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Myocardial dysfunction is a known risk factor for morbidity and mortality in hypoplastic

left heart syndrome (HLHS). Variants in some transcription factor and contractility genes,

which are known to cause cardiomyopathy, have previously been associated with

impaired right ventricular function in some HLHS patients. The care of HLHS patients is

resource demanding. Identifying genetic variants associated with myocardial dysfunction

would be helpful in tailoring the follow-up and therapeutic strategies. We tested whether

a commercial cardiomyopathy gene panel could serve as a diagnostic tool in a Finnish

cohort of HLHS patients with impaired right ventricular function to identify potentially

pathogenic variants associatedwith poor prognosis. None of the patients had pathogenic

or likely pathogenic variants in the studied cardiomyopathy-associated genes. Thus, our

approach of performing a cardiomyopathy gene panel to identify pathogenic variants as

directly causal or as modifiers for worse outcomes in hypoplastic left heart syndrome is

not useful in clinical practice at the moment.

Keywords: hypoplastic left heart syndrome, congenital heart defects, genetics, precision medicine, heart failure,
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INTRODUCTION

Congenital heart defects (CHD), structural defects of the heart and great vessels, are the most
common congenital malformations affecting nearly 1% of the population (1, 2). Hypoplastic
left heart syndrome (HLHS) is a severe form of CHD where there is atrioventricular and
ventriculoarterial (AV/VA) concordance with mitral and aortic stenosis or atresia and left
ventricular hypoplasia rendering the left side unable to support the systemic circulation. The
palliative treatment strategy for HLHS consists of three operations: (1) the Norwood procedure
shortly after birth, (2) the Bi-directional Glenn operation, which is usually performed at 4–
6 months of age, and (3) the Fontan procedure usually performed at 2–4 years of age.
In HLHS, the right ventricle acts as the systemic ventricle. Myocardial dysfunction is a
known risk factor for morbidity and mortality in HLHS patients throughout the treatment
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protocol (3, 4). The etiology of myocardial dysfunction is
poorly understood. Potential risk factors include changes
in hemodynamic stress during the different palliation
stages, residual anatomic obstructions, arrhythmias,
valve insufficiencies, myocardial ischemia, and genetic
predisposition (5). In addition, the right ventricular myocardial
microarchitecture is not optimized to serve the systemic
circulation, which might contribute to pathogenesis (6).

While impaired chamber flow due to outflow tract obstruction
and primary deficiencies in myocardial growth during early
cardiac development are potential etiologic contributors to
HLHS, a genetic component plays a role in disease development.
Identifying gene variants associated with HLHS has been
challenging. According to previous studies, about 10% of
non-syndromic HLHS is likely monogenic (7), NOTCH1
being the predominant monogenic cause (8–12). However, in
most cases, the inheritance pattern is complex. Potentially
pathogenic variants in a handful of genes associated with
cardiomyopathy, especially MYH6, have been associated with
both the development of congenital heart defects and the disease
course in the form of impaired myocardial dysfunction in these
patients (13–15).

Identifying genetic variants that increase the risk for poor
ventricular function in HLHS would lead to optimized follow-up
and care. To identify such variants, we performed a commercial
cardiomyopathy gene panel sequencing in a cohort of HLHS
patients with impaired right ventricle function.

MATERIALS AND METHODS

The study was conducted at Children’s Hospital, Helsinki
University Hospital, Finland. The study protocol was approved
by the Ethics Board of Helsinki and Uusimaa Hospital District
(Biomedicum Helsinki 2, Tukholmankatu 8, 00290 Helsinki,
Finland). Written informed consent was obtained from the
legal guardians of the participants and also directly from all
participants aged over 6 years.

From a national cohort of all 134 hypoplastic left heart
syndrome patients born in Finland between 1/1998 and
9/2012, we identified 10 non-syndromic patients with impaired
right ventricular function, but no clear anatomic problem
explaining the impairment (Table 1). The patients did not
have extra-cardiac anomalies. All patients were of self-reported
Finnish origin. Clinical data were collected from hospital
records. Right ventricle ejection fraction was reported from
cardiac magnetic resonance imaging data, when available,
otherwise as Simpson’s Biplane ejection fraction calculated
from echocardiography data. Three patients did not have
numeric data on the ejection fraction, but the right ventricle
dysfunction was described qualitatively. Four patients underwent
heart transplantation.

DNA was extracted from peripheral blood or saliva samples.
DNA was analyzed by next-generation sequencing using a
targeted commercial cardiomyopathy panel including 103 genes
by Blueprint Genetics Ltd. (listed in Supplementary Table 1).
The gene panel includes well-known disease genes based

TABLE 1 | Clinical characteristics of HLHS study subjects.

Subject Clinical data

1 TCPC operation at 3 years of age. RV failure at 15 years of age

(ECHO RV-EF 15–20%). Heart transplantation at 15 years of age.

2 BDG operation at 4 months of age. Reduced RV function at 1 years

of age (ECHO RV-EF 35%), responded to heart failure treatment and

stabilized. TCPC operation at 2 years of age.

3 Poor RV function at 3 months of age, BDG operation at 3 months.

Responded to heart failure treatment and stabilized by TCPC

operation which was done at 3 years of age. By 7 years again

reduced RV function (CMRI RV-EF 30)%.

4 Poor RV function in ECHO after BDG operation at 6 months of age,

responded to heart failure treatment and stabilized by 1.5 years of

age. TCPC at 3.5 years of age.

5 BDG operation at 3 months of age. Poor RV function from 1 years of

age (ECHO RV-EF 15%). Heart transplantation at 1.5 years of age.

6 TCPC operation at 2.5 years of age. Poor RV function at 9.5 years of

age (CMRI RV-EF 30%). Responded to heart failure treatment and

stabilized.

7 TCPC operation at 4.5 years of age. Shortly after that poor RV

function (ECHO RV-EF 30%). Listed for heart transplantation for 2

years, but stabilized with treatment.

8 TCPC operation at 3 years of age. Poor RV function and heart

transplantation at 6 years of age.

9 TCPC operation at 3.5 years of age. Poor RV function from 12 years

of age (ECHO RV-EF 31%). Heart transplantation at 13 years of age.

10 Poor RV function in ECHO after BDG operation (done at 6 months of

age). Responded to heart failure treatment and stabilized before

TCPC operation, which was done at 3 years of age.

BDG, Bidirectional Glenn; CMRI, cardiac magnetic resonance imaging; ECHO,

echocardiogram; RV, right ventricle; RV-EF, right ventricle ejection fraction; TCPC, Total

cavopulmonary connection.

on curated gene reviews and variant databases [Clinical
Genomic Database (CGD; National Human Genome Research
Institute/NIH), ClinGen—Clinical Genome Resource,
DECIPHER/DD2GP, BabySeq Project (G2P), HGMD, and
ClinVar], and newly identified disease-causing genes from peer-
reviewed publications with functional evidence of pathogenicity.
Synonymous variants and variants with a minor allele frequency
over 0.01 in any subpopulation of gnomAD (16) were excluded.
Variants were evaluated for their pathogenicity using in
silico tools (Mutation Taster, SIFT, and PolyPhen-2), amino
acid conservation in species and existing public and private
mutation databases.

RESULTS

None of the gene variants found in the study subjects could be
classified as pathogenic or likely pathogenic according to the
American College of Medical Genetics and Genomics Guidelines
(17). The variants are presented in Supplementary Table 2.
Nine missense variants were classified as variants of uncertain
significance. There were no loss-of-function variants in the
genes investigated. Two study subjects had two missense variants
in TTN.
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DISCUSSION

Identifying genetic variants contributing to disease course is a
major objective in the precision medicine era. As variants in the
cardiomyopathy associated contractility gene MYH6 have been
associated with poor prognosis in HLHS and other CHD patients
(7, 13, 14), we hypothesized that a cardiomyopathy gene panel
could function as a prognostic tool in HLHS. However, none
of the studied HLHS patients with impaired right ventricular
function had pathogenic or likely pathogenic variants included in
a large cardiomyopathy gene panel. This suggests that conducting
a cardiomyopathy gene panel is not useful in predicting the
disease course in these patients in a clinical setting.

The genetic etiology in CHD is complex. One tenth of non-
syndromic HLHS is thought to be monogenic, and the only
variants that are repeatedly found in HLHS patients areNOTCH1
loss of function variants (8–12). Variants in GJA1 (18), NKX2.5
(19), and MYH6 (13), genes have been suggested as causal for
HLHS in certain sporadic families. In addition, syndromic or rare
copy number variants in cardiogenic genes have been associated
with HLHS and other left sided defects, such as coarctation of the
aorta, bicuspid aortic valve, and congenital aortic stenosis, and
are estimated be the cause in 10% of cases (20–24). Syndromes
associated with HLHS include Turner syndrome (loss of part
or all of an X chromosome in females), 22q11.2 deletion
syndrome, Jacobsen Syndrome (11q terminal deletion disorder),
Kabuki syndrome (single gene variants in KMT2D and KDM6A),
VACTERL association (genetic origin unknown), Rubinstein-
Taybi (single gene variants in CBP and EP300), Adams-Oliver
syndrome (single gene variants in ARHGAP31, DOCK6, RBPJ,
EOGT, NOTCH1, DLL4), and Beckwith-Wiedemann syndrome
(single gene variants in CDKNIC) (25).

Interestingly, variants in some cardiomyopathy associated
genes have been suspected as pathogenic also in CHD.Damaging,
recessive MYH6 variants were enriched in a large cohort of
CHD individuals where most of the MYH6 variant carriers were
left ventricular outflow tract obstruction patients (7). MYH7
variants have been found in left ventricular non-compaction
associated with bicuspid aortic valve (26) and Ebstein anomaly
(27). Also variants in transcription factor genes, such as
GATA4 and TBX20, have been associated with both CHD
and dilated cardiomyopathy (28–30). Recently, a homozygous
truncating variant in PKP2, a gene previously associated with
arrhythmogenic right ventricular cardiomyopathy, was evaluated
as causal in two siblings diagnosed with severe HLHS with
prominently trabeculated abnormal myocardium and reduced
contractility of both ventricles (31).

In addition to causing CHD, variants in cardiomyopathy
associated genes have been suspected to worsen the disease
course in HLHS and other CHD. Dominant (14) and recessive
(13) damaging variants in MYH6 have been related to poor
ventricular function and need for cardiac transplantation in
HLHS patients, and recessive damaging variants in MYH6 were
associated with abnormal ventricular function in a study of a wide
range of CHD (7), although no segregation ofMYH6 variants has
thus far been demonstrated. In a study of five HLHS individuals
who developed reduced right ventricular function, two were

found to have rare compound heterozygous mutations inMYH6
that were assessed as pathogenic (13). In another study of a
wide range of CHD, recessive MYH6 variants were identified in
7/2,871 individuals, five of whom had left ventricular outflow
tract obstruction defects (7). Four of the seven individuals had
abnormal ventricular function. A weakness of these studies
was the lack of functional data—the pathogenicity was assessed
by in silico modeling only. In the third study of 190 HLHS
individuals, 20 (10.5%) hadMYH6 variants in contrast to 2.9% of
controls (14). Of these, 19 individuals were heterozygous carriers,
and 10 of the variants were novel. Variants were observed
across all functional domains of α-MHC. Those with MYH6
variants were overrepresented in the group needing a cardiac
transplant. Transcriptome and protein expression analyses from
patient-derived cardiac tissue and induced pluripotent stem
cell-derived cardiomyocytes indicated differential expression in
some contractility genes in patients with MYH6 variants and
controls. However, the MYH6 transcript levels themselves were
not different between cases and controls.

The disease course of HLHS is variable. Identifying genetic
variants associated with poor prognosis would be helpful in
tailoring the follow-up and therapeutic strategies. Contrary
to our hypothesis, pathogenic variants in MYH6 or other
cardiomyopathy genes were not found in this Finnish cohort of
HLHS patients with poor ventricular function. A limitation of
this study is the small cohort size, however, HLHS is a rare disease
and these patients represent those with the most unfavorable
outcome in a national cohort.

It is certainly likely that in most cases congenital heart
defects are of multifactorial origin—a combination of one or
more predisposing genetic variants and adverse environmental
exposure—and only a small number of cases are explained
by monogenic causes. In addition, it is probable that the
causative or additional genetic variants modify the disease
course. While variants in genes associated with cardiomyopathy
might contribute to HLHS outcome in some patients, our
finding does not support this as a significant predisposing
factor at the patient cohort level. Thus, our approach
of performing a cardiomyopathy gene panel to identify
pathogenic variants as directly causal or as modifiers for
worse outcomes in HLHS is not useful in clinical practice
at the moment.
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