SUPPLEMENTARY INFORMATION

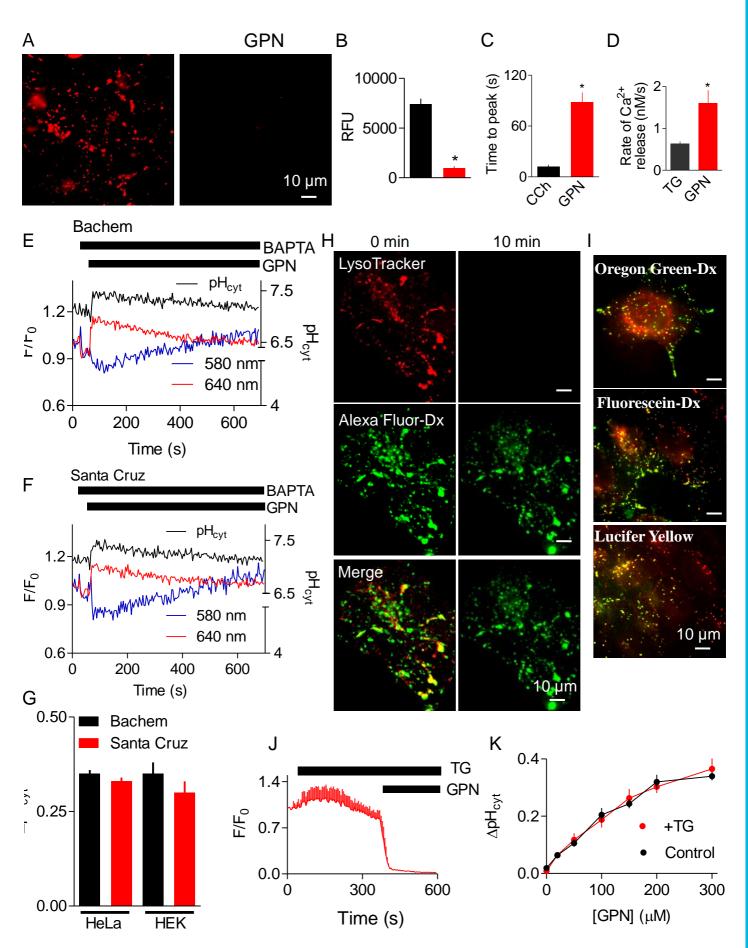
GPN does not release lysosomal Ca^{2+} , but evokes Ca^{2+} release from the ER by increasing cytosolic pH independent of cathepsin C

Peace Atakpa, Laura M. van Marrewijk, Michael Apta-Smith, Sumita Chakraborty and Colin W. Taylor

Abbreviations

 $[Ca^{2+}]_c$, cytosolic free Ca^{2+} concentration; CICR, Ca^{2+} -induced Ca^{2+} release; CPA, cyclopiazonic acid; CTSC, cathepsin C; ER, endoplasmic reticuum; GPN, glycyl-L-phenylalanine 2-napthylamide (D-GPN has D-phenylalanine); IP₃R, inositol 1,4,5-trisphosphate receptor; NaP, sodium proprionate; pH_{cyt} (pH_{ly} , pH_{ER}) cytosolic (lysosomal, ER) pH; RyR, ryanodine receptor; SERCA, SR/ER Ca^{2+} -ATPase.

	^a Estimated pK_a	^a Estimated ACD/logP	^d Estimated ClogP
NH ₃	8.86	-0.98	ND
LysoTracker Red	^b 7.5	ND	^b 2.10
^c GPN	7.84	2.40	3.01
Fluoxetine	9.8	4.17	4.57
Leu-Leu-OMe	8.43	2.01	1.54


Table S1. Properties of GPN, fluoxetine and established lysosomotropic agents.

Basic p K_a refers to the p K_a of the most basic moiety within the molecule. logP is the log of the partition coefficient of the neutral species between n-octanol and water. ACD/logP and ClogP are derived from different algorithms used to estimate logP values (reviewed in Mannhold et al., 2009). ^aFrom Chemicalize (2018) calculation module: https://chemicalize.com/ developed by ChemAxon (http://www.chemaxon.com); except for ^b(Duvvuri et al., 2004). ^cFor GPN, we disregard the most extremely basic moieties since their p K_a values (13.6 and 15.3) lie too far beyond the physiological pH range; p K_a values determined using the ACD/PhysChem Suite, version 12.0, Advanced Chemistry Development Inc, Toronto, Canada (http://ilab.cds.rsc.org/?cdsrdr=1). ^dFrom http://ilab.cds.rsc.org/?cdsrdr=1, except for ^b(Duvvuri et al., 2004). Most lysosomotropic compounds have basic p K_a values >6.5 and ClogP values >2 (Nadanaciva et al., 2011). ND,

SUPPLEMENTARY REFERENCES

not determined.

- **Duvvuri, M., Gong, Y., Chatterji, D. and Krise, J. P.** (2004). Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. *J. Biol. Chem.* **279**, 32367-32372.
- Konieczny, V., Tovey, S. C., Mataragka, S., Prole, D. L. and Taylor, C. W. (2017). Cyclic AMP recruits a discrete Intracellular Ca²⁺ store by unmasking hypersensitive IP₃ receptors. *Cell Rep.* **18**, 711-722.
- Mannhold, R., Poda, G. I., Ostermann, C. and Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. *J. Pharm. Sci.* **98**, 861-893.
- Nadanaciva, S., Lu, S., Gebhard, D. F., Jessen, B. A., Pennie, W. D. and Will, Y. (2011). A high content screening assay for identifying lysosomotropic compounds. *Toxicol. In Vitro* 25, 715-723.
- Pethig, R., Kuhn, M., Payne, R., Adler, E., Chen, T. H. and Jaffe, L. F. (1989). On the dissociation constants of BAPTA-type calcium buffers. *Cell Calcium* 10, 491-498.
- **Tsien, R. Y.** (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. *Biochemistry* **19**, 2396-2404.

SEM, n = 3, each with duplicate determinations).

Fig. S1. Similar responses to GPN from different sources and in different cells. Figure on preceding page. (A) Wide-field images show LysoTracker Red staining of HEK cells with and without GPN (200 µM, 30 min). The results show that even after prolonged stimulation with GPN, pH_{IV} does not recover. (**B**) Summary results (mean \pm SEM, n=4coverslips) show the intensity of LysoTracker Red staining. (C) From experiments similar to those in **Fig. 1G**, times to peak increase in $[Ca^{2+}]_c$ are shown (mean \pm SEM, n = 4, with 3 replicates). *P < 0.05, Student's t-test. (**D**) Similar analysis shows rates of rise of [Ca²⁺]_c after addition of GPN (200 µM) or thapsigargin (1 µM) in Ca2+-free HBS, each measured over the same range of $[Ca^{2+}]_c$. Results show means \pm SEM, n = 5, with 3 replicates. *P <0.05, Student's t-test. (E,F) Typical traces show the reciprocal changes in SNARF-5F fluorescence at the two emission wavelengths used (580 nm and 640 nm) and pH_{cyt} after addition of GPN (200 µM) from Bachem (E) or Santa Cruz (F). (G) Summary results (mean \pm SEM, n = 3, with 3 replicates) show the effects of GPN (200 μ M, from the indicated suppliers) on ΔpH_{cvt} of HEK and HeLa cells. (H) Simultaneous recording of LysoTracker Red and Alexa Fluor 488-Dx (M_r ~10,000) from HEK cells treated with GPN (200 µM, 10 min) showing that an increase in pH_{Iv} is not accompanied by loss of large molecules from lysosomes. (I) Overlay images of HEK cells loaded with LysoTracker Red and either Oregon Green-Dx, Fluorescein-Dx or Lucifer Yellow. (J) Typical time course showing effect of GPN (200 µM) on LysoTracker Red fluorescence in HEK cells after treatment with thapsigargin (TG, 1 µM, 5 min). See Fig. 1C for a similar analysis without TG. (K) Similar analyses of the effects of the indicated concentrations of GPN in Ca²⁺-free HBS alone or after treatment with thapsigargin (TG, 1 μ M, 15 min) on ΔpH_{cvt} (mean ±

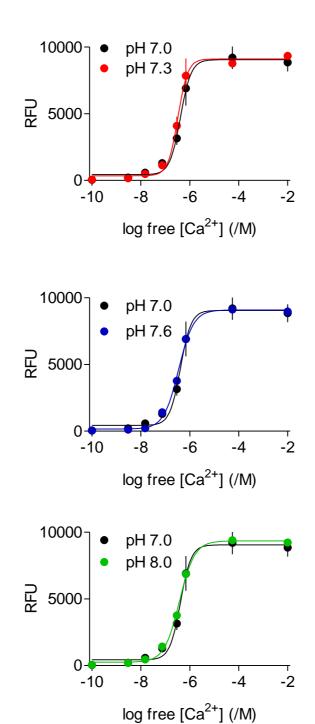
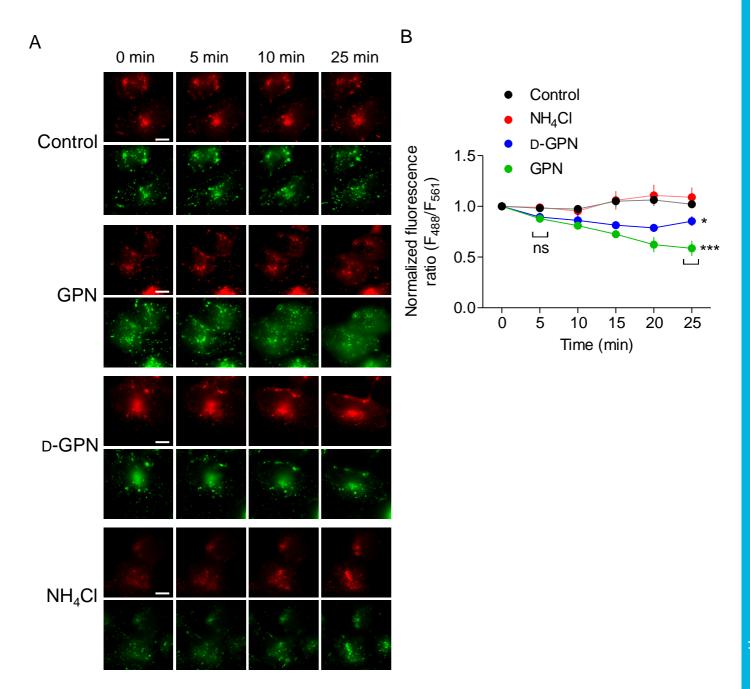
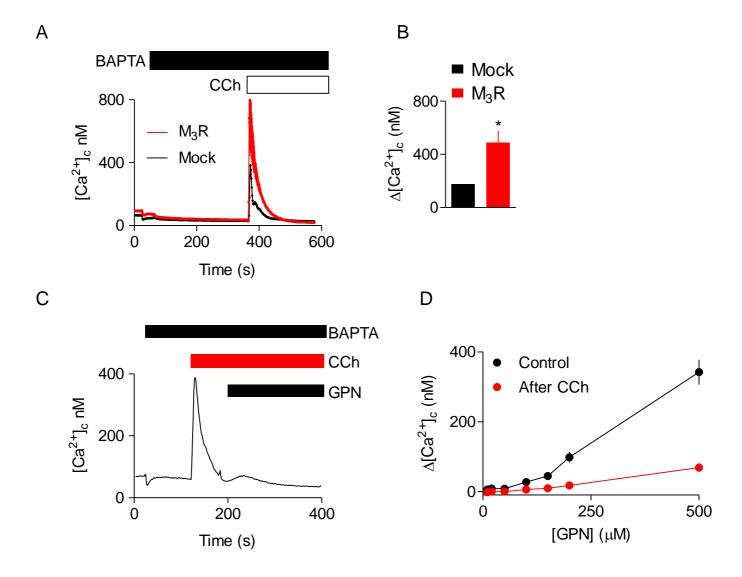
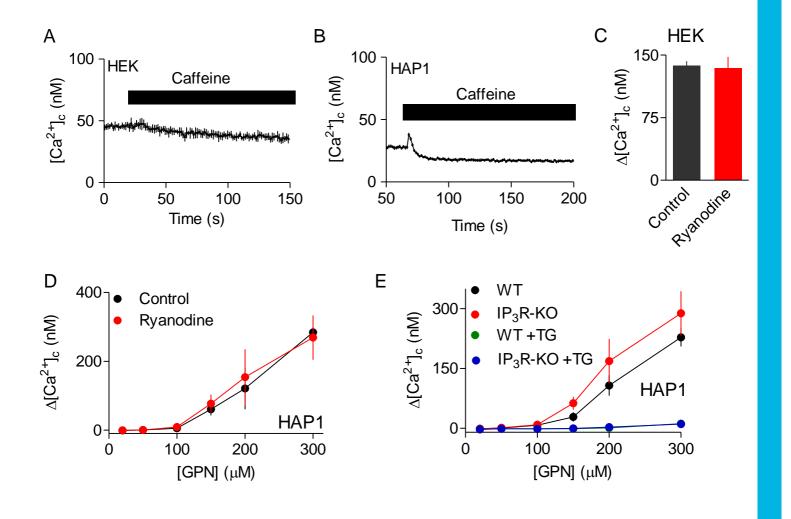
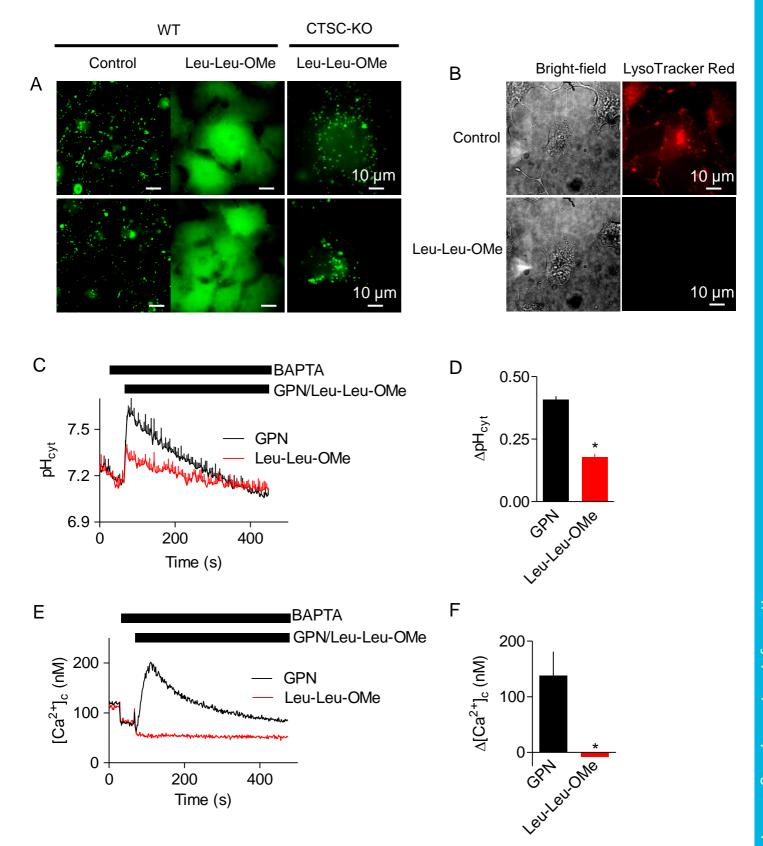



Fig. S2. The affinity of fluo 8 for Ca²⁺ is unaffected by changing pH between 7 and 8. Since the K_d of BAPTA for Ca²⁺ (160 nM in the absence of Mg²⁺) (Pethig et al., 1989) is unaffected by pH changes between 7 and 8 (Tsien, 1980), the free [Ca²⁺] of cytosol-like medium (CLM) containing 10 mM BAPTA, but without Mg²⁺, was computed at the indicated pH using the same K_d for Ca²⁺ for each pH. Results (mean \pm SEM, n=3, each with 3 determinations) show the fluorescence recorded from fluo 8 (2 μ M). RFU, relative fluorescence units. The results indicate that the K_d of fluo 8 for Ca²⁺ is the same at pH 7 (434 \pm 51 nM), pH 7.3 (374 \pm 43 nM), pH 7.6 (355 \pm 39 nM) and pH 8 (401 \pm 29 nM).

Fig. S3. Sustained exposure to GPN causes some loss of high-M_r **fluorophores from lysosomes.** (**A**) Typical wide-field images of HEK cells expressing LAMP1-mCherry (red) and with their lysosomes loaded with dextran-conjugated Alexa Fluor-488 (~10 kDa, green) and then treated with GPN (200 μM), D-GPN (200 μM), NH₄Cl (20 mM) or vehicle for the indicated times. Scale bars = 10 μm. Images were collected immediately before the additions and at 5-min intervals thereafter to minimize photobleaching. (**B**) Fluorescence ratios ($F_{488/}F_{561}$; i.e., $F_{Dextran}/F_{LAMP}$) were determined for each ROI enclosing a lysosome, and the ratios for each cell were normalized to the value immediately before treatment (t = 0). Results show mean ± SEM, n = 5 cells. $^*P < 0.05$, $^{***}P < 0.001$, ns, not significant, relative to time-matched control, 2-way ANOVA with Bonferonni test for the indicated comparisons only.

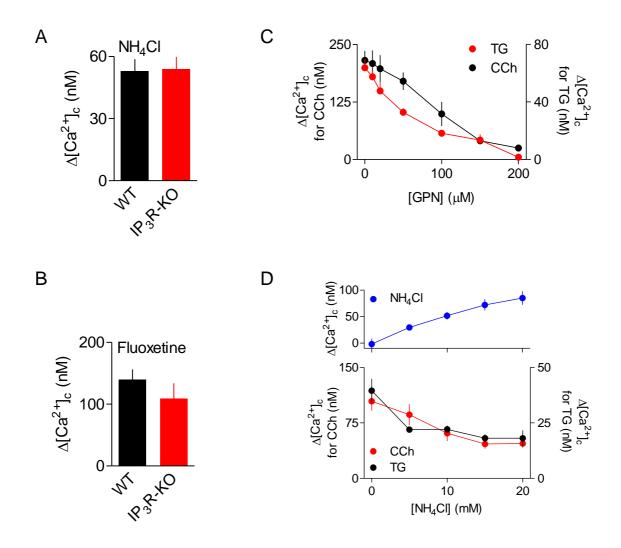

Fig. S4. Depleting ER Ca²⁺ stores by activating IP₃Rs rapidly attenuates GPN-evoked increases in [Ca²⁺]_c. (A) HEK cells express M₃ muscarinic receptors (M₃Rs). When activated by carbachol (CCh), M₃Rs stimulate phospholipase C and thereby Ca²⁺ release from ER through IP₃Rs. However, endogenous expression of M₃ receptors is insufficient to fully deplete the ER of Ca²⁺ (Konieczny et al., 2017). We therefore used a viral vector, BacMam, to over-express M₃Rs in HEK cells. The results (mean ± SD from 2 replicates) show [Ca²⁺]_c recorded form a population of fluo 8-loaded HEK cells with or without (mockinfected) over-expressed M₃Rs and stimulated with a maximally effective concentration of CCh (1 mM). BAPTA (2.5 mM) was added before CCh to chelate extracellular Ca²⁺. (**B**) Summary results (mean \pm SEM, n=3) show the peak increase in $[Ca^{2+}]_c$ ($\Delta[Ca^{2+}]_c$). *P <0.05, Student's t-test. Responses to CCh were abolished in cells pre-treated with thapsigargin (1 µM, 15 min) to inhibit SERCA (results not shown). (C) HEK cells overexpressing M₃Rs were stimulated with CCh (1 mM) in Ca²⁺-free HBS and then with GPN (200 μ M). Results show mean of 3 replicates. (D) Summary results (mean \pm SEM, n=3) show responses to the indicated concentrations of GPN alone or after stimulation with CCh. The results demonstrate that depleting the ER of Ca²⁺ by stimulating IP₃Rs rapidly attenuates the increase in [Ca²⁺]_c evoked by GPN.

Fig. S5. Neither RyRs nor IP₃Rs contribute to cytosolic Ca²⁺ signals evoked by GPN. (A,B) Effects of caffeine (1 mM) in Ca²⁺-free HBS on [Ca²⁺]_c in HEK (A) and HAP1 (B) cells. Traces show mean \pm SD from 3 replicates. Similar results were obtained in 3 independent analyses. (**C,D**) Effects of GPN in Ca²⁺-free HBS on the peak increase in [Ca²⁺]_c (Δ[Ca²⁺]_c) alone or after treatment with ryanodine (20 μM, 15 min) to inhibit RyRs. Results (mean \pm SEM, n=3, each with 3 replicates) are from HEK cells stimulated with 200 μM GPN (C) and HAP1 cells stimulated with the indicated concentrations of GPN (D). (E) Effects of GPN (200 μM) in Ca²⁺-free HBS on HAP cells with (wild-type, WT) or without IP₃Rs (IP₃R-KO), alone or after treatment with thapsigargin (TG, 1 μM, 15 min). Results show mean \pm SEM, n=3, each with 3 replicates.

Fig. S6. Leu-Leu-OMe ruptures lysosomes in a cathepsin C-dependent manner, but it does not increase [Ca²+]_c. Figure on preceding page. (**A**) Two representative wide-field fluorescence images show the punctate distribution of endocytosed Alexa Fluor 488-dextran ($M_r \sim 3,000$) in HEK WT cells. Treatment with Leu-Leu-OMe (1 mM, 1 h) causes loss of the puncta in WT cells, but not in CTSC-KO cells. Results are typical of 3 experiments. Scale bar = 10 μm in all images. (**B**) Bright-field and wide-field fluorescence images of HEK cells loaded with LysoTracker Red (100 nM, 20 min) with or without Leu-Leu-OMe (1 mM, 1 h). Images are typical of three experiments. (**C**) Effects of GPN (200 μM) or Leu-Leu-OMe (1 mM) on pH_{cyt} in HEK cells. Results are mean ± SD for 3 replicates. (**D**) Summary results (mean ± SEM, n = 4, each with 3 replicates) show peak Δ PH_{cyt}. *P < 0.05, Student's t-test. (**E**) BAPTA (2.5 mM) was added to chelate extracellular Ca²+, before addition of GPN (200 μM) or Leu-Leu-OMe (1 mM) to fluo 8-loaded HEK cells. Results show mean for 3 replicates. (**F**) Summary results (mean ± SEM, n = 4-6, each with 3 replicates) show peak Δ [Ca²+]_c evoked by GPN or Leu-Leu-OMe. *P < 0.05, Student's t-test.

Fig. S7. Weak bases deplete the ER of Ca²⁺ **independent of IP**₃**Rs. (A,B)** Effects of NH₄Cl (20 mM) (A) or fluoxetine (300 μM) (B) in Ca²⁺-free HBS on HEK cells with (WT) or without IP₃Rs (IP₃R-KO). Results show mean ± SEM, n = 6 (A) or n = 5 (B), each with 3 replicates. P = 0.90 (A) and P = 0.34 (B), Student's *t*-test. (**C**) HEK cells were stimulated with the indicated concentrations of GPN (15 min) in Ca²⁺-free HBS before addition of carbachol (CCh, 1 mM) to stimulate IP₃ formation or thapsigargin (TG, 1 μM) to estimate the amount of Ca²⁺ remaining within the ER. Since CCh stimulates Ca²⁺ release, while TG, by inhibiting SERCA, unmasks a basal leak, the peak amplitudes of the Ca²⁺ signals are different for the two stimuli. Both, however, reveal a similar concentration-dependent decrease in ER Ca²⁺ content after GPN treatment. Results (mean ± SEM, n = 3, each with 3 replicates) show Δ [Ca²⁺]_c for CCh or TG. (**D**) Similar analyses (mean ± SEM, n = 4-6, each with 3 replicates) show the effects of pre-treatment with NH₄Cl (15 min) on the subsequent Δ [Ca²⁺]_c evoked by CCh or TG. The upper panel shows Δ [Ca²⁺]_c evoked by NH₄Cl.