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Abstract

Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG

activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four

archetype microstates and their features are known to reflect changes in brain state in neu-

ropsychiatric diseases. However, previous studies have only reported differences in each

microstate feature and have not determined whether microstate features are suitable for

schizophrenia classification. Therefore, it is necessary to validate microstate features for

schizophrenia classification. Nineteen microstate features, including duration, occurrence,

and coverage as well as thirty-one conventional EEG features, including statistical, fre-

quency, and temporal characteristics were obtained from resting-state EEG recordings of

14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-

learning based multivariate analysis was used to evaluate classification performance. EEG

recordings of patients and controls showed different microstate features. More importantly,

when differentiating among patients and controls, EEG microstate features outperformed

conventional EEG ones. The performance of the microstate features exceeded that of con-

ventional EEG, even after optimization using recursive feature elimination. EEG microstate

features applied with conventional EEG features also showed better classification perfor-

mance than conventional EEG features alone. The current study is the first to validate the

use of microstate features to discriminate schizophrenia, suggesting that EEG microstate

features are useful for schizophrenia classification.

Introduction

Schizophrenia is a mental illness whose fundamental nature is not fully understood. Although

Emil Kraepelin [1] and Eugen Bleuler [2] developed and advocated conceptualizations of

schizophrenia, they alone do not explain its various manifestations. Several studies since then

[3, 4] have documented changes in cognitive function as core symptoms of schizophrenia, and

with advances in neuroscience modalities, many researchers have attempted to reveal clinical
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symptoms of schizophrenia objectively. Their work has improved understanding of the illness,

thereby enabling causes to be identified and treatments to be developed. Nonetheless, objective

research of schizophrenia continues to be very important.

Electroencephalography (EEG) measures electrical activity of the brain and is one of the

most widely used modalities in schizophrenia research. EEG can analyze neural synchrony

associated with the pathophysiology of schizophrenia [5]. EEG-measured neural activity

reflects self-generated oscillation and large-scale synchronization with responses to external

information [6]. Moreover, EEG present excellent time resolution. Thus, it is suitable for

studying complex cognitive functions. Therefore, EEG can provide unique information that is

otherwise difficult to obtain using imaging modalities.

Many features derived from EEG were exploited for schizophrenia classification. The

power spectra has long been the most widely used feature [7–10] and has been applied to other

psychotic disorders as well [11]. Johannesen et al. used frequency domain features in the work-

ing memory task to differentiate between patients with schizophrenia and healthy controls

[12]. Schizophrenia classification was also performed using statistical features including mean,

skewness, and kurtosis [13, 14]. It has been reported that the statistical descriptor of the vari-

ability within the EEG signal, the entropy measure and the fractal dimension related with it,

are useful for schizophrenia classification [15–18]. In addition, candidate features that may be

applied to schizophrenia classification was exploited in other research area [19, 20]. Unfortu-

nately, no “gold standard” has been established for analyzing EEG data to diagnose and treat

schizophrenia. There is no clear definition of the pathological levels, and, in terms of clinical

EEG interpretation, intra- and interrater reliabilities have proven insufficient [21] compared

to other diagnostic tools. Although many researchers have proposed various features for

schizophrenia classification, such features do not resolve inconsistencies or ambiguities in

EEG interpretations. Furthermore, such features have failed to utilize the greatest advantage of

EEG: its millisecond temporal resolution. Therefore, it is important to develop diagnostic fea-

tures that can exploit it.

Several attempts have been made to use EEG microstate analysis to overcome this limita-

tion. For example, by segmenting spontaneous EEG at the sub-second level, Lehmann et al.

(1987) demonstrated the existence of a quasi-stable microstate, producing stable and evenly

patterned results at 80–120 ms intervals [22]. We can also assume that EEG captures the mani-

festations and changes of such microstates.

Many previous studies have revealed microstate changes in various diseases and mental

states as “atoms of thought” [23] or “building blocks of mentation” [24]. Characteristic alter-

ations in EEG microstates have been reported in tasks involving specific cognitive functions

and sensory inputs [25] and in tasks requiring abstract reasoning [26]. Yuan et al. (2012)

reported the association between microstates and known large scale networks using functional

magnetic resonance imaging (fMRI) [27]. Studies have supported this association structurally

[28, 29] and functionally [30]. Microstate analysis was performed under several psychiatric

conditions (e.g., sleep [31], anxiety disorder [32], mood disorder [33], and neurodegenerative

disorder [34–36]. In particular, the characteristic microstate change has been investigated [8,

24, 37–44] and the change in microstates C and D has been well-known [45–47] in schizophre-

nia. These studies have been performed in various areas related to schizophrenia, such as clini-

cal symptoms [38, 39, 43, 48], genetic vulnerability [40], and medication [42] as well as

presence of disease [24, 36, 37, 44]. Recently, the potential as a state and trait biomarker has

been reported that can suggest the progress [49] and genetic underpinnings [41] of illness.

Although clustering algorithms and methodological choices for microstate analysis are diverse

[50, 51], EEG analysis method using a cluster of k-means proposed by Pascual-Marqui et al.

[52] is widely used in schizophrenia researches. It was exploited in early microstate study [37]

PLOS ONE EEG microstate features for schizophrenia classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0251842 May 14, 2021 2 / 21

https://doi.org/10.1371/journal.pone.0251842


and provided four archetype microstates based on study with a large sample of subjects [53].

This method enables the use of four archetype microstates with high interpretability, where

functional significance has been revealed based on resting-state fMRI networks [27, 30]. The

functions of the four type microstates (i.e., A, B, C, and D) are known to be associated with

auditory, visual, default mode, and dorsal attention, respectively [25, 27]. The features based

on those microstates show differences between patients with schizophrenia and other groups

and allow interpretation from a neuroscience perspective. Therefore, four archetype micro-

states were used not only in schizophrenia [24, 37–39, 46] but also in general medical condi-

tions, such as physical exercise [54], insomnia [55], hearing loss [56]. In summary, the

microstate analysis method using the four archetypes is suitable for schizophrenia research.

Although there have been microstate feature-based studies on schizophrenia, they were

implemented using univariate, instead of multivariate, analysis. Univariate analysis is useful

for validating hypotheses according to each variable. However, it does not fully exploit micro-

state features for building a classification or treatment model. Univariate analysis is a special

case of the multivariate model that is straightforward and neatly structured, whereas multivari-

ate analysis applies to complete or general cases [57]. With multivariate analysis, we can simul-

taneously analyze multiple dependent and independent variables to improve reliability and

validity. Therefore, multivariate analysis can utilize all microstate-feature information and

identify new patterns to improve understanding [58, 59]. Applying multivariate analysis to the

microstate feature, we can create a more powerful model to reveal differences that are not

detected in univariate analysis. Models having improved reliability and validity possess more

advantages of interpreting and generalizing results. Machine-learning techniques (e.g., classifi-

cation using kernel method) accomplish multivariate analyses that catalog distinct observa-

tions and allocate new observations to previously defined groups [60]. Thus, by applying

machine-learning-based algorithms to microstate features, we can distinguish between EEG

recordings of patients diagnosed with schizophrenia and those of healthy (control) subjects

and present a practical application. In summary, machine-learning-based microstate analysis

is a novel approach to schizophrenia classification.

Considering the characteristics of schizophrenia and microstate analysis, we hypothesize

that multivariate microstate features based on four microstate archetypes are useful for schizo-

phrenia classification. We first obtain microstate and conventional EEG features from record-

ings of patients diagnosed with schizophrenia and those of healthy (control) subjects. Next, we

obtain classification accuracy for differentiating between diagnosed patients and controls

using three sets of features: microstate, conventional EEG, and combined. Finally, we compare

performances of the three features sets.

Materials and methods

Dataset

A publicly accessible EEG dataset was used in our study [61]. Study protocol was approved by

the Ethics Committee of the Institute of Psychiatry and Neurology in Warsaw. All participants

received a written description of the protocol and provided written consent to take part in this

study. The dataset was obtained from 14 patients diagnosed with schizophrenia and those

from 14 healthy (control) subjects. The patients’ group comprised seven males (27.9±3.3

years) and seven females (28.3±4.1 years) who were diagnosed with paranoid schizophrenia

according to the International Classification of Diseases (ICD)-10-CM criteria F20.0 and

who showed prominent positive symptoms. Other inclusion criteria were washout periods of

more than 1 week. Early-stage patients, such as those exhibiting their first episodes, were

excluded. Other exclusion criteria were as follows: pregnancy, organic brain pathology, severe

PLOS ONE EEG microstate features for schizophrenia classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0251842 May 14, 2021 3 / 21

https://doi.org/10.1371/journal.pone.0251842


neurological diseases (e.g. epilepsy, Alzheimer’s, or Parkinson disease), and presence of a gen-

eral medical condition. Patient and control groups were matched by age and gender. Nineteen

channel EEG were recorded in accordance with the International 10/20 EEG system with a

sampling frequency of 250 Hz for 15 min each during an eyes-closed resting state. Detailed

information about the dataset can be found at the repository and from its related article [61].

EEG data preprocessing

To obtain artifact-free EEG features for microstate analyses, the EEG dataset was pre-pro-

cessed using the FieldTrip toolbox and EEGLAB [62, 63]. We followed the well-established

preprocessing pipeline that have been widely used in some previous studies [24, 25, 37, 53] to

use the archetype microstates, which are proposed from the studies of schizophrenia and

known for their functional significances. Fig 1 shows the entire process of extracting EEG fea-

tures from raw data. EEG were re-referenced to the common average electrode and were fil-

tered using a 2–20-Hz band-pass filter. Continuous EEG data were segmented into 5-s non-

overlapping epochs evaluated based on variance, so that the epoch containing artifacts could

be removed. From the continuous EEG dataset, we extracted 1,362 artifact-free epochs of

patients diagnosed with schizophrenia and 1,225 artifact-free epochs of healthy (control) sub-

jects. The benefit of this approach was that the all artifact-free data points could be analyzed

instead of selecting and analyzing parts. All epochs were implemented for classification to dis-

tinguish whether each epoch was of the patients diagnosed with schizophrenia or healthy (con-

trol) subjects. To prevent the statistical power from being exaggerated in comparing the

features between the two groups, the comparison was performed using only the first 20 arti-

fact-free epochs as in previous studies [24, 36, 37, 53, 64]. Cohen’s D was reported with p-value

to evaluate the effect size. The comparison performed with all epochs is presented in the

S1 Table.

Fig 1. Overview of the process for extracting microstate and conventional EEG features.

https://doi.org/10.1371/journal.pone.0251842.g001
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Microstate analysis

Global Field Power (GFP). GFP can be used to represent the global pattern of neuroelec-

trical activity and is defined as follows:

GFPðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
PN

i ðxiðnÞ � �xðnÞÞ2Þ=N
q

ð1Þ

where xi(n) and �xðnÞ represent the instantaneous and mean potentials across N electrodes at

time n.

Because GFP instantaneously measured electric-field activity, it was typically used to char-

acterize the dynamic fluctuations of brain activity. Local GFP maxima described instances of

the strongest brain potentials and the highest topographic signal-to-noise ratios. In microstate

analysis, topographies of the electric field at local GFP maxima were discrete EEG states, and

signal evolution was a series of such states [47]. Then, successive microstates, which were dis-

crete states of the EEG analyzed based on local maxima of the GFP, were derived. Using clus-

tering methods, all microstates can be assigned according to archetype microstates. The

archetypes have enabled many studies which uncovered their function and applied them to

various diseases [45]. In this study, modified k-means clustering were used for it. The cluster-

ing method were described in detail in the following sections and the parameters for micro-

state analysis can be found at http://www.thomaskoenig.ch.

Most microstate analysis studies have reported the same four archetypal microstate topog-

raphies to represent brain activity measured using a resting-state EEG. These four topogra-

phies included right-frontal left-posterior, left-frontal right-posterior, midline frontal-

occipital, and midline frontal and are typed as A, B, C, and D, respectively [37, 53]. Impor-

tantly, single topography remained quasi-stable for intervals of about 80–120 ms before

dynamically transitioning to another topography (i.e., microstates) [47]. Therefore, when an

EEG was considered to be a series of topographies of electric potentials that evolve, the entire

recording can be studied using a set of topography that dynamically fluctuate amongst them-

selves at discrete time points.

EEG microstate segmentation methods. Microstate analysis was used to segment entire

EEG recordings into successive topographies, including spatiotemporal information of global

brain network, that remained quasi-stable for a short period of time (80–120 ms). An early

microstate analysis method proposed by Lehmann et al. segmented EEG signals using adaptive

segmentation algorithms, wherein the topography at each successive GFP peak was compared

to those at preceding ones, and a new microstate was considered when centroid locations of

segmented potentials changed by more than a predefined interval [22]. Thus, the overall length

and general topographic characteristics of microstates could be computed. However, early

attempts employing adaptive segmentation rarely grouped microstates into archetypes.

More recently, Pascual-Marqui et al. [52] proposed a statistical approach that directly con-

sidered the topographies of entire EEG recording. This method utilized k-means clustering

analysis, which iteratively combined nested high spatial-correlation topographies and identi-

fied a representative topography that best explained the variance in each cluster. Various meth-

ods of clustering, such as agglomerative hierarchical clustering [65], principal component

analysis [66, 67], independent component analysis [68], a mixture of Gaussian algorithms [69],

and Markov process-based decomposition [70, 71], recently developed for factor analysis, can

be used to segment the most dominant spatial components in series of topography.

In this work, we used the modified k-means clustering algorithm to segment microstates

obtained from EEG recordings [45] to determine the optimal sorting order of clusters using

the cross-validation criterion. Previous well-established microstate studies using multi-
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modality data including EEG and resting-state fMRI [27, 30, 37, 53] have revealed that four

topographies across all subjects were optimal to fully represent whole brain activity and allow

interpretation from a neuroscience perspective. The four topographies included right-frontal

left-posterior, left-frontal right-posterior, midline frontal-occipital, and midline frontal and

are typed as A, B, C, and D, respectively. Therefore, in this work, we adopted these four most

common microstate topographies A, B, C, and D as the number of optimal archetype tem-

plates. In addition, the sorting of microstates (A, B, C, D sorting) was performed using cross-

validation strategies on the training EEG trials. The sorting order by k-means clustering,

which led to the lowest free energy on training EEG inputs, is selected.

Once we determined the optimal number of microstates (four archetype microstates), next

step is to sort and label them into a sequence by using modified k-means clustering algorithm

and Global Explain Variance (GEV) criteria [65]. The setting parameters for k-means algo-

rithms are re-run and iterations as explained following. In principle, by re-running the sto-

chastic k-means algorithm multiple times (in this analysis, we set re-run parameter to 20

times), we are able to test multiple segmentations on the same dataset and select the best re-

run based on the GEV criteria [65]. GEV is a measure of how similar each EEG sample is to

the microstate prototype it has been assigned to. The higher the GEV the better [65]. More

importantly, we are able to reach the global minimum among 20 local minimums (20 re-runs).

After 20 re-runs, the one that maximizes the GEV is selected. However, the number of re-run

is a trade-off between computation time and how likely we are to converge on the same opti-

mal solution. In the Microstate EEGlab toolbox [50, 51] and its Python package in which we

have applied for our analysis select 10 re-run as a default value. In addition, Thomas Koenig’s

manual (http://www.thomaskoenig.ch) has recommended that a range from 20 to 50 re-runs

could be sufficient for a proper analysis. Furthermore, we have found that there are several

existing EEG microstate analysis literatures that set 10 re-runs [52] as well as papers that use

30 [26] as a proper re-run number.

Another parameter for k-means clustering is iteration, which means that in each re-run the

k-means algorithm keeps iterating until some stopping criteria (convergence threshold) are

satisfied. In this analysis, we used the convergence threshold, which stops the algorithms when

the relative error change between subsequence iterations is below the threshold. Here, we set

the threshold at 10−6. The maximum number of iterations set to 1000 which means the algo-

rithm can stop if the maximum iteration is reached before convergence for computation time

efficiency.

Conventional EEG feature extraction

We compared classification performances obtained using microstate and conventional EEG

features. First, electrodes were clustered into five regions of interest (ROI): left anterior (Fp1,

F7, F3), right anterior (Fp2, F4, F8), left posterior (T7, C3, P7, P3, O1), right posterior (C4, T8,

P4, P8, O2), and central (Fz, Cz, Pz). Then, conventional EEG features were extracted from

each ROI. Based on numerous features extracted from previous studies [15, 20], 31 features

suitable for resting-state EEG recordings were selected. A summary of all the defined features

is presented in Table 1. The frequency band of the spectral analysis was defined as follows: δ
(2–4 Hz), θ (4–8 Hz), α (8–13 Hz), and low-β (13–20 Hz). Finally, the analysis was performed

using 155 features.

Classification

To assess whether microstate features were appropriate for schizophrenia classification, we

used several machine-learning algorithms to compare classification performances of
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microstate and conventional EEG features. We used tenfold cross-validation to assess classifi-

cation accuracy. Considering high inter-subject variability of EEG, the fold was generated by

subject label so that all epochs of one subject was included in the training or test set. Four

parameters were used to evaluate classifier performance: accuracy, area under the curve

(AUC), sensitivity, and specificity. Permutation tests were implemented to evaluate the com-

petency of classifiers. In this study, we performed 1,000 repetitions to obtain a p-value to verify

whether or not the observed accuracy was obtained by chance or whether it represented

results. The above procedures were performed using MATLAB1 software (MathWorks, Inc.,

Natick, MA, USA).

The classifier was selected based on stability and simplicity among various known classifiers

from a previous EEG study [72] and other biomedical engineering research [73, 74]: the sup-

port vector machine (SVM) [75], Linear Discriminant Analysis [76], Naïve Bayes (NB) [77],

random forest (RF) [78], and the k-nearest neighbor (KNN) [79]. To compare classification

performances of microstate and conventional EEG features, we applied all classifiers to com-

bined features to obtain accuracy.

Feature selection. In the neuroimaging machine-learning community, it was widely

known that feature selection was an important step required prior to training classifiers [80].

Table 1. Summary of conventional EEG features obtained for patients diagnosed with schizophrenia and healthy (control) subjects.

No. Feature name Abbreviation Definition Domain

1 Mean μ 1

N

PN
n¼1

x½n� Statistical

2 Variance Var 1

N� 1

PN
n¼1
jx½n� � mj2 Statistical

3 Standard deviation σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� 1

PN
n¼1
jx½n� � mj2

q
Statistical

4 Skewness Sk 1

N� 1

PN
n¼1

ðx½n�� mÞ
s

3 Statistical

5 Kurtosis Kur 1

N� 1

PN
n¼1

ðx½n�� mÞ
s

4 Statistical

6 Zero crossing rate zcr 1

N� 1

PN� 1

n¼1
1Rðx½n�x½n þ 1�Þ Statistical

7 Upper margin Upp Pr X � x½ � � 95

100
Statistical

8 Lower margin Low Pr½X � x� � 5

100
Statistical

9 Width Wid Upp−Low Statistical

10 Asymmetry Asy (Upp+Low−2×Median)/(Upp−Low) Statistical

11 Coefficient of variation CV s

m
Statistical

12 Total power Ptotal
X

f

PSDðxÞ Frequency

13~16 Absolute band power Pband Xf2

f1

PSDðxÞ
Frequency

17~20 Mean band power Paverage
1

M

Xf2

f1

PSDðxÞ
Frequency

21~24 Relative band Power Prelative Pband/Ptotal Frequency

25 Shannon entropy HSh �
P

iPilogPi Time

26 Sample entropy SampEn � log A
B Time

27 Approximate entropy ApEn Fm(r)−Fm+1(r) Time

28 Permutation entropy PED �
PD!

i¼1
PilogPi

Time

29 Higuchi fractal dimension HFD ln(L(k))/ln(1/k) Time

30 Katz fractal dimension KFD log10ðmÞ
log10ðd=LÞþlog10ðmÞ

Time

31 Hjorth parameter Ax
PN

n¼1
ðx½n�� mÞ2

N

Time

https://doi.org/10.1371/journal.pone.0251842.t001
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Feature selection was essential, because it was used to select the most informative features and

to discard the noise and artifacts, which helped enhance the classification performance and

reduce complex computations and overfitting problems. In this work, we employed univariate

t-tests and multivariate recursive feature elimination (RFE) as feature selection techniques.

Univariate t-tests were performed on individual features to identify significant differences

between groups, whereas multivariate RFE was used to investigate mutual relationships

between multiple features.

Univariate feature selection. Univariate statistical t-tests have been used in many neuro-

imaging studies to show abnormalities in average signals for one or more brain features in an

illness group compared to normal average signals for those in a healthy group. Recent discrim-

ination studies have used such t-tests to select the most informative features for machine learn-

ing in neuroimaging [80, 81]. The key results of statistical test-based analyses were usually

expressed as p-values. Subsequently, the optimal p-value cut-off for selecting relevant features

was determined via cross-validation, and the features selected were used in the subsequent

machine-learning analysis. In this work, we applied t-test-based feature selection techniques to

machine-learning-based schizophrenia classification. Using t-tests on training data, we gener-

ated a result that required retaining only those features presenting significant changes in any

of the feature measures (i.e., microstate measures) between the two groups at threshold p-val-

ues (p<0.05, p<0.01, p<0.005, and p<0.001). Bonferroni correction was applied for multiple

comparisons.

Recursive feature elimination. Although the univariate t-test did not consider interac-

tions between multiple patterns, RFE was a multivariate wrapper-based feature selection algo-

rithm that ranked features based on their effects on classification [82]. The RFE ranking

procedure was closely related to that of the SVM model. In each RFE iteration, an SVM model

was trained. The lowest-ranking features were then removed, because they have the least effect

on classification accuracy, whereas the remaining features were used for the SVM model in the

next iteration. The sequential process was repeated until all features have been discarded. The

features were then ranked based on the elimination sequence. A detailed explanation of the

application of RFE algorithms to neuroimaging can be found in previous studies [80, 82]. In

this work, we implemented a univariate t-test/multivariate RFE hybrid feature selection

technique.

Statistical analysis

The microstate topographies between groups were compared using topographic ANOVA

(TANOVA) in the Ragu software [83]. TANOVA was a non-parametric randomization test

that computed statistical differences using global field power of difference topographies [84].

Similarity was assessed for each microstate type as in the method of Koenig et al. [37] and

Grieder et al. [64]. Microstate features were analyzed using independent t-tests. To prevent

type-I errors caused by the multiple-comparison problem, we evaluated significance using

Bonferroni correction. Paired t-tests were performed to assess the significance of classification

results obtained from the three feature sets. Four p-values (p<0.05, p<0.01, p<0.005, and

p<0.001) were used to select univariate features. Statistical analyses were performed using

MATLAB1 software.

Results

Microstate analysis

Normalized microstate scalp topographies of a patient diagnosed with schizophrenia and a

healthy (control) subject are shown in Fig 2. Types A and B were dominant in the unilateral
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frontal area, type C was symmetrical, and type D was somewhat dominant in the occipital

area. These four microstates were similar to those shown in previous studies [37, 53]. Only

type D topography showed significant difference between the two groups after Bonferroni cor-

rection. This was also consistent with the previous result [37]. Thus, the same archetype was

applied.

Results obtained from microstate analysis conducted using 19 microstate features are pre-

sented in Table 2. There was no difference in total time between the two groups after Bonfer-

roni correction. For types B and C in patients diagnosed with schizophrenia, coverage

increased with increasing duration or occurrence. For type D in patients diagnosed with

schizophrenia, coverage decreased with decreasing duration and occurrence. On the other

hand, all type A features did not differ between patients diagnosed with schizophrenia and

healthy (control) subjects. For across type features, there was no difference between the two

groups in both mean duration and mean occurrence after Bonferroni correction. Although

there was a difference in mean global field power (GFP) for types B, there was no difference

for types A, C, and D. Among the significant features after Bonferroni correction, none of the

features showed a small effect with Cohen’s d less than 0.2. On the contrary, all features that

were not significant showed small effects with Cohen’s d less than 0.3. To summarize, eight

microstate features showed significant differences between patients diagnosed with schizo-

phrenia and healthy (control) subjects.

EEG analysis using conventional EEG features

Using the conventional EEG features presented in Table 1, we investigated differences between

patients diagnosed with schizophrenia and healthy (control) subjects. A total of 155 features

were tested using post hoc analysis in five ROIs at significance levels 0.05, 0.01, 0.005, and

0.001. Differences were found in 42, 31, 22, and 14 features, respectively. Among the statistical

Fig 2. Four microstates of resting-state EEG recordings obtained for patients diagnosed with schizophrenia and healthy (control) subjects. Type D

topography was significantly different between the two groups even after Bonferroni correction (p = 0.0012). Asterisk (�) show a significant difference. SC:

patients diagnosed with schizophrenia, HC: healthy control.

https://doi.org/10.1371/journal.pone.0251842.g002
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features, mean, kurtosis, skewness, and coefficient of variation did not differ in all ROIs. 13 of

55 statistical features showed significant differences. Each frequency-domain feature showed

significant differences in at least one ROI, and 19 of 65 features were different between groups.

10 of 35 time-domain features showed differences, and 3 of the 7 features did not differ signifi-

cantly in all ROIs. Approximate and sample entropy features showed a very low correlation

with schizophrenia. Overall, although some insignificant features were included, the conven-

tional EEG feature set consisted of several features useful for schizophrenia classification.

Classification performances obtained using microstate and conventional

EEG features

To compare performances obtained using microstate and conventional EEG features in classi-

fying patients diagnosed with schizophrenia and healthy (control) subjects, we applied several

classifiers to each feature set. The classification accuracy obtained by tenfold cross-validation

using several classifiers is presented in the S2 Table, and the result of classifier showing the

highest classification accrual is presented in Table 3. The highest performance was 75.64%,

obtained by applying the SVM quadratic kernel to microstate features. The conventional EEG

feature also showed the highest average accuracy of 67.62% with the SVM. The highest accu-

racy with SVM was 72.93% when using microstate and conventional EEG features, which was

significantly higher than when using only conventional EEG ones. The performances of the

Table 2. 19 microstate features obtained for patients diagnosed with schizophrenia and healthy (control) subjects.

Type A Type B Type C Type D Across types

Duration (ms) Mean duration (ms)

SC 70.8(±19.40) 69.8(±20.74) 86.9(±37.32) 79.5(±23.66) 79.1(±17.43)

HC 72.0(±21.20) 65.1(±18.87) 73.4(±22.15) 90.7(±30.84) 77.6(±16.52)

Cohen’s d −0.06 0.24 0.44 −0.41 0.09

p-value 0.564 0.014 < 0.001 < 0.001 0.363

t-value −0.578 2.457 4.514 −4.171 0.911

Occurrence (Hz) Mean occurrence (Hz)

SC 2.97(±1.06) 2.87(±0.89) 3.64(±1.09) 3.72(±1.20) 13.21(±2.79)

HC 3.04(±0.92) 2.60(±0.92) 3.61(±0.91) 4.16(±0.94) 13.40(±2.54)

Cohen’s d −0.07 0.31 0.04 −0.40 −0.07

p-value 0.460 0.002 0.714 < 0.001 0.463

t-value −0.740 3.143 0.367 −4.121 −0.735

Coverage (%)

SC 20.6(±7.94) 19.8(±7.72) 30.7(±11.73) 29.0(±9.92)

HC 21.4(±7.64) 16.5(±6.37) 25.9(±8.04) 36.2(±9.19)

Cohen’s d −0.11 0.46 0.48 −0.76

p-value 0.257 < 0.001 < 0.001 < 0.001

t-value −1.136 4.723 4.931 −7.757

Mean GFP (μV) Total time (s)

SC 4.89(±1.35) 4.90(±1.38) 5.16(±1.50) 5.22(±1.37) 4.551(±0.124)

HC 4.68(±1.82) 4.41(±1.60) 4.83(±1.86) 5.04(±1.91) 4.575(±0.087)

Cohen’s d 0.13 0.33 0.19 0.11 −0.22

p-value 0.170 0.001 0.048 0.270 0.022

t-value 1.374 3.356 1.986 1.105 −2.305

Statistical analyses were conducted using independent t-tests. After Bonferroni correction for multiple comparisons, a significant correlation was bolded. SC: patients

diagnosed with schizophrenia, HC: healthy control, GFP: global field power, mean (± standard deviation).

https://doi.org/10.1371/journal.pone.0251842.t002
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other classifier were found in the S2 Table. In summary, in the schizophrenia classification,

the addition of microstate features to conventional features increased the accuracy of

classification.

For accuracy calculated by tenfold cross-validation, microstate features showed higher

accuracy than conventional EEG with NB, RF, KNN, and SVM classifers. The model of the

highest accuracy is shown in Table 4 as the quadratic-kernel SVM using the microstate feature.

The accuracy of each fold was evaluated using a permutation test with 1,000 repetitions. It was

statistically significant in all folds.

Classification performances with feature selection methods

Table 5 shows whether the superiority of microstate features was maintained after the feature

selection method was applied. The results of the other classifier were listed in the S3 Table. For

the microstate feature, only four features were removed: total time, duration, and coverage of

type A and the coverage of type B. For conventional EEG features, including numerous insig-

nificant ones, the highest accuracy was achieved when only RFE was applied. After feature

selection was applied, the highest accuracies of the microstate and conventional EEG feature

sets were 76.62 and 68.89%, respectively. Conventional feature set showed the highest classifi-

cation accuracy using 136 features by removing 19 features with RFE. The highest classifica-

tion accuracy of combined feature set was 76.85%, which was higher than that of conventional

EEG ones alone. It was obtained using 39 features by removing 133 features with univariate

feature selection and 2 features with RFE. Even in a subset of features showing the highest

Table 3. Classification accuracies with quadratic SVM classifier using 19 microstate and 155 conventional EEG features obtained from the EEG dataset for patients

diagnosed with schizophrenia and healthy (control) subjects.

Feature set Accuracy (%) AUC Sensitivity (%) Specificity (%)

Conventional EEG features 67.62 0.7292 64.47 69.16

Microstate features 75.64� 0.8019 71.93 75.50

Conventional + Microstate features 72.93� 0.7963 72.19 73.30

It is derived by SVM quadratic kernel, which shows the highest classification accuracy, and results of other 8 classifiers are shown in the S2 Table. Asterisk (�) shows a

significant difference in comparison with accuracy using conventional EEG features (p< 0.05). AUC: area under the curve.

https://doi.org/10.1371/journal.pone.0251842.t003

Table 4. The classification results of tenfold cross-validation with quadratic SVM classifier using 19 microstate features.

Fold Train Accuracy (%) Test Accuracy (%) Permutation test p-value AUC Sensitivity (%) Specificity (%)

1 82.01 76.83 < 0.001 0.8195 75.66 78.29

2 83.54 74.60 < 0.001 0.7898 59.21 81.40

3 81.52 89.30 < 0.001 0.9579 83.51 92.53

4 83.55 63.81 < 0.001 0.6289 59.69 70.37

5 81.77 86.59 < 0.001 0.8416 71.43 90.28

6 82.31 81.78 < 0.001 0.8841 90.97 66.30

7 83.76 65.23 < 0.001 0.7710 59.30 76.70

8 81.85 81.09 < 0.001 0.8708 66.23 90.32

9 82.29 76.05 < 0.001 0.7698 85.88 51.47

10 84.53 61.14 < 0.001 0.6859 67.42 57.34

mean (± SD) 82.71 75.64 (±9.63) 0.8019 (±0.096) 71.93 (±11.69) 75.50 (±14.10)

SD: standard deviation, AUC: area under the curve.

https://doi.org/10.1371/journal.pone.0251842.t004
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classification accuracy, microstate features outperformed conventional EEG ones. However,

the addition of microstate features helped improve classification accuracy.

Discussion

This study investigates the usefulness of EEG microstate features for schizophrenia classifica-

tion. To validate microstate features, we first used a modified k-means method to extract them

from EEG recordings of patients diagnosed with schizophrenia and those from healthy (con-

trol) subjects. Considering research reproducibility, we utilized all but some of the epochs,

which consist of the remaining epochs after the epochs containing artefact were removed in the

preprocessing step. Next, we applied feature selection methods to conventional EEG features

introduced in a previous study [7–20] to compare classification performances. The method

would prevent classification performance of conventional EEG features from being underesti-

mated in multivariate analysis. Finally, after classification performances were obtained using

microstate features, conventional EEG features, and combined features with tenfold cross-vali-

dation, average accuracies were compared. It showed higher classification accuracy than when

using only convention features, both when only using the microstate feature and when combin-

ing microstate and convention features. Therefore, the results of this study suggest that micro-

state features are useful for distinguishing between schizophrenic and healthy (control) subjects.

Combining microstate features with conventional EEG features is, thus, a proper application

that can achieve higher classification accuracy than using only conventional ones.

The results of the microstate analysis, represented in Fig 2. and Table 2, showed characteris-

tic changes in features for patients diagnosed with schizophrenia. The topography of type D

showed a significant difference between the two groups, and the others did not. While this is

consistent with previous schizophrenia studies [37], it differs from the result of semantic

dementia and Alzheimer’s disease studies, which differed in types B and C [64]. Changes of

duration and occurrence led to changes in coverage, mean duration, and mean occurrence.

For patients diagnosed with schizophrenia, duration increased for type C and decreased for

type D. According to Milz et al., each microstate can be associated with a specific function

[30], and several features of the four types may change in each illness group [45]. The changes

in EEG recordings of types C and D microstate features are in line with those reported in pre-

vious studies [24, 36, 40, 44]. Specifically, the type-D microstate feature showed reduced dura-

tion when a subject experienced hallucinations [39]. In agreement with results of previous

studies, duration was reduced in the group of patients diagnosed with paranoid schizophrenia

who showed prominent positive symptoms in this study. Type B should be interpreted with

caution, because, although coverage [36] and occurrence [44] were consistent with those

shown in previous studies, duration decrerased in the previous study [24, 36] increased in our

study. In contrast to earlier findings that showed no change in occurrence or reduced

Table 5. Classification accuracies with quadratic SVM classifier achieved for different methods of selecting features from an EEG dataset for patients diagnosed

with schizophrenia and healthy (control) subjects.

Feature set + (UFS threshold) + RFE Before FS RFE only (p<0.001) + RFE (p<0.005) + RFE (p<0.01) + RFE (p<0.05) + RFE

Conventional EEG features 67.62 68.89 66.83 67.13 66.26 67.79

Microstate features 75.64 76.62 � - - - -

Conventional + Microstate features 72.93 � 74.31 76.00 � 76.85 � 75.75 � 75.61 �

Classifier accuracy is presented as a percentage. The highest classifier accuracy in each set is bolded.

� Significant at p < 0.05 in a paired t-test compared to accuracy using conventional microstate features obtained using RFE. FS: feature selection, UFS: univariate feature

selection, RFE: recursive feature elimination.

https://doi.org/10.1371/journal.pone.0251842.t005
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occurrence [24, 36, 44], occurrence and coverage of type A increased. However, the features of

types A and B had smaller effect sizes considering Cohen’s d. Thus, it is difficult to accept that

the features actually differed between schizophrenia and healthy (control) subjects. Type A and

B features, known to be associated with a sensory task, do not present remarkable differences.

Considering the function of each type [27, 30], it is natural that types C and D, attributed to

default mode and dorsal attention, respectively [25, 27], are more reliable diagnostic features

than type A and B features in schizophrenia classification. Results consistent with previous stud-

ies have established that microstate features are suitable for schizophrenia classification.

Several studies reported abnormal functional brain network in schizophrenia and other

psychiatric disorders. For example, depressive disorders, including major depressive disorders,

have been examined in comparison with schizophrenia. They are classified as different diseases

[85], however, share risk factors and may show similar clinical manifestations in the early or

severe stage of the disorder [86]. The dysregulation of left inferior parietal cortex [87] and

decreased convergent and divergent network connectivity [88] were consistent in both disor-

ders. Lydon-Staley and Bassett showed the similarity of reduced small-world properties and

differences in regional activation on two disorders [89]. In some regions or networks, the dif-

ference in activation was demonstrated [90–92], and the opposite activation was identified

[93–95]. Taken together, previous studies of functional networks revealed similar and different

alterations depending on the nature or areas of the feature applied. Considering that micro-

state features are associated with the functional network, these may also show common and

distinct changes in various psychiatric disorders. The development of various features that can

fully exploit the advantages of temporal resolution enables the microstate feature to be a diag-

nostic biomarker reflecting functional brain network.

Machine-learning based multivariate analysis provides an opportunity to understand a sys-

tem by analyzing many features simultaneously. Therefore, we can reduce type I errors and

obtain optimized models with multivariate analysis. In other words, features extracted from

EEG recordings containing some information can be utilized with multivariate analysis to

develop a model having higher reliability and validity. This is an important process in the clas-

sification of schizophrenia for which EEG microstate analysis is a valuable method. Several

studies have already reported that EEG features are useful in emotion recognition [20], neuro-

logical disease [96], and schizophrenia classification [16, 97]. To validate performances of

microstate features in schizophrenia classification, we examined performances of conventional

EEG features for comparison. Our results suggest that microstate features reflect schizophrenia

characteristics and show better classification performance than conventional EEG features.

The microstate feature was not only used alone, it also showed better performance when com-

bined with conventional EEG features. We can improve the classification accuracy by combin-

ing microstates with conventional features. In other words, we can infer that microstate

features contain information that is difficult to obtain by traditional EEG analysis methods.

We expect microstate analysis to be synergistic with conventional EEG analysis methods.

Taken together, microstate features show potential for schizophrenia classification.

Prior studies have applied multivariate analysis to various EEG features to classify patients

diagnosed with schizophrenia from healthy (control) subjects [16, 98–101]. Although classifi-

cation accuracies obtained in those studies were quite high, they may not have been sufficient

to generalize results. For example, some studies were conducted without validation [98, 99],

and only some channels were selected in other studies [16, 101]. Another study only used EEG

event-related potentials generated during a specific task [100]. In the present work, because

accuracy was calculated by applying tenfold cross-validation to resting-state-EEG data, classifi-

cation performance is reliable. Furthermore, although machine learning has been applied to

EEG microstate features for patients diagnosed with neurodegenerative diseases [102] and
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neurological disorders [103], it has not been applied yet to schizophrenia microstate studies.

Although machine learning of microstate features is an alternative to existing methods of clas-

sification, it will likely develop into a more robust method when combined with other neuro-

imaging modalities, such as fMRI [45]. Therefore, our research investigating the classification

accuracy of microstate features is essential to verify the feasibility of microstate analysis in

schizophrenia classification. Regarding the performance of the microstate features used in this

study, our method resulted in accurate classification and can be applied to various areas of

neuroscience and clinical fields.

The strength of this study is that it has more generalizability than previous studies. First, we

minimized bias caused by data selection. In previous studies, EEG recordings shorter than 10 s

were selected from those longer than a few minutes [37, 53] for microstate analysis, which may

have affected results. We divided all data into epochs and used all EEG recordings from all sub-

jects to obtain overall classification performance. Therefore, classification performance in this

study showed generality, because it considered EEG data for all subjects. Second, we applied

cross-validation. In particular, considering inter-subject variability of EEG data [104], we

chose tenfold cross-validation to prevent EEG epochs from having the same subjects belonging

to both training and testing datasets. Because of these two reasons, despite the application of

RFE to many of the features referenced in the literature, classification performance of conven-

tional EEG features was relatively low. On the contrary, microstate features showed better per-

formance, although the methods were not applied in all previous studies. Our reproducible

results are likely to be replicated in future studies, suggesting that microstate features are

promising diagnostic features for schizophrenia classification.

Some study limitations must also be discussed. This study used publicly available data

instead of data obtained from cohort studies, and the number of subjects was small. Although

age and gender were matched, it was difficult to obtain enough data to represent the general

population. Thus, the results of this study should be interpreted carefully. Therefore, classifica-

tion performances of microstate features should be analyzed using data obtained from a larger

cohort to improve classification accuracy and to develop an accurate model representing the

general population. Our study was performed using modified k-means clustering only with a k

value of 4. In general, higher classification accuracy can be achieved by using other clustering

methods or a higher k value [25, 105]. Although our study was performed only with a k value

of 4, it is reliable to show a sufficient explained variance of patients diagnosed with schizophre-

nia (76.4±4.4%) and those of healthy (control) subjects (75.8±5.8%). However, using a differ-

ent k value in future research may contribute to improvement of classification accuracy.

Furthermore, the 19 microstate features used in this study may not fully reflect information

obtained from microstate analysis. Although the number of features was not small, the

included information sometimes overlapped. For example, the duration can be calculated

from the total time, coverage, and occurrence. Thus, only the 19 microstate features used in

this study did not fully exploit the strength of microstate analysis. Nevertheless, because micro-

state features showed promising classification performance, it is very probable that classifica-

tion performance would be improved by developing new microstate features.

Conclusions

In this study, we provided evidence for usefulness of EEG microstate features in schizophrenia

classification. When comparing classification accuracies obtained using microstate features,

conventional EEG features, and combined features, microstate features and combined features

outperformed conventional ones, suggesting that EEG microstate features are appropriate for

schizophrenia classification.
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