
Review Article
Human Paraoxonase 1 as a Pharmacologic Agent:
Limitations and Perspectives

Priyanka Bajaj, Rajan K. Tripathy, Geetika Aggarwal, and Abhay H. Pande

Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67,
Sahibzada Ajit Singh Nagar, Punjab 160062, India

Correspondence should be addressed to Abhay H. Pande; apande@niper.ac.in

Received 11 May 2014; Revised 13 August 2014; Accepted 27 August 2014; Published 20 October 2014

Academic Editor: Srinivasa Reddy

Copyright © 2014 Priyanka Bajaj et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human PON1 (h-PON1) is a multifaceted enzyme and can hydrolyze (and inactivate) a wide range of substrates.The enzyme shows
anti-inflammatory, antioxidative, antiatherogenic, ant-diabetic, antimicrobial, and organophosphate (OP)-detoxifying properties.
However, there are certain limitations regarding large-scale production and use of h-PON1 as a therapeutic candidate.These include
difficulties in producing recombinant h-PON1 (rh-PON1) using microbial expression system, low hydrolytic activity of wild-type
h-PON1 towards certain substrates, and low storage stability of the purified enzyme.This review summarizes the work done in our
laboratory to address these limitations. Our results show that (a) optimized polynucleotide sequence encoding rh-PON1 can express
the protein in an active form in E. coli and can be used to generate variant of the enzyme having enhanced hydrolytic activity, (b)
in vitro refolding of rh-PON1 enzyme can dramatically increase the yield of an active enzyme, (c) common excipients can be used
to stabilize purified rh-PON1 enzyme when stored under different storage conditions, and (d) variants of rh-PON1 enzyme impart
significant protection against OP-poisoning in human blood (ex vivo) and mouse (in vivo) model of OP-poisoning. The rh-PON1
variants and their process of production discussed here will help to develop h-PON1 as a therapeutic candidate.

1. Introduction

Human paraoxonase 1 (h-PON1) (EC 3.1.8.1) is a ∼43 kDa
polypeptide of 355 amino acids [1, 2]. It is primarily syn-
thesized in the liver and is secreted into the bloodstream
where it is associated with a category of high density lipopro-
tein particles [3–6]. The h-PON1 is a multitasking enzyme
and can hydrolyze different types of substrates. Various
hydrolytic activities of h-PON1 can be broadly grouped
into three categories: arylesterase, phosphotriesterase, and
lactonase [7].The enzyme exhibits anti-inflammatory, antiox-
idative, antiatherogenic, antidiabetic, antimicrobial, and OP-
neutralizing properties [1, 8–12]. Recent reports suggest that
h-PON1 also plays an important role in the metabolism of
certain drugs [13–15].

2. Protective Role of PON1 and PON1 as
a Potential Therapeutic Candidate

The level and the activity of serum PON1 in individuals suf-
fering from cardiovascular diseases, liver diseases, diabetes,

renal diseases, cancer, and obesity are considerably lower than
in the normal subjects [5, 16–21]. The level and the activity of
circulating PON1 are also considered as novel biomarkers for
the evaluation of these diseases in humans [22–26]. Animals
deficient in PON1 have been found to be more susceptible
to these disease conditions and the overexpression of h-
PON1 or administration of purified PON1 in these animals
has been shown to prevent/retard the development of these
disease conditions [10, 12, 27–30]. The beneficial role of h-
PON1 in OP-poisoning is also well demonstrated. Animals
deficient in PON1 (knockout animals) have been found to be
more susceptible to OP-poisoning compared to their wild-
type counterpart and administration of purified PON1 has
been shown to provide protection against OP-poisoning in
various animal models [12, 31–39]. In some cases, PON1 has
been shown to provide better protection than the existing
antidotes of OP-poisoning [40]. Antimicrobial role of PON1
is also well documented in the literature [8, 41, 42]. Thus, h-
PON1 has emerged as a strong candidate for the development
of therapeutic intervention against a variety of conditions in
humans [8, 12, 43–55].
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3. Problems Associated with the Development
of h-PON1 as a Therapeutic Candidate

Native h-PON1 does not have sufficiently high hydrolytic
activity against all its substrates; therefore, there is a need
to develop improved variant(s) of h-PON1 having enhanced
hydrolytic activity against desired substrate(s) [45, 56, 57].
This can be done by protein engineering in which changing
the amino acid residue at a particular position in h-PON1 can
develop a variant of the enzyme having enhanced hydrolytic
activity. To do this, a simple system for the expression and the
production of rh-PON1 is urgently needed. E. coli expression
system is the most preferred system for the manufacture of
recombinant proteins [58–60]. This system also permits easy
genetic manipulation to generate desired variant(s) of the
target recombinant protein, characterization of which can
also help in elucidating the mechanism of action of the target
protein.

The production of rh-PON1 in high yield and in func-
tionally active form using an E. coli expression system has
been difficult until now [27, 36, 61, 62]. Numerous complex
approaches were used earlier to generate active rh-PON1
with high purity and high yield using this expression system
(e.g., generation of gene family reshuffled chimeric-PON1
(Chi-PON1) [27], addition of >5 extra amino acids to the
recombinant enzyme [63], and use of specialized E. coli cells
which contain additional “helper” plasmid(s) [36, 63]).These
approaches resulted in either considerable alteration in the
original amino acid sequence of the h-PON1 or significantly
low yield of the recombinant protein.

4. Polymorphism in PON1 and Generation of
Improved Variants

The crystal structure of h-PON1 has not been solved yet
and the molecular details of how the enzyme hydrolyzes
different types of substrates are also not clear. Literature
suggests that amino acid residues at positions 115 and 192 in
h-PON1 play an important role in modulating the hydrolytic
activities of the enzyme [56, 64, 65]. In native h-PON1,
histidine (H) residue occupies 115 and 134 positions while
glutamine (Q) or arginine (R) is present at position 192.
It is proposed that H115 forms a catalytic dyad with H134
and participates in the hydrolytic activity of PON1. Pres-
ence of Q/R at position 192 of PON1 dramatically affects
the hydrolytic properties of the enzyme towards particular
substrate(s). Alloform of h-PON1 containing R at position
192 efficiently degrades paraoxon while alloform carrying
Q at the same position possesses better hydrolytic activity
towards soman and sarin [9, 66–68]. Interestingly, PON1
from rabbit plasma contains lysine (K) residue at posi-
tion 192 and exhibits very high hydrolytic activity towards
paraoxon and lactones [69]. Recently, it was observed
that substitution of H115 with tryptophan (W) residue
increases the hydrolytic activity of the enzyme towards
OP-compounds and decreases the lactone- and arylester-
hydrolyzing activities of the enzyme [27, 56, 65, 70]. Based on
this information and in order to understand how the enzyme

hydrolyzes different types of substrates, we have generated
and characterized the following variants of rh-PON1(wt): rh-
PON1(H115W), rh-PON1(H115W;R192K), rh-PON1(H115W;R192Q),
rh-PON1(H115W;H134R), rh-PON1(H115W;H134R;R192K), and rh-
PON1(L69G;S111T;H115W;H134R;R192K;F222S;T332S) [71, 72].

5. Expression of Active rh-PON1
Enzymes in E. coli

In order to express rh-PON1 enzymes in the active form in
E. coli, codon optimized genes encoding rh-PON1 enzymes
were generated and expressed in E. coli. rh-PON1 enzymes
were expressed in soluble and active form and as (His)6-
tagged proteins. These recombinant enzymes are referred as
“soluble,” to differentiate them from the refolded enzymes
described later in this report. The recombinant proteins were
purified to homogeneity using a two-step chromatographic
procedure [71, 72]. Using this procedure, we were able to
get a yield of 0.2–0.25mg of pure and active rh-PON1/g wet
cell mass of E. coli. Characterization of rh-PON1 enzymes
revealed that rh-PON1(wt) is similar to native h-PON1 in
terms of its hydrolytic activities as well as its amino acid
sequence [71, 72].

Although we managed to express rh-PON1 enzymes in
active form in E. coli, the final yield of the purified protein
was very low despite growing the cells expressing rh-PON1
enzyme at a low temperature and inducing the expression of
recombinant protein by using low concentration of inducer
(i.e., IPTG), the twomost important parameters that promote
the expression of recombinant proteins in active form in E.
coli [73, 74].

6. Production of rh-PON1 Enzymes by
Refolding of Inclusion Bodies (IBs)

Being a eukaryotic protein, overexpression of rh-PON1 in
E. coli leads to aggregation of the overexpressed protein in
inactive form as IBs. Thus, it is difficult to express active
rh-PON1 enzyme in high amount in E. coli [43, 61, 62].
Also, for the purification of recombinant proteins expressed
in low amount, the presence of “tag” in the recombinant
protein is essential [74]. Although, this “tag” helps in easy
purification of the recombinant protein (by using affinity
chromatography), it may lead to complications when such
tag-containing proteins are used as drugs in physiological
conditions [74].

In vitro refolding of recombinant proteins present in
inactive form in IBs to their active form has emerged as an
attractive alternative over production of soluble and active
recombinant proteins [75–77]. However, in vitro refolding
of recombinant proteins is considered as a major bottleneck
in protein production scheme [75–77]. We have developed
a method for production of active rh-PON1 enzymes in
high yield by in vitro refolding of IBs [78]. The (His)6-tag
present in the rh-PON1 enzymes was removed and the rh-
PON1 enzymes containing no (His)6-tag were overexpressed
in E. coli as IBs. The IBs were purified and the recombinant
proteins were refolded (to their active form) by diluting the



The Scientific World Journal 3

denatured protein into refolding buffer. The active enzymes
were isolated from the refolding mixture by ion-exchange
chromatography. Dilution alongwith additive assisted refold-
ingmethod is a widely preferred approach for industrial scale
production of recombinant proteins over other methods of in
vitro refolding [79]. Enzymatic characterization of refolded
rh-PON1 enzymes indicated that the catalytic properties of
the refolded enzymes were similar to their soluble counter-
parts. The refolded rh-PON1 enzymes have 100% amino acid
sequence identity to native h-PON1, with minimal changes
necessary for enhancing its hydrolytic activity, and are devoid
of any “tag” or extra amino acids. By using the procedure of
in vitro refolding and isolation of active protein, we were able
to get a yield which is significantly higher than the yield of
rh-PON1 reported in the literature [78].

7. Storage Stability of Purified
rh-PON1 Enzymes

Purified h-PON1 (recombinant or isolated from human
plasma) is relatively unstable and rapidly loses its enzymatic
activity when stored in aqueous buffer at 25∘C or 4∘C [80–
85]. h-PON1 is an important protein and for successful
commercial applications and use, long-term storage stability
of purified rh-PON1 enzyme is important. A few attempts
were made earlier by researchers to increase the stability of
PON1 protein [40, 85]. But in these studies, complex phys-
iological counterparts of h-PON1 (like reconstituted HDL
[40] or human phosphate binding protein (HPBP) [85]) had
been used to stabilize r-PON1. However, till now no detailed
studies have been carried out to find simpler pharmaceutical
excipients that can ensure continued storage of purified h-
PON1 under different storage conditions without loss of its
enzymatic activity.

To increase their shelf life, biotechnologically important
proteins are usually stored as liquid or lyophilized formula-
tions. We have screened various excipients for their ability to
stabilize rh-PON1 when stored in either aqueous solution or
lyophilized form at 25∘C [86]. Our results show that glycine
and serine are most effective in stabilizing the enzyme when
stored in aqueous buffer at 25∘C, and trehalose, maltose, and
BSA exerted maximum stabilization effect when the enzyme
was stored in the lyophilized form at 25∘C [86]. The results
suggest that simpler pharmaceutical excipients can be used
to stabilize purified rh-PON1 enzymes when stored for a long
period of time under different storage conditions and these
results can be used to develop formulation(s) of rh-PON1
enzymes for commercial use.

8. Prophylactic Activity of Refolded rh-PON1
Enzyme against OP-Poisoning

OP-compounds are toxic chemicals that exert their dele-
terious effect by inhibiting neurotransmitter-metabolizing
enzymes [87, 88]. Current treatments available for OP-
poisoning are considered as unsatisfactory and inadequate,
and there is an urgent need for the development of more
effective treatment for OP-poisoning [44–49]. h-PON1 is a

strong candidate for the development of prophylactic and
therapeutic agent against OP-poisoning in humans [44–49].

Prophylactic activity of refolded rh-PON1 enzyme was
studied using mouse model of OP-poisoning [11, 40]. Our
results show that the refolded rh-PON1 enzyme was not toxic
andwas safely tolerated by the animals and pretreatment with
refolded rh-PON1 enzyme imparted protection against OP-
poisoning in mice [78].

9. Conclusion

H-PON1 is a versatile protein and possesses multiple benefi-
cial properties. It is a potential candidate for the development
of therapeutic intervention against OP-poisoning and other
disease conditions in humans. Availability of a procedure to
produce rh-PON1 enzymes in pure form and high yield by
using microbial expression system will help tremendously in
generating variants of h-PON1, characterization of which will
increase our knowledge about the catalytic mechanism of the
enzyme. This will also help in producing desired variant(s)
of h-PON1 enzyme in large quantity so that the therapeutic
potential of such variant(s) can be tested in various animal
models. This will certainly help in developing h-PON1 as a
pharmacologic agent in future.
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