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On the emergence of gravitational-like
forces in insect swarms

Andy M. Reynolds

Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK

AMR, 0000-0002-7103-3841

Okubo (Okubo 1986 Adv. Biophys. 22, 1–94. (doi:10.1016/0065-
227X(86)90003-1)) was the first to propose that insect swarms are analo-
gous to self-gravitating systems. In the intervening years, striking
similarities between insect swarms and self-gravitating systems have
been uncovered. Nonetheless, experimental observations of laboratory
swarms provide no conclusive evidence of long-range forces acting
between swarming insects. The insects appear somewhat paradoxically
to be tightly bound to the swarm while at the same time weakly coupled
inside it. Here, I show how resultant centrally attractive gravitational-like
forces can emerge from the observed tendency of insects to continually
switch between two distinct flight modes: one that consists of low-
frequency manoeuvres and one that consists of higher-frequency nearly
harmonic oscillations conducted in synchrony with another insect. The
emergent dynamics are consistent with ‘adaptive’ gravity models of
swarming and with variants of the stochastic models of Okubo and
Reynolds for the trajectories of swarming insects: models that are in
close accord with a plethora of observations of unperturbed and perturbed
laboratory swarms. The results bring about a radical change of perspec-
tive as swarm properties can now be attributed to known biological
behaviours rather than to elusive physical influences.
1. Introduction
Insect swarms do not display the choreographed movements seen in fish
schools and bird flocks, but their members do remain in just a small portion
of the space available to them [1]. Nonetheless, individuals are behaving col-
lectively rather than interacting independently with visual features on the
ground over which swarms tend to form [2]. By drawing an analogy with
Newtonian gravitational attraction, Okubo [3] speculated that the interactions
between swarming insects produces, on the average, a centrally attractive
force that acts on every individual. There is now strong experimental support
for such a resultant restoring force in laboratory swarms of Chironomus
riparius midges [1]. The emergence of this resultant restoring force has been
attributed to the insects interacting via long-range gravitational-like forces
[4]. This is a tempting possibility because insects are thought to interact
acoustically, responding to wing-beat noise whose far-field intensity is
expected to decay according to an inverse square law [5]. Gravitational-like
interactions would, therefore, arise if one insect reacts to another by acceler-
ating towards the source of the sound with a strength that is proportional to
the received sound intensity. Experimental observations of laboratory
swarms do, however, provide no conclusive evidence for such long-range
forces acting between swarming insects [6]. Instead, insects on average dis-
play an approximately equivalent acceleration towards almost any feature
of the swarm (nearest neighbour, Voronoi centroid, i.e. towards the emptiest
region of space in the insect’s vicinity, swarm centre). This suggests that
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individuals are on average weakly coupled, but also tightly
bound to the swarm itself [6].

Here, I show how the resultant forces can emerge from
the observed tendency of insects to continually switch
between two distinct flight modes: one that is composed of
relatively straight to and fro movements and one that
consists of higher-frequency oscillations [3,7]. Model formu-
lation is presented in the next section. The new model is
shown to be closely related to two successful but seemingly
distinct models of insect swarms: the stochastic models of
Okubo [3] and Reynolds et al. [8] and the ‘adaptive’ gravity
models of Gorbonos et al. [4]. It is also shown how the new
model can account for observations that are beyond the
scope of the previous models. This is followed by a
Discussion.
oc.Interface
16:20190404
2. Emergence of gravitational-like interactions at
the macroscopic level

2.1. Model formulation and properties
Multi-camera stereo-imaging and particle-tracking techniques
have provided detailed recordings of the three-dimensional
trajectories of C. riparius midges within laboratory swarms
[1,7]. By performing a time–frequency analysis of these
trajectories, Puckett et al. [7] showed that the midge flight
behaviours can be segmented into two distinct modes:
one that is independent and composed of low-frequency
manoeuvres and one that consists of higher-frequency
nearly harmonic oscillations conducted in synchrony with
another midge (velocities tend to be antiparallel). These
observations have similitude with the observations of
Okubo [3] who remarked that the trajectories of individual
midges may be classified into two distinct patterns, one
being a ‘loose’ pattern and the other a ‘tight’ pattern. In the
loose pattern, an insect exhibits relatively straight to and fro
moments that might resemble a pendulum motion. In the
tight pattern, an insect exhibits a relatively short, zigzag
motion that might resemble a random flight. In practice,
most individuals display a pattern that combines these two
extremes.

The observations of Puckett et al. [7] and Okubo [3]
suggest that at long-times (times longer than the velocity
autocorrelation timescale), individual flight patterns can
effectively be partitioned into episodes of ‘hovering’ and
‘flying’ (diffusing) and that the long-time dynamics can be
approximated by a pair of reaction–diffusion equations

@H
@t

¼ �aH þ bHF

and
@F
@t

¼ aH � bHFþD
@2F
@x2

:

9>>=
>>; ð2:1Þ

Here, H(x, t) and F(x, t) are the densities of hoverers and fliers
located at position x at time t, α is the rate at which individ-
uals switch from being hoverers to being fliers (with
diffusivity D) and β sets the rate at which fliers switch to
becoming hoverers after interacting with hoverers (an alterna-
tive, seemingly very credible model is examined then
discounted in the electronic supplementary material, S1).
These pairwise interactions (biological behavioural traits)
could be mediated either acoustically or visually. When the
reaction dynamics are very much faster than the diffusive
transport, local equilibrium is established, i.e. αH− βHF = 0.
The stable equilibria are F = α/β, H=C− F if the density of
individuals (fliers and hoverers) C > α/β and H = 0, F =C if
C < α/β.

Adding together the two parts of equation (2.1) under the
assumption of local equilibrium gives

@C
@t

¼ D
@2F
@x2

¼ D
@2

@x2
a

b

� �
, ð2:2Þ

when C > α/β. This shows that the spatial distribution of all
individuals within the swarm is ‘frozen’ in time, since the
right-hand side of the diffusion equation, equation (2.2),
vanishes. That is, the reaction dynamics exactly cancel out
the effects of diffusion, thereby creating a stable swarm. Indi-
vidual fliers are, nonetheless, diffusing within the confines of
the swarm. This is made manifest when equation (2.2) is
rewritten as
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where P≡C (is a place holder) and D0 ¼ ða=bÞD.
The first, second and third forms of equation (2.3) corre-

spond to random walk models

dx ¼
ffiffiffiffiffiffiffiffi
2D0

P

r
dj, ð2:4Þ
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and dx ¼ D0

P
@ lnP
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ffiffiffiffiffiffiffiffi
2D0

P
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dj, ð2:6Þ

where x is the position of an individual at time t, dξ are
increments of a white noise process with autocorrelation
〈dξ(t)dξ(t

0
)〉 = δ(t − t

0
)dt for noises at time t and t

0
and

where the amplitudes of the noise terms,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0=P

p
, are eval-

uated: at the start of each step (the ‘Ito’ interpretation) in
equation (2.4); at the mid-point of each step (the ‘Stratono-
vich’ interpretation) in equation (2.5); and at the end of
each step (the ‘Hänggi–Klimontovich’ interpretation) in
equation (2.6). This non-uniqueness of the corresponding
random walk model arises because the interpretation of
the intensity of the coloured driving noise is ambiguous in
the long-time limit. The colouring of the driving noise is
indicative of there being a feedback from the macroscopic
level of description of the swarms in terms of the probability
density, P, to the microscopic kinematics. An individual’s
movement is therefore dependent on the global properties
of the swarm.

Directly analogous results can be obtained albeit non-
analytically using a stochastic model that captures both
short- and long-time dynamics (electronic supplementary
material, S2).

Equation (2.6) is the long-time limit of a close relative
of the stochastic models of Okubo [3] and Reynolds et al.
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Figure 1. (a,b) Swarms are predicted to have stationary position and velocity statistics. (c) Root-mean-square velocities are predicted to be approximately homo-
geneous within the swarm’s core. (d ) Individuals are predicted to be effectively bound to the centre of the swarm by a force (mean acceleration 〈A|x〉) which in the
core of the swarm grows linearly with distance from the swarm centre. Predictions are shown at times t = 25 (red circles) and t = 100 (green circles) together with
the best-fit Gaussian distributions (solid-lines). Predictions are shown for equation (2.7) with P(x)¼ 1=

ffiffiffiffiffiffi
2p

p
sx exp (�ðx2=2s2

xÞ), sx¼ 1, su¼ 1, a¼1 and
β = 1. (Online version in colour.)
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[8] for the joint evolution of an insect’s position, x, and
velocity, u,

du ¼ �u
ffiffiffiffiffi
P0p

T
dtþ s2

uffiffiffiffiffi
P0p @ lnP

@x
dtþ

ffiffiffiffiffiffiffiffi
2s2

u

T

s
dj

and dx ¼ udt,

9>>=
>>; ð2:7Þ

where P0 ¼ ðb=aÞP and where s2
u is a velocity scale rather

than a mean-square velocity per se. Equation (2.6) is
obtained from equation (2.7) as the velocity autocorrelation
timescale T→ 0 with Ts2

u ! D, i.e. t/T→∞.
In the models of Okubo [3] and Reynolds et al. [8] inter-

actions between the individuals are not explicitly modelled
(but they can be as shown in Reynolds [9] and in the elec-
tronic supplementary material, S3); rather, their net effect is
subsumed into a restoring force term. In the model of Rey-
nolds et al. [8], this term is given by s2

uð@ lnP=@xÞ (i.e. by
�ðs2

u=s
2
xÞx for swarms with Gaussian density profiles, as in

Okubo’s [3] classic model where individuals in the swarm
behave on the average as if they are trapped in an elastic
potential well). In the new model, equation (2.7), this restor-
ing force is renormalized according to the local density and is
given by s2

u=
ffiffiffiffiffi
P0p

@ lnP=@x: As a result, the central attraction
is relatively low in the core of the swarm where the density
is relatively high and relatively high in the outskirts of the
swarm where the density is relatively low. This closely mir-
rors ‘adaptive’ gravity models of insect swarms wherein
effective forces (presumed to be acoustic interactions) are
renormalized according to the local noise amplitude [4]. In
Gorbonos et al. [4], this modelling assumption was motivated
by the fact ‘that for many animals, the perception of sound is
not fixed, but rather adapts to the total sound intensity so
that acoustic sensitivity dropswhen there is strong background
noise. This is a common feature of biological sensory organs,
preventing damage and their saturation’. It is crucial to bring
model predictions in line with observations [4]. By preventing
collapse (Jeans instability) it also endows swarmswith a natural
mechanism for self-stabilization [10]. Here, ‘adaptation’ arises
freely and is not imposed on themodel. Similarly, the ‘frictional
term’, − u/T, which in the models of Okubo [3] and Reynolds
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et al. [8] causes velocity fluctuations to relax back to their (zero)
meanvalue is here replacedby�u

ffiffiffiffiffi
P0p
=T. Thismodification can

be attributed to the interactions between the hoverers and fliers.
Note that a similar modification, −uP

0
/T, is induced when

short-range repulsions are incorporated into numerical simu-
lations made with the model of Reynolds et al. [8] (electronic
supplementary material, S4). The noise term represents fluctu-
ations in the resultant internal force that arise partly because of
the limited number of individuals in the swarm and partly
because of the non-uniformity in their spatial distribution [3].

For locations in and around the core of swarm, the new
model, equation (2.7), reduces (up to multiplicative constants,ffiffiffiffiffiffiffiffiffiffi

P0(0)
p

) to the model of Reynolds et al. [8]. This in turn
effectively reduces to Okubo’s [3] classic model

du ¼ � u
ffiffiffiffiffiffiffiffiffiffi
P0(0)

p
T

dt� s2
ux

s2
x

ffiffiffiffiffiffiffiffiffiffi
P0(0)

p dtþ
ffiffiffiffiffiffiffiffi
2s2

u

T

s
dj

and dx ¼ udt,

9>>=
>>; ð2:8Þ

when positions are Gaussian distributed. These models agree
well with numerous experimental observations of laboratory
swarms [8,9,11,12]. The new model does, however, account
for observations that are beyond the reach of previous sto-
chastic models; namely the dependency of effective spring
constants on swarm size [4]; the emergence of non-Gaussian
velocity statistics [1] and the near constancy of swarm
densities [1,2].
2.2. Accounting for observations that are beyond the
scope of previous models

2.2.1. Effective spring constants
Large laboratory swarms and wild swarms tend to be cylind-
rical in shape with the central axes orientated vertically
(along the z-axis) [1,13]. In the cores of swarms with Gaussian
density profiles, the restorative force term in equation (2.7)
increases linearly with distance from the swarm centre. In
these locations, the restorative force can, therefore, be charac-
terized by an effective spring constant, K ¼ s2

u=s
2
x

ffiffiffiffiffiffiffiffiffiffi
P0(0)

p
. For
highly cylindrical swarms with σx = σy≪ σz, equation (2.7)
predicts that Kx ¼ Ky , Kz, Kx / s�1

x and Kz / s
�3=2
z . Lower

effective spring constants in the z-direction are observed in
laboratory swarms [1] as are the two different scalings with
swarm size [4]. These predictions also closely match the pre-
dictions of Gorbonos et al.’s [4] adaptive gravity model.
Nonetheless, if individuals were interacting with one another
via long-range gravitational-like forces then all swarms
would be spherical in shape, or nearly so. If, on the other
hand, swarms are bound together by the interactions
between hoverers and fliers, then any shape swarm is poss-
ible (stable) in principle (equation (2.2)). Swarm shapes
may, however, be constrained by the nucleation process (elec-
tronic supplementary material, S5). In contrast with the new
model, equation (2.7), Okubo’s [3] stochastic model predicts
contrary to experiment a single scaling with swarm size,
namely Kx ¼ Ky / s�2

x and Kz / s�2
z .
2.2.2. Accounting for the emergence of non-Gaussian velocity
statistics

For locations in the outskirts of the swarm the new model,
equation (2.7), departs from the models of Okubo [3] and
Reynolds et al. [8]. It predicts that velocity statistics are hetero-
geneous rather than homogeneous (position-independent)
(figure 1a–c) and it predicts that mean accelerations grow
nonlinearly rather than linearly with distance from the
swarm centre (figure 1c). The former prediction is supported
by observations (figure 2a). In accordance with model expec-
tations, the velocity-variance profile is concave. This is
consistent with the velocities of solitary insects being gener-
ally higher than the velocities of insects within swarms [2].
It is also consistent with velocity (and speed) distributions
having nearly exponential tails that develop with increasing
swarm size [1] (figure 2b, electronic supplementary material,
S6). The latter prediction is consistent with simulation data
produced by Gorbonos et al.’s [4] adaptive gravity model
and more tentatively with experimental observations [3].
Note that in the stochastic models of Reynolds et al. [8], vel-
ocity statistics are a model input and not a model prediction.
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Figure 3. (a,b) Swarms are predicted to have stationary position and velocity statistics when interactions are speed dependent. (c) Root-mean-square
velocities are predicted to be approximately homogeneous within the swarm’s core. (d ) Individuals are predicted to be effectively bound to the centre of the
swarm by a force (mean acceleration 〈A|s〉) that increases with an individual’s flight speed in accordance with observations [8] (red line shows data for right
side only, blue line show data for left side only; and dashed line shows data for both sides which is close to zero, as required by symmetry). Predictions are
shown at times t = 25 (red circles) and t = 100 (green circles) together with best fit Gaussian distributions (solid-lines). Predictions are shown for equation
(2.7) with P(x)¼ 1=

ffiffiffiffiffiffi
2p

p
sx exp (�ðx2=2s2

xÞ), sx¼ 1, su¼1, a¼1 and b ¼ s2
u=ðsu þ jujÞ arb. units. (Online version in colour.)
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2.2.3. Near constant densities
The density of insects within laboratory swarms of midges is
approximately constant [1,2]. This is different from what has
been observed for bird flocks where the number density can
fluctuate hugely from flock to flock [15]. In contrast with pre-
vious models [3,4,8], this constancy is predicted by the new
model. The total number of fliers within a swarm of size Rs

is predicted to be NF = (α/β)Rs (see text relating to equation
(2.1)). Therefore, the total number of individuals within a
swarm N∝Rs since NF≫NH [7]. This constancy although
accidental may be significant because it implies that the con-
tinual flow of individuals into and out of a swarm [1,14,16]
drives changes in swarm morphology. Somewhat counter-
intuitively such fluctuations are predicted to endow swarms
with stabilizing macroscopic mechanical properties similar
to solids, including a finite Young’s modulus and yield
strength [11], properties which have been observed in the lab-
oratory [16]. The fluctuations also have the potential to
change fundamentally the characteristics of individual flight
patterns. Reynolds and Ouellette [17] showed that the
centre of mass fluctuations allow for the emergence of Lévy
flight patterns which have subsequently been linked to
population maintenance in energetic environments [18].

2.3. Alternative models
Equation (2.6) can be recovered from other variants of the
models of Okubo [3] and Reynolds et al. [8]. It can, for
example, be recovered from

du ¼ �uP
T0 dtþ s2

u
@ lnP
@x

dtþ
ffiffiffiffiffiffiffiffiffiffiffi
2s2

uP
T0

s
dj

and dx ¼ udt,

9>>=
>>; ð2:9Þ

whereT0 ¼ ða=bÞT. Despite its appeal, this and other such var-
iants are incompatible with the observed near homogeneity of
velocity statistics within the core of a swarm [8] and with the
near constancy of the Lagrangian velocity structure function,
〈Δu2〉 (K van der Vaart 2019, private communication).
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2.4. Accounting for speed-dependent forces
The foregoing analysis does not directly encompass one of
the most intriguing observations: namely the observed
speed-dependency of the resultant attractive force [8]. None-
theless, such a dependency is not unexpected given that
the resultant force is here attributed to the interaction
between ‘hoverers’ and ‘fliers’ which is itself predicated
on movement detection. It is, therefore, seemingly natural
to suppose that the rate parameter, β, (which governs the
interactions between ‘hoverers’ and ‘fliers’ and which has
the dimensions of velocity) is, in fact, speed dependent. The
simple parameterization b ¼ s2

u=ðsu þ jujÞ results in stable
swarms which in accordance with observations [1,8]: have
Gaussian density profiles (figure 3a); velocity distributions
with Gaussian cores and exponential tails (figure 3b); nearly
homogeneous velocity statistics (figure 3c); and speed-
dependent resultant forces which increase monotonically
with an individual’s speed (figure 3d). Comparable predic-
tions are obtained with other simple, biologically plausible,
parameterizations of β that decrease monotonically with
increasing speed.

3. Discussion
Stochastic and mechanistic models of insect swarms that
draw inspiration from self-gravitating systems are gaining
traction because they agree well with experimental obser-
vations [3,4,8,9,12,19]. The stochastic model of Reynolds
et al. [8] is, for example, in close quantitative agreement
with data from high-precision, carefully controlled laboratory
experiments [1,12,14,16,20,21]. It predicts correctly that
swarms consist of a core ‘condensed’ phase surrounded by
a dilute ‘vapour’ phase [9] and it predicts correctly that
swarms possess emergent continuum mechanical properties,
displaying a collective viscoelastic response to applied oscil-
latory visual stimuli [12]. Moreover, mathematical analysis
of the model explains why swarms of flying insects have
macroscopic mechanical properties similar to solids, includ-
ing a finite Young’s modulus and yield strength [11]. The
mathematical analysis also revealed why in contrast with lab-
oratory insect swarms, wild insect swarms display significant
coordinated behaviour [19]. This showed how the presence of
a fluctuating environment drives the formation of a transient,
local order (synchronized subgroups), and that this local
order pushes the swarm as a whole into a new state that is
robust to environmental perturbations. At same the time,
striking similarities between insect swarms and self-gravitat-
ing systems are being uncovered ([4,10,19]; electronic
supplementary material, S7–S11). Nonetheless, this success
need not be attributed to insects interacting with one another
via gravitational-like forces which would be an over
interpretation of experimental observations [6]. Here, I
showed how resultant gravitational-like forces can emerge
from the observed tendency of insects to continually switch
between non-diffusive and diffusive flight modes. In other
words, the sporadic formulation of bound pairs was shown
to be sufficient to bind the swarm together. The emergent
resultant gravitational-like forces were found to be consistent
with Gorbonos et al.’s [4] adaptive gravity model rather than
with Newtonian gravity. That is, the resultant central attrac-
tion was predicted to be relatively low in the core of the
swarm where the density is relatively high and relatively
high in the outskirts of the swarm where the density is rela-
tively low. The emergent dynamics were also found to be
consistent with variants of the stochastic models of Okubo
[3] and Reynolds et al. [8]; models that faithfully reproduce
many observations made in the laboratory [3,8,9,11,12].
These models can, therefore, be reinterpreted in a radically
new way that is biological rather than physical and in a
way that this is rooted firmly in observations [3,7] rather
than challenged by them [6]. The new analysis suggests that
despite their success the models of Okubo [3] and Reynolds
et al. [8] are effective (phenomenology) models. It also
suggests that the success of Gorbonos et al.’s [4] adaptive
gravity model can be attributed to the fact that it will necess-
arily predict the emergence of resultant gravitational-like
forces and not because it is founded on a realistic represen-
tation of the way in which insects interact with one another.
The new analysis thereby provides a bridge between the sto-
chastic models of Okubo [3] and Reynolds et al. [8], and the
manifestly gravitational model of Gorbonos et al. [4] by show-
ing how both kinds of model encapsulate similar dynamics
and how both can be freed from their original formulations.
Moreover, the new stochastic models were shown to predict
correctly features of insect swarms (e.g. anisotropic scaling
of effective spring constants, the constancy of density) that
are beyond the scope of the models of Okubo [3] and Rey-
nolds et al. [8] but within reach of adaptive gravity models
[4]. Conversely, it reconciles the notion of adaptive gravity
with the existence of highly cylindrical wild swarms [13]
and with speed-dependent accelerations [8]. The new analysis
also shows how the behaviour of swarms studied in quiescent
laboratories can be reconciled with the behaviours of wild
swarms which must contend with environmental disturb-
ances. In contrast with laboratory swarms, wild swarms
form transient synchronized subgroups that push the
swarms into the new state that is robust to environmental
perturbations [19]. This behaviour (i.e. this strengthening of
the effective gravity) may now be seen as an extension of
the behaviour (formulation of transient bound pairs) that
underlies the emergence of effective gravity itself.
Data accessibility. Computer codes can be obtained from the author.
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