04.027, PMID: 27259153

Tirosh I, Weinberger A, Bezalel D, Kaganovich M, Barkai N. 2008. On the relation between promoter divergence
and gene expression evolution. Molecular Systems Biology 4:159. DOI: https://doi.org/10.1038/msb4100198,
PMID: 18197176

Tuch BB, Li H, Johnson AD. 2008. Evolution of eukaryotic transcription circuits. Science 319:1797–1799.
DOI: https://doi.org/10.1126/science.1152398, PMID: 18369141

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 22 of 23

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.1371/journal.pgen.1003055
http://www.ncbi.nlm.nih.gov/pubmed/23189034
http://www.ncbi.nlm.nih.gov/pubmed/23189034
https://doi.org/10.1038/nature14244
http://www.ncbi.nlm.nih.gov/pubmed/25778704
https://doi.org/10.1101/gr.157891.113
http://www.ncbi.nlm.nih.gov/pubmed/23921661
https://doi.org/10.1371/journal.pgen.1005751
https://doi.org/10.1371/journal.pgen.1005751
http://www.ncbi.nlm.nih.gov/pubmed/26713447
https://doi.org/10.1371/journal.pbio.1001764
http://www.ncbi.nlm.nih.gov/pubmed/24453942
https://doi.org/10.1038/nature12121
https://doi.org/10.1016/j.cell.2008.09.050
http://www.ncbi.nlm.nih.gov/pubmed/18957198
https://doi.org/10.7554/eLife.62669
https://doi.org/10.7554/eLife.62669
http://www.ncbi.nlm.nih.gov/pubmed/33179598
https://doi.org/10.3389/fgene.2014.00374
https://doi.org/10.3389/fgene.2014.00374
http://www.ncbi.nlm.nih.gov/pubmed/25389435
https://doi.org/10.1111/j.1558-5646.2011.01486.x
https://doi.org/10.1534/g3.111.000273
https://doi.org/10.1534/g3.111.000273
http://www.ncbi.nlm.nih.gov/pubmed/22384314
https://doi.org/10.1038/ng.3791
http://www.ncbi.nlm.nih.gov/pubmed/28191888
https://doi.org/10.1101/gr.168773.113
http://www.ncbi.nlm.nih.gov/pubmed/25030889
https://doi.org/10.1016/j.cell.2018.08.057
http://www.ncbi.nlm.nih.gov/pubmed/30245013
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
https://doi.org/10.1093/nar/gkr1180
http://www.ncbi.nlm.nih.gov/pubmed/22140105
https://doi.org/10.1111/j.1558-5646.2008.00450.x
https://doi.org/10.1186/1471-2164-14-536
https://doi.org/10.1186/1471-2164-14-536
http://www.ncbi.nlm.nih.gov/pubmed/23919664
https://doi.org/10.1126/science.aaw0040
https://doi.org/10.1126/science.aaw0040
http://www.ncbi.nlm.nih.gov/pubmed/31249060
https://doi.org/10.1016/j.cub.2011.05.056
http://www.ncbi.nlm.nih.gov/pubmed/21737276
https://doi.org/10.1073/pnas.0502521102
http://www.ncbi.nlm.nih.gov/pubmed/15883364
http://www.ncbi.nlm.nih.gov/pubmed/15883364
https://doi.org/10.1016/j.cell.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27259153
https://doi.org/10.1038/msb4100198
http://www.ncbi.nlm.nih.gov/pubmed/18197176
https://doi.org/10.1126/science.1152398
http://www.ncbi.nlm.nih.gov/pubmed/18369141
https://doi.org/10.7554/eLife.68469


Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A. 2013. From FastQ data
to high confidence variant calls: the genome analysis toolkit best practices pipeline. Current Protocols in
Bioinformatics 43:11.10.1–11.1011. DOI: https://doi.org/10.1002/0471250953.bi1110s43

Venkataram S, Fay JC. 2010. Is transcription factor binding site turnover a sufficient explanation for cis-
regulatory sequence divergence? Genome Biology and Evolution 2:851–858. DOI: https://doi.org/10.1093/
gbe/evq066, PMID: 21068212

Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang C, Hemeryck-
Walsh C, Pugh BF. 2011. A comprehensive genomic binding map of gene and chromatin regulatory proteins in
Saccharomyces. Molecular Cell 41:480–492. DOI: https://doi.org/10.1016/j.molcel.2011.01.015, PMID: 2132
9885

Venturelli OS, Zuleta I, Murray RM, El-Samad H. 2015. Population diversification in a yeast metabolic program
promotes anticipation of environmental shifts. PLOS Biology 13:e1002042. DOI: https://doi.org/10.1371/
journal.pbio.1002042, PMID: 25626086

Wang QM, Liu WQ, Liti G, Wang SA, Bai FY. 2012. Surprisingly diverged populations of Saccharomyces
cerevisiae in natural environments remote from human activity. Molecular Ecology 21:5404–5417. DOI: https://
doi.org/10.1111/j.1365-294X.2012.05732.x, PMID: 22913817

White MA, Myers CA, Corbo JC, Cohen BA. 2013. Massively parallel in vivo enhancer assay reveals that highly
local features determine the cis-regulatory function of ChIP-seq peaks. PNAS 110:11952–11957. DOI: https://
doi.org/10.1073/pnas.1307449110, PMID: 23818646

Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz
LM. 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037.
DOI: https://doi.org/10.1038/nature07728

Yosef N, Regev A. 2011. Impulse control: temporal dynamics in gene transcription. Cell 144:886–896.
DOI: https://doi.org/10.1016/j.cell.2011.02.015, PMID: 21414481

Zeevi D, Lubliner S, Lotan-Pompan M, Hodis E, Vesterman R, Weinberger A, Segal E. 2014. Molecular dissection
of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters.
Genome Research 24:1991–1999. DOI: https://doi.org/10.1101/gr.179259.114, PMID: 25294245

Zhang Z, Dietrich FS. 2005. Mapping of transcription start sites in Saccharomyces cerevisiae using 5’ SAGE.
Nucleic Acids Research 33:2838–2851. DOI: https://doi.org/10.1093/nar/gki583, PMID: 15905473

Zheng W, Gianoulis TA, Karczewski KJ, Zhao H, Snyder M. 2011. Regulatory variation within and between
species. Annual Review of Genomics and Human Genetics 12:327–346. DOI: https://doi.org/10.1146/annurev-
genom-082908-150139, PMID: 21721942

Shih and Fay. eLife 2021;10:e68469. DOI: https://doi.org/10.7554/eLife.68469 23 of 23

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1093/gbe/evq066
https://doi.org/10.1093/gbe/evq066
http://www.ncbi.nlm.nih.gov/pubmed/21068212
https://doi.org/10.1016/j.molcel.2011.01.015
http://www.ncbi.nlm.nih.gov/pubmed/21329885
http://www.ncbi.nlm.nih.gov/pubmed/21329885
https://doi.org/10.1371/journal.pbio.1002042
https://doi.org/10.1371/journal.pbio.1002042
http://www.ncbi.nlm.nih.gov/pubmed/25626086
https://doi.org/10.1111/j.1365-294X.2012.05732.x
https://doi.org/10.1111/j.1365-294X.2012.05732.x
http://www.ncbi.nlm.nih.gov/pubmed/22913817
https://doi.org/10.1073/pnas.1307449110
https://doi.org/10.1073/pnas.1307449110
http://www.ncbi.nlm.nih.gov/pubmed/23818646
https://doi.org/10.1038/nature07728
https://doi.org/10.1016/j.cell.2011.02.015
http://www.ncbi.nlm.nih.gov/pubmed/21414481
https://doi.org/10.1101/gr.179259.114
http://www.ncbi.nlm.nih.gov/pubmed/25294245
https://doi.org/10.1093/nar/gki583
http://www.ncbi.nlm.nih.gov/pubmed/15905473
https://doi.org/10.1146/annurev-genom-082908-150139
https://doi.org/10.1146/annurev-genom-082908-150139
http://www.ncbi.nlm.nih.gov/pubmed/21721942
https://doi.org/10.7554/eLife.68469

