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Abstract

Oxytocin has a modulatory role in natural and drug reward processes. While the role of oxytocin 

in pair bonding and reproduction has been extensively studied, sex differences in conditioned and 

unconditioned behavioral responses to oxytocin treatment have not been fully characterized. Here, 

we determined whether male and female rats would show similar dose response curves in response 

to acute oxytocin on measures of locomotor activity, sucrose seeking, and sucrose intake. Male 

and freely cycling female rats received vehicle or oxytocin (0.1, 0.3, 1, 3 mg/kg, IP) injections 

before behavioral tests designed to assess general motor activity, as well as sucrose self-

administration and seeking. Lower doses of oxytocin decreased motor activity in a novel 

environment in females relative to males. Likewise, lower doses of oxytocin in females decreased 

responding for sucrose during maintenance of sucrose self-administration and reinstatement to 

sucrose-conditioned cues. However, sucrose seeking in response to a sucrose prime was only 

decreased by the highest oxytocin dose in both sexes. In general, oxytocin had similar effects in 

both sexes. However, females were more sensitive to lower doses of oxytocin than males. These 

findings are consistent with the notion that oxytocin regulates many of the same behaviors in 

males and females, but that the effects are typically more profound in females. Therapeutic use of 

oxytocin should include sex as a factor in determining dose regimens.
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1. Introduction

Oxytocin is a classical and well-characterized neuroendocrine hormone that is a potent 

modulator of a variety of brain functions, including emotions, social interactions, and sexual 

behavior (1). In females, oxytocin has a critical role in reproduction as it induces uterine 

contractions during childbirth and facilitates milk ejection during lactation (2). Oxytocin is 
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primarily synthesized in magnocellular neurons of the supraoptic and paraventricular nuclei 

of the hypothalamus and is secreted by axon terminals in the posterior pituitary into 

systemic blood circulation (3). In addition, oxytocin is produced in parvocellular and 

magnocellular neurons in the paraventricular nucleus that project to various brain regions 

and release oxytocin (4). Centrally acting oxytocin has a number of behavioral and 

physiological effects, including suppression of food intake (5). Specifically, peripheral 

injection of oxytocin in rats inhibits sucrose intake, whereas oxytocin receptor antagonists 

increase consumption (6, 7).

Although oxytocin's mediating role in food consumption has been previously studied, an 

area that has received little attention is in the regulation of appetitive-related behaviors. It is 

not surprising that oxytocin should have some impact on natural rewards like sucrose 

consumption, given its innervation of central appetitive pathways and modulation of drug 

reward (8, 9). Indeed, previous findings have shown that oxytocin knock-out mice displayed 

enhanced intake of sucrose solution (10) and oxytocin infusion into the ventral tegmental 

area suppressed sucrose intake (11). In an earlier study from our laboratory, systemic 

oxytocin (1 mg/kg) pretreatment attenuated sucrose seeking in a sucrose prime reinstatement 

test in both male and female rats; however, it did not impact motivation to lever press for a 

sucrose pellet at this dose (12).

In our previous study, males and females both exhibited oxytocin induced reductions in 

sucrose seeking. However, females show higher intake/preference of highly concentrated 

sweetened solutions than males (13). Additionally, when sweetened concentrations are 

reduced, ovariectomized females exhibited lower intake than males (14). Importantly, sex 

differences have been reported in the oxytocin system. For example, regardless of estrous 

cycle, females have significantly lower oxytocin receptor binding densities than males in the 

majority of forebrain regions involved in reward process (15).

Oxytocin also has anxiolytic effects in rats. In an open field test, a relatively low dose of 

oxytocin increased motor activity, whereas higher doses decreased activity in male rats (16). 

To this end, we first evaluated the dose response effects of oxytocin on novelty induced 

locomotor activity in male and female rats. Second, we studied the impact of oxytocin on 

operant sucrose self-administration in both sexes. Finally, we determined whether oxytocin 

would decrease reinstatement of sucrose seeking induced by either sucrose prime or 

conditioned cues.

2. Methods and Procedures

2.1. Subjects

A total of 91 male and female Sprague-Dawley rats (Charles River) were housed on a 

reversed 12:12 light-dark cycle in a temperature- and humidity-controlled vivarium (lights 

off at 06:00). Adult male rats weighed 275-300 g and adult females were 205-225 g at the 

time of delivery. Rats were individually housed and received ad libitum water and standard 

rat chow (Harlan, Indianapolis, IN, USA) until the locomotor test. After this test, subjects 

were food-restricted (≈20 g/day) to maintain 85% of ad libitum rats' body weight 

throughout the study. Procedures were conducted in accordance with the “Guide for the 
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Care and Use of Laboratory Rats” (Institute of Laboratory Animal Resources on Life 

Sciences, National Research Council, 2011) and approved by the IACUC of the Medical 

University of South Carolina.

2.2. Locomotor Activity

To explore the effect of oxytocin on unconditioned locomotor activity in both males and 

females, rats underwent a single locomotor test. Locomotor activity was assessed in clear 

acrylic chambers (approximately 40×40×30 cm) equipped with Digiscan monitors 

(AccuScan Instruments Inc., Columbus, OH, USA). Each chamber contained a 16×16 

photobeam array for the x and y axes and 16 photobeams for the z axis. Photobeam breaks 

were detected by a Digiscan analyser and recorded by DigiPro software (Version 1.4).

2.3. Sucrose taking, extinction, and reinstatement

Responding for sucrose was conducted in standard operant chambers (30×20×20 cm, Med 

Associates) housed inside sound-attenuating cubicles fitted with a fan for airflow and 

masking noise. Each chamber also contained two retractable levers, two stimulus lights, a 

speaker, and a house light. Rats were given daily 2 hr sessions to lever press for sucrose on a 

fixed ratio (FR) 1 schedule of reinforcement. During the sessions, a response on the active 

lever resulted in delivery of a sucrose pellet (45 mg, BioServe) combined with a 5 sec 

presentation of a light + tone stimulus complex, followed by an un-signaled 15 sec time out. 

Responses occurring during the time out and on the inactive lever were recorded without 

scheduled consequences.

Following sucrose self-administration, lever responding was extinguished in daily sessions, 

whereby operant responding no longer resulted in delivery of the sucrose reinforcement or 

cues. Extinction consisted of daily 2-hr sessions for at least 7 days and responding on either 

lever had no scheduled consequences. Extinction criterion was ≤ 20 presses for two 

consecutive days. When extinction criterion was met, behavior was reinstated by 

presentation of conditioned reinforcers (cued reinstatement) or by non-contingent sucrose 

delivery (primed reinstatement). During the cued reinstatement tests, active lever presses 

resulted in presentation of the light + tone stimulus in the same manner as during sucrose 

taking. During the sucrose prime tests, rats received one non-contingent pellet every 2 min 

for the first 10 min of the session and one pellet every 30 min thereafter, but responding on 

either lever had no scheduled consequences (12). Daily extinction sessions occurred for at 

least two days between reinstatement tests.

2.4. Estrous cycle monitoring

Females underwent daily post-session vaginal cytology procedures starting at least two days 

before the first test until the end of experiment for habituation purpose. Samples were 

collected with a sterile saline-dipped pipette tip and smeared onto glass slides, stained with 

Quik-Dip Hematology Stain (Mercedes Medical, FL), examined using a light microscope set 

at 10× magnification, and classified according to previously published criteria (17).

2.4.1 The effect of oxytocin on locomotor activity—Males and females (n=8-11 per 

group) were injected IP with vehicle or one dose of oxytocin (0.1, 0.3, 1, or 3 mg/kg) at the 
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volume of 1 ml/kg. Oxytocin was purchased from Cell Sciences (Canton, MA) and 

dissolved in ddH20. Following injection, rats were placed into their home cage for 30 min, 

and then placed in the locomotor chamber for an additional 90 min.

2.4.2 The effect of oxytocin on sucrose intake—In this experiment, we tested the 

effects of oxytocin administration on established sucrose maintained responding using an 

FR1 schedule of reinforcement. Males and females rats (n=9-10) first learned to lever press 

for sucrose for at least 7 days (with ≥10 pellets/session). Once sucrose intake stabilized 

(within 20% difference in pellets received between the last two days), each rat was tested 

with a unique order of vehicle, 0.1, 0.3, 1 and 3 mg/kg oxytocin (IP). Each solution was 

administered 30 min before daily sucrose sessions. To reach criteria between tests, rats were 

required to have two consecutive days in which the numbers of pellets earned were within 

20% of each other.

2.4.3 The effect of oxytocin on sucrose conditioned cue and primed 
reinstatement—Males (n=21) and females (n=18) were first trained to lever press for 

sucrose on an FR1 schedule of reinforcement for 10 days, followed by at least 7 sessions of 

extinction. When extinction criterion was met, all rats were divided into two groups and 

underwent either cue-induced or sucrose-primed reinstatement. Before each discrete 

reinstatement trial, with a minimum of 2 extinction sessions between reinstatement tests, rats 

received an injection of oxytocin (0.1, 0.3, or 1 mg/kg) or vehicle in a counterbalanced order 

for a total of four reinstatement tests. Our laboratory has consistently shown that responding 

maintains stability over multiple reinstatement tests (18, 19) (20).

2.5 Data analysis

The primary dependent measures were distance traveled (Experiment 1), pellets delivered, 

and lever responses (Experiments 2 and 3). Males and females were directly compared with 

between or mixed 2-way analysis of variance (21), with sex as the between subjects factor 

and oxytocin dose as the within subjects factor. In Experiment 1, oxytocin dose was also a 

between subjects variable. Planned analyses of simple effects were conducted with Dunnett's 

multiple comparisons separately for males and females comparing each dose of oxytocin to 

vehicle. Significance was set at p<0.05 for all tests and all data are represented as the mean 

± standard error of the mean (SEM). Females were freely cycling and tests were conducted 

based on a response criterion, rather than specific estrous cycle phase, resulting in an 

unequal distribution of females in each cycle phase. As such, including cycle in the analysis 

was not possible.

3. Results

3.1 The effect of oxytocin on locomotor activity

Figure 1A depicts sex differences in oxytocin's ability to decrease locomotor activity (i.e., 

distance traveled) over a 90 min period. Specifically, there was a sex × oxytocin dose 

interaction [F(4,81)=2.64, p<0.05], indicating that females were more prone to reduced 

locomotor activity than males. In females, three of the tested oxytocin (0.3, 1, and 3 mg/kg) 

doses decreased distanced traveled relative to vehicle (Dunnett's multiple comparisons, 
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p<0.05). In contrast, only the highest oxytocin dose (3 mg/kg) decreased responding in 

males (p<0.05). Consistent with previous reports (22-24), vehicle-treated females had 

greater distance traveled scores than males in the novel environment (p<0.05). Not 

surprisingly, the same pattern occurred when evaluating distance traveled in 5 min time bins. 

For females (Figure 1B), there was a significant time × oxytocin dose interaction 

[F(68,595)=2.5, p<0.0001], with 0.3, 1, and 3 mg/kg oxytocin decreasing distance traveled 

across the session. For males (Figure 1C), there was also a significant time × oxytocin dose 

interaction [F(68,782)=2.3, p<0.0001], but only the high dose of 3 mg/kg decreased activity 

across the session.

3.2 The effect of oxytocin on sucrose intake

In this experiment, sucrose self-administration was conducted as described above. During 

the 7 days of acquisition (Figure 2A), males made more responses on the active lever 

relative to females (sex main effect, F(1,17)=6.5, p<0.05), but responding was the same on 

the inactive lever (not shown). Males also received more pellets than females over the 

acquisition period (Figure 2B, sex main effect, F(1,17)=26.3, p<0.05); however, this 

difference was eliminated when body size was taken into account. Females are substantially 

smaller than males, so to better assess the sex differences in pellets earned, we calculated the 

amount of sucrose delivered to each rat with the following formula: mg sucrose/kg body 

weight. There were no differences between males and females in mg sucrose/kg body 

weight of sucrose that was delivered (Figure 2C).

When responding stabilized, each rat (n=9-10) was tested on each oxytocin dose (0-3 

mg/kg) in a counter balanced manner. For active lever pressing (Figure 3A), oxytocin dose 

dependently decreased lever responding in both sexes [dose main effect, F(4,68)=8.2, 

p<0.05]; however, there was not a sex difference, nor did sex interact with oxytocin dose. 

For females, 0.3, 1, and 3 mg/kg oxytocin decreased active lever responding, whereas the 

only dose that decreased responding in males was 3 mg/kg (Dunnett multiple comparisons, 

p<0.05). Inactive lever presses (data not shown) were reduced with oxytocin [dose main 

effect, F(4,68)=2.7, p<0.05]; however, follow up comparisons were not significant.

During the tests, males earned significantly more pellets than females [Figure 3B, sex main 

effect, F(1,17)=8.34, p<0.05] and oxytocin decreased pellets earned [dose main effect, 

F(4,68)=5.7, p<0.05], but there was no interaction of sex and oxytocin dose. In females, 1 

mg/kg oxytocin decreased pellets earned, whereas 3 mg/kg decreased pellets in males. 

Oxytocin decreased sucrose earned per body weight [Figure 3C, dose main effect, 

F(4,68)=7.8, p<0.05], but there were no sex differences or sex × oxytocin dose interaction. 

Consistent with the lever responding, 0.3, 1, and 3 mg/kg oxytocin decreased pellets per 

body weight in females, whereas the only dose that decreased pellets per body weight in 

males was 3 mg/kg (Dunnett multiple comparisons, p<0.05).

3.3 The effect of oxytocin on sucrose conditioned cue and primed reinstatement

In a separate experiment, rats were tested for conditioned cue and sucrose-primed 

reinstatement tests following extinction. There were no differences between males and 

females during acquisition or extinction (data not shown), but clear sex differences emerged 
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in response to different oxytocin doses during the presentation of sucrose-conditioned cues 

[Figure 4A, sex × oxytocin dose interaction, F(3,54)=2.93, p<0.05)]. Specifically, 0.1, 0.3, 

and 1 mg/kg oxytocin decreased active lever responding in females, whereas the only dose 

that decreased responding in males was 1 mg/kg (Dunnett multiple comparisons, p<0.05). In 

contrast, sucrose primed reinstatement was only affected by oxytocin at the highest dose in 

both males and females [Figure 4B, oxytocin main effect, F(3,51)=3.67, p<0.05 and Dunnett 

multiple comparisons, p<0.05)]. Oxytocin had no effect on inactive lever responding during 

either reinstatement test (data not shown).

4. Discussion

Here, we have established sex differences in the dose response of oxytocin on locomotor 

activation, lever responding for sucrose, and sucrose seeking. In fact, females were more 

sensitive to lower doses of oxytocin on all behavioral tests and similarities only emerged 

with the highest dose tested. Our findings are consistent with the notion that oxytocin 

regulates many of the same behaviors in males and females, but the effects are typically 

more profound in females (25, 26). Interestingly, the only test that females did not show an 

enhanced sensitivity to oxytocin pretreatment was during the sucrose primed reinstatement 

test. Males and females both responded in a manner consistent with our previous report that 

1 mg/kg oxytocin reduced responding to a sucrose prime (12). These findings are timely 

given the growing interest in therapeutic treatment with oxytocin for a variety of conditions 

(27). Oxytocin has been suggested for treatment of autism, borderline personality disorder, 

anxiety and attachment disorders, weight reduction, as well as the treatment of addiction. In 

regards to addiction, recent findings suggest that oxytocin may have therapeutic value by 

blocking reward related behaviors (8).

Oxytocin impacts stimulant induced locomotor activity (28); unpublished data from our 

laboratory). However, it is often difficult to detect decreased activity from baseline because 

locomotor activity is already quite low (i.e., floor effect). Consequently, we purposely tested 

locomotor activity in a novel environment in order to focus on exploratory behavior early in 

the session. This methodology allows us to assess a time period when locomotor activity is 

at its highest level in non-manipulated animals. Different patterns of activity emerged 

between males and females, such that 0.3-3 mg/kg oxytocin decreased locomotion in 

females, but only the highest dose was effective in males. The most parsimonious reason for 

this decrease is a transient impairment of motor function. However, we previously 

demonstrated the 1 mg/kg oxytocin was insufficient to reduce lever responding on a 

progressive ratio in males or females (12), ruling out a gross loss of motor control at doses 

of ≤1 mg/kg. More likely, oxytocin had an increased anxiolytic effect in females because the 

test occurred in a novel environment, which can be used as an assessment of anxiety in 

rodents. In males, centrally administered oxytocin (ICV) lowered anxiety related behaviors 

on an elevated plus maze (29, 30). The circuitry by which oxytocin mediates anxiety is 

believed to be sexually dimorphic with the paraventricular nucleus and the amygdala having 

predominate roles in males and females, respectively (29, 31). Although beyond the scope of 

this study, it is possible that a sexually dimorphic role of the amygdala in oxytocin mediated 

anxiety and the unequal distribution of amygdala oxytocin receptors (15) contributed to our 

finding of increased female sensitivity to oxytocin in a novel environment.
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During acquisition of sucrose taking, males showed more active lever presses and earned 

more pellets. However, when taking into account the smaller size of females, sucrose per kg 

of body weight was similar between the sexes. This distinction is important because 

omitting adjustments per body weight can misrepresent the behavioral output and potentially 

contribute to misinterpretations. During self-administration, females were more sensitive to 

oxytocin's ability to decrease active lever presses and the number of pellets earned (per body 

weight) than males. Possible causes include satiation and/or decreased salience of sucrose 

reward. In regards to satiation, several studies have demonstrated a link between oxytocin 

receptor signaling and food intake. First, mice lacking oxytocin receptors consumed larger 

meals than their wild type counterparts during the dark cycle (32). Second, mice with 

reduced hypothalamic oxytocin levels showed higher daily food intake than those with 

normal levels (33). Finally, centrally administered oxytocin and oxytocin agonists induced 

anorexia in rats, which was blocked by oxytocin receptor antagonists (34). Combined, these 

studies suggest that oxytocin may have influenced satiation or appetite suppression in our 

study. However, oxytocin failed to reduce sucrose lever pressing or break points in males 

and females when tested under a progressive ratio schedule, indicating that motivated 

sucrose seeking may not be regulated by oxytocin (12).

Female sensitivity to oxytocin may also indicate a sex specific decrease in the salience of 

sucrose reward. Although distribution varies according to species, oxytocin receptors are 

widely distributed throughout the brain (1), including regions of the mesocorticolimbic 

dopamine system that are critically involved in reward processing (9). In rats, receptor 

expression is sexually dimorphic in many areas (15), with females exhibiting lower oxytocin 

receptor binding densities in the posterior bed nucleus of the stria terminalus, dorsal caudate 

putamen, nucleus accumbens, hippocampus CA1, and medial amygdala (15). Given this 

lower level of centrally distributed oxytocin receptors, it is possible that lower 

concentrations of oxytocin saturate the available receptors in females, resulting in an 

increased behavioral response to the peptide. In our study, 0.3 mg/kg was sufficient to 

reduce locomotor activity in females. Administration of higher doses (0.3, 1, or 3 mg/kg) did 

not result in further decreases. Thus, higher oxytocin doses did not exert a greater effect, 

giving credence to the hypothesis that receptors had become saturated in females. Likewise, 

0.1 mg/kg oxytocin reduced conditioned cue reinstatement to the same extent as the other 

test doses (i.e., 0.3 and 1 mg/kg oxytocin). Unlike cue-induced reinstatement, oxytocin 

reduced sucrose primed reinstatement at the 1 mg/kg dose. A possible explanation for the 

different results may be the distinct neuronal circuitries involved in these two forms of 

reinstatement, which has been demonstrated in drug self-administration studies (35, 36). For 

example, the amygdala is a sexually dimorphic brain region in regards to oxytocin receptor 

expression (15), and this brain area is critical for in drug paired-cue reinstatement, but not 

drug primed reinstatement (35, 36).

Only one oxytocin dose (1 mg/kg) decreased sucrose-primed reinstatement in males and 

females, indicating that oxytocin has a diminished impact when the primary reinforcer is 

present in both males and females. In contrast, oxytocin reduced cue-induced reinstatement 

across a range of doses in females but was only effective at one dose in males. This sex 

difference suggests that males and females may differ in processing conditioned 

associations. Such a notion is supported by sex differences in conditioned place preference 
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for drugs (37) and in fear inhibited feeding (38). However, a more parsimonious explanation 

may exist. The same oxytocin doses that decreased sucrose cue reinstatement in females also 

decreased locomotor activity. As such, we cannot entirely rule out locomotor effects in 

females.

Females were tested on response criteria rather than cycle phase, producing an uneven 

distribution of cycle phase during the different tests and oxytocin doses. Therefore, the 

possibility exists that some of the reported sex differences in response to oxytocin may be 

due to differential regulation of oxytocin receptors, surface expression, and/or oxytocin 

coupling mechanisms by estrogen and progesterone. Estrogen can increase oxytocin receptor 

density in the ventromedial nucleus (39) and receptor affinity in the medial preoptic area of 

the hypothalamus (40). Moreover, the increased effect of oxytocin in females may be 

influenced by progesterone-induced increase of oxytocin receptor density in limbic 

structures (41).

Our findings reveal that females are more sensitive than males to lower doses of oxytocin in 

both conditioned and unconditioned behavioral responses. The oxytocin system, including 

receptor expression, is sexually dimorphic. These sexual dimorphisms likely contribute to 

the enhanced sensitivity to oxytocin expressed behaviorally in females. Together these 

findings suggest that the circuitry underlying these oxytocin-induced behavioral changes 

needs to be more fully explored. In addition, sex differences derived from this and other 

such studies can directly inform clinical studies that use oxytocin in treatment protocols. 

Specifically, current proposals by health care professionals to apply oxytocin as a treatment 

of autism, borderline personality disorder, anxiety and attachment disorders, and addiction 

should establish separate dose parameters to account for greater female sensitivity to the 

neuropeptide.
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Highlights

• Oxytocin impacts conditioned and unconditioned behaviors in male and female 

rats

• Oxytocin suppressed locomotor activity in females to a greater extent than 

males

• Oxytocin decreased sucrose intake and seeking greater in females relative to 

males

• Overall, females were more sensitive to oxytocin's behavioral effects than males
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Figure 1. 
Novelty induced locomotor activity in male and female rats following oxytocin pretreatment 

(30 min injection to placement). A) Total distance traveled over 90 min session. Females 

had higher distance traveled scores that were reduced following oxytocin. B) Female and C) 

male distance traveled scores represented in 5 min time bins throughout the 90 min session.

#Females significantly higher than male vehicle (p<0.05),

*Significantly lower than same sex vehicle (p<0.05)
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Figure 2. 
Lever presses and sucrose pellets earned during acquisition of sucrose responding. A) Lever 

presses during 7 days of sucrose availability. Males pressed the active lever more than 

females during this period. B) Sucrose pellets earned. Males earned more pellets than 

females. C) Adjusted pellets earned per body weight. Males and females did not differ 

during this time point on the pellets earned per body weight.

*Significant difference from males (p<0.05)
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Figure 3. 
Lever presses and sucrose pellets earned during acquisition of sucrose responding following 

oxytocin treatment. A) Active lever presses in male and female rats. Females were more 

sensitive to oxytocin than males. B) Number of actual pellets earned during acquisition 

following oxytocin treatment. C) Adjusted pellets earned by body weights in males and 

females. Females were more sensitive to oxytocin than their male counterparts.

*Significantly lower than same sex vehicle (p<0.05)
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Figure 4. 
Lever presses during reinstatement tests. A) Active lever presses in conditioned cue 

reinstatement following oxytocin pretreatment. Females were more sensitive than males for 

this test. B) Active lever presses during sucrose primed reinstatement.

* Significantly lower than same sex vehicle (p<0.05)
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