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Abstract

Post-translational modifications (PTMs) are ubiquitous and essential for protein func-
tion and signaling, motivating the need for sustainable benefit and open models of
web databases. Highly conserved O-GlcNAcylation is a case example of one of the
most recently discovered PTMs, investigated by a growing community. Historically,
details about O-GlcNAcylated proteins and sites were dispersed across literature and
in non-O-GlcNAc-focused, rapidly outdated or now defunct web databases. In a first
effort to fill the gap, we recently published a human O-GlcNAcome catalog with a basic
web interface. Based on the enthusiasm generated by this first resource, we extended
our O-GlcNAcome catalog to include data from 42 distinct organisms and released the
O-GlcNAc Database v1.2. In this version, more than 14 500 O-GlcNAcylated proteins and
11 000 O-GlcNAcylation sites are referenced from the curation of 2200 publications. In
this article, we also present the extensive features of the O-GlcNAc Database, includ-
ing the user-friendly interface, back-end and client–server interactions. We particularly
emphasized ourworkflow, involving amostly automatized and self-maintained database,
includingmachine learning approaches for textmining. We hope that this softwaremodel
will be useful beyond the O-GlcNAc community, to set up new smart, scientific online
databases, in a short period of time. Indeed, this database system can be administrated
with little to no programming skills and is meant to be an example of a useful, sustain-
able and cost-efficient resource, which exclusively relies on free open-source software
elements (www.oglcnac.mcw.edu).

© The Author(s) 2021. Published by Oxford University Press. Page 1 of 12
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

https://academic.oup.com/
mailto:solivier@mcw.edu
www.oglcnac.mcw.edu
http://creativecommons.org/licenses/by/4.0/


Page 2 of 12 Database, Vol. 2021, Article ID baab039

Introduction

Protein post-translational modifications (PTMs) play an
essential role in the biosynthesis of functional proteins
and their signaling pathways. Consequently, defects in
PTMs are associated with numerous pathological con-
ditions and are excellent candidates for diagnosis (1)
and therapy development (2). Along with well-established
PTMs (e.g., phosphorylation), interest is growing toward
more recently discovered PTMs, such asO-GlcNAcylation.
This highly ubiquitous PTM is the addition of β-N-
acetylglucosamine to the hydroxyl group of serine or thre-
onine residues (3, 4) (Figure 1). While O-GlcNAcylation
correlates with pathologies like Alzheimer’s disease, dia-
betes and cancers (5), the lack of an up-to-date bioinfor-
matics resource slowed down its exposure to the greater
scientific community. Indeed, the historical and very use-
ful web database dbOGAP (6), first released in 2011,
has now been defunct for years. More generally, PTM’s
diverse and ubiquitous nature combined with the general-
ization of high-throughput methods has been a challenge
for the development of sustainable databases, for which
O-GlcNAcylation is the perfect example. As such, novel
database models directed toward sustainability with mini-
mum funding, human skills and time are key to maintain a
reliable resource with the extended lifetime for the benefit
of the community.

In a first effort to fill the gap, we recently published an
initial catalog of the humanO-GlcNAcome containing over
5000 proteins and 7000 sites (7). We made this catalog
available on various platforms including the glycobiology
platform GlyGen (8) and FigShare (9). Attached to this
initial publication (7), we also included a basic interface.

Figure 1.O-GlcNAcylation of proteins. A singleβ-N-acetyl-glucosamine
residue is added by the O-GlcNAc transferase (OGT) and removed by
the O-GlcNAcase (OGA). The hexosamine biosynthesis pathway drives
the production of the O-GlcNAc nucleotide donor (e.g., UDP-GlcNAc)
from glucose (Glc). Serine or threonine (S/T) is targeted formodification
on intracellular proteins.

The’ O-GlcNAc Database Beta, released online at oglc-
nac.mcw.edu on 20 November 2021. By publishing our
human O-GlcNAcome catalog, we rigorously confirmed
that O-GlcNAcylation affected all classes of intracellu-
lar, mitochondrial and nuclear proteins, regulating their
stability, activity, localization and other PTMs, such as
phosphorylation (10). In general, O-GlcNAcylation is rec-
ognized as a highly conserved modification found in almost
all living organisms, cells and tissues. Consequently, in
light of the enthusiasm generated by the human catalog and
web interface, we extended the content to cover all organ-
isms and associated O-GlcNAcylated proteins. In parallel,
important efforts have been assigned to the development
of the O-GlcNAc Database to offer a sustainable resource
with high reliability, minimal cost and extended lifetime.
The current O-GlcNAc Database v1.2 long-term release is
available at oglcnac.mcw.edu.

Herein, we outline the content provided by the O-
GlcNAc Database, now including data for all available
organisms besides human. Specifically, we emphasize the
smart features of such database, e.g., smart organiza-
tion, automatization and self-maintenance, while using the
O-GlcNAc Database as a case study. We offer extensive
software modeling diagrams of the system using the ISO
standard Unified Modeling Language (UML) (11) and its
derivative UML-based Web Engineering (UWE) (12) lan-
guage. Notably, we detail our strategy for semi-automated
literature curation usingMachine Learning (ML) andNatu-
ral Language Processing (NLP) protocols to build a logistic
binary classifier relying on neural networks (NNs). Finally,
we release stand-alone tools derived from the O-GlcNAc
Database source code, available through the python pack-
age ’utilsovs’ available at github.com/Synthaze/utilsovs/.
(v0.9.1b).

In addition to serving the O-GlcNAc field, we hope
that this work will enable other researchers to develop
analogous database systems, focused on sustainability, by
minimizing the need for funding, human skills and time. By
providing detailed principles and methodological schemes
for such systems, we draw a path for those who code for sci-
ence and wish to offer an accessible resource to the scientific
community.

Methods

Web server environment

The GNU/Linux (13, 14) distribution Debian 10 (Buster)
was used to develop the O-GlcNAc Database, which relies
exclusively on free and open-source software elements.
For production, the O-GlcNAc Database server runs on
the GNU/Linux (13, 14) distribution Ubuntu 18.04.5
LTS (kernel 4.15.0-122-generic x86_64) with the Ubuntu
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Server environment (ubuntu-server 1.417.5 x86_64).
The O-GlcNAc Database was built with the Django web
framework (3.7.1) (15), and MongoDB (mongodb-org
4.4.4) (16) was used for the back-end database. A UML
(11) sequence diagram of the O-GlcNAc Database web
request processing scheme is presented in Figure S1. Nginx
(1.14.0) (17) was used as both reverse proxy and content
delivery network. Upon user HTTPS request, Nginx (17)
acts as a reverse proxy interface for the front-end server.
Nginx Transport Layer Security (TLS 1.2) and Server Name
Indication protocols enabled compliance with the HTTPS-
only standard (18). The HTTP request is then forwarded
to the Python HTTP server Gunicorn (19), which uses the
WSGI (Web Server Gateway Interface) interface (20) to
communicate with the Django application (15) and to serve
users with dynamically generated content. Dynamic con-
tent upon Gunicorn request is generated by interrogating a
back-endMongoDB database (16) via the PyMongo library
(21), directly retrieving pre-calculated HTML code to opti-
mize the server response time. Inversely, the generated
dynamic content is passed through the Django application
to be sent to the Gunicorn process, ultimately communi-
cating the data to Nginx and the end user. Finally, the
associated static content is served by Nginx over SSL to the
end user upon GET request. The O-GlcNAc Database is
available at both oglcnac.mcw.edu and oglcnac.com.

Programming and libraries

The front-end interface was developed using HTML5 (22)
and CSS3 (23) stylesheets with the framework Bootstrap
(4.1.3) (24). On web pages, dynamic behaviors were imple-
mented using the Javascript library JQuery (3.3.1) (25)
and Django libraries for template tags and filters (built-
in and custom). We used the World Wide Web Consor-
tium (W3C) Markup Validation Service (26) to validate
the web pages’ source code against HTML5 specifications.
The back-end part of the O-GlcNAc Database was devel-
oped using Python (3.7.1) (27) and the high-level Python
web framework Django (15). Our back-end architecture
includes the web application back-end, directly supporting
the front-end interface and a stand-alone library enabling
automatization and self-maintenance of the O-GlcNAc
Database. In addition to the Python standard library and
Django package, the PyMongo (3.11.3) (21) library inter-
acts with the MongoDB back-end database. All python
libraries utilized by the O-GlcNAc Database system are
reported in Table S1.

Neural network

With the goal of automatically sorting theO-GlcNAc liter-
ature, each PDF file was extensively processed to be sorted

based on the presence of O-GlcNAcylated proteins and
site identifications using NNs, designed as an ensemble of
logistic binary classifiers (28) (Figures S2–S4).

Text processing
We extracted text from publication PDF files using the
command-line tool pdftotext from the .deb package
poppler-utils (Figure S2, left panel). First, all expressions
in text contained between brackets or parentheses as well
as all non-space, non-period and non-alphanumerical char-
acters were removed using regular expressions (29) in
Python. The same processing was applied to a list of stop
words compiled from general web resources and com-
posed of names, journal names, chemicals, numerical and
units, cities, countries and custom entries. Since PDF is
a layout-based format which specifies the fonts and posi-
tions of the individual characters rather than the semantic
units of the text (30), we used this list of stop words to
detect and remove unwanted semantic units upon conver-
sion (e.g., author names and affiliations, footnotes and
tables). Then, we collected semantic units associated with
results and discussion using a custom dictionary of regu-
lar expressions associated with sections usually found in
publications (e.g., Introduction, Material andMethods and
Results). To detect relevant vocabulary, we tagged words
by category using the following lists: biology, glycobiology,
cells and methods. With regular expressions, we tagged
strings associatedwith the following categories: conclusion,
description, peptides, nucleic acids, pronominial, ser/thr,
amino acids, phosphorylation and O-GlcNAc. Protein and
organism names were detected by matching dictionaries
built from UniProtKB ftp repository against publication
text files. We then removed all non-space, non-tag and
non-period characters from text to finally retain period-
separated strings containing more than one tag (Listing
S1). All lists of words and regular expressions utilized
for text labeling are provided in the supplementary data
(Files S1–S3) with examples (Table S2).

Data sets and input preparation
Research articles (n=1340) were each labeled as posi-
tive or negative depending on whether or not experimen-
tal demonstration of protein O-GlcNAcylation was found
in a given publication. With the goal of using an NN
designed as a logistic binary classifier, positive or neg-
ative labels were translated into binary labels such as
(1,0) and (0,1), respectively, meaning that positive pub-
lications have a probability of 1 to contain experimental
evidences of protein O-GlcNAcylation and a probabil-
ity of 0 to not contain experimental evidences of protein
O-GlcNAcylation. Training (n=670), testing (n=335)
and validation (n=335) sets were obtained by shuffling
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and slicing the list of PMID (PubMed IDentifier) identi-
fiers (n=1340) containing an equal number (n=670) of
positive and negative samples. To this extent, we used
the random.shuffle() method without seed optimization to
avoid bias. Sets were accepted if we found less than a
1% difference in the population of positive and negative
labels in order to approximate a binomial distribution of
labels within each set (Table S3). Text files corresponding
to PMIDs within the whole training set (n=670) were then
concatenated, and period-separated strings, filtered by the
number of occurrences to extract chains of tags or expres-
sions (n=1252), were represented at least four times in the
whole training set to minimize artifacts during the logistic
regression, particularly with the testing and validation sets.
This list of expressions was matched against each publica-
tion text file (n=1340), yielding a descriptor array for each
publication composed of binary values (n=1252) depend-
ing on the presence (1) or absence (0) of a given expression
in a given file. The resulting arrays served as inputs for logis-
tic binary classifiers (Figure S2, right panel). Training inputs
were prepared to further proceed with bootstrap aggrega-
tion, often abbreviated as bagging, which involves having
each model in the ensemble vote with equal weight (31). To
this extent, training subsests (n=5) were prepared by itera-
tively shuffling and slicing the list of PMIDs corresponding
to the whole training set.

Architecture and training
A feed-forward (32) NN with backward propagation of
errors (33) and dropout regularization (34) was devel-
oped from scratch to design a logistic binary classifier.
The NN was composed of 1252 input units, one hid-
den layer with 96 rectifier linear units (35) and 2 sig-
moid units in the output layer (Figure S3). Computations
were performed using a standard laptop (i7- 7700HQ at
2.8GHz ×8, 24GB SDDR4 RAM at 2400MHz) running
on the GNU/Linux distributionDebian 10 (Buster) (36) and
using the numpy (1.20.1) (37) python library for its lin-
ear algebra and native multi-threading capabilities. For the
training procedure, hyperparameters were first optimized
using a grid-search procedure and were further adjusted
manually. For the actual training procedure, we performed
learning rate cycling (38) with an initial learning rate (ilr)
of 0.25, an exponential decay rate (k) of 0.05 and a
cycling constant (c) of 100 epochs. Starting cycle 2, the
ilr was reduced using a descent coefficient (d) of 0.95
(Listing S2). The dropout regularization parameter was set
to 0.7.

We performed training by fitting each training subset
(n=5) for 10 cycles (1000 epochs) following an early
stopping procedure (39). The list of parameters then pre-
dicted the label series associated with each sample within

the whole training, testing and validation sets (Figure
S4). Label series were averaged for each sample, and
uncertainties were calculated using a binomial probabil-
ity formalism (Listing S3). For each sample, the aggre-
gated prediction was considered as correct when rounded
to the closest integer that corresponded to the true label
associated with the sample. On the contrary, the aggre-
gated prediction was considered as ambiguous or wrong
if the absolute difference between the limits of the confi-
dence interval was greater or lower than 0.5, respectively.
Although all predictions are manually checked with inspec-
tion of extracted text and keywords, particular attention
is dedicated to ambiguous predictions, which may more
frequently require the inspection of the PDF file.

Python package utilsovs

The utilsovs package (v0.9.1b) brings together tools derived
from the O-GlcNAc Database source code and requires
Python (≥3.7). Briefly, the utilsovs package contains
a series of simple tools for programmatic access to
major databases (e.g., UniProtKB, PubMed and Semantic-
Scholar), for protein sequence digestion, for representation
of alignment consensus as sequence logo (40) and for qual-
ity control of proteomic data sets along with other tools
(Listing S4). The full documentation and the package can
be found at github.com/Synthaze/utilsovs/ and pypi.org/
project/utilsovs-pkg.

Results

Navigation and main features

The O-GlcNAc Database (oglcnac.mcw.edu/statistics) is a
web resource based on literature curation that informs
on the O-GlcNAc status of proteins across phyla using
a simple and efficient navigation scheme (Figure S5). In
the current release of the O-GlcNAc Database (v1.2),
we documented the O-GlcNAcome of 42 distinct organ-
isms. As its core feature, the O-GlcNAc Database (https:
//www.oglcnac.mcw.edu/search/) page provides a custom
search engine matching the alphanumerical part of one
request to relevant entry field counterparts in a case-
insensitive manner, thus greatly improving tolerance
toward mistyping on queries. Currently, 14 474 O-
GlcNAcylated up-to-date canonical protein sequences and
11 182 O-GlcNAc sites can be accessed upon search
(Figure 2, Table S5). These data are supported by the
curation of 2169 O-GlcNAc publications, identified from
PubMed’s default search with ‘O-GlcNAc’ as a query.
These statistics can be accessed by navigating through the
O-GlcNAcylation menu, which provides links toward the
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(https://www.oglcnac.mcw.edu/overview/) (general infor-
mation), (https://www.oglcnac.mcw.edu/statistics/) (pro-
tein and literature entries, authors) and (https://www.
oglcnac.mcw.edu/consensus/) (sequence logos) pages. In
addition, metadata for the O-GlcNAc literature items
we considered are available in the (https://www.oglcnac.
mcw.edu/references/) page with search options (PMIDs and
protein), filters (author and organism), sorting option
(year, first/last author and organism) and selection of
bibliography type (protein identification, research articles
and reviews). The various data sets are available through
the (https://www.oglcnac.mcw.edu/explore/) page, which
displays the O-GlcNAcome with organism-specific filter-
ing and sorting options (O-GlcNAc score, entry name,
number of sites and organism name). For large experi-
mental data sets (e.g., mass spectrometry), an advanced
search mode is also provided, allowing the scientist to
match a given data set against the O-GlcNAc Database
with specific results, a visualization interface and custom
reports generated in several formats. For offline compar-
ison and analysis, users can download all or part of our
data sets (protein and literature entries) via the (https:/
/www.oglcnac.mcw.edu/download/) page. We encourage
users to get involved in the O-GlcNAc Database weekly
updates by submitting putatively missing O-GlcNAcylated
proteins via the (https://www.oglcnac.mcw.edu/submit/)
page or by addressing more general comments via the
(https://www.oglcnac.mcw.edu/about/) page. Citation and
version information about the O-GlcNAc Database can
be found at the (https://www.oglcnac.mcw.edu/cite/) page.
Finally, a REST API is available for programmatic access
to the O-GlcNAc Database content for developers at
(https://www.oglcnac.mcw.edu/api/v1/docs). To best suit
user needs, options for data download are numerous
across the O-GlcNAc Database and offer several formats
for protein-related (CSV, XLSX, PDF and JSON) and
literature-related (BIB, CSV, XLSX and JSON) data.

Protein search and content

Interactive search for O-GlcNAcylated proteins is the core
feature offered by the O-GlcNAc Database via the (https:/
/www.oglcnac.mcw.edu/search/) page. Users can search for
a single protein, a list of UniProtKB identifiers or even
by matching a custom data set against the O-GlcNAc
Database content. Upon search, the results are returned as
a compact list of clickable, collapsible elements, each dis-
playing essential information for a given protein (UniPro-
tKB ID, entry name and organism) and following a color
code specific to the parent organism (Figure 3). Upon
click, uncollapsed elements show the essentials provided
by the O-GlcNAc Database, including full protein name,
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Figure 2. Number of O-GlcNAcylated proteins and sites. O-
GlcNAcylated proteins (blue) and O-GlcNAc sites (orange) for
each organism cataloged in the O-GlcNAc Database. The Others
category summarized proteins and sites from 26 organisms with <10
protein entries.

O-GlcNAcylated orthologous proteins, O-GlcNAc score,
reported O-GlcNAc sites and associated O-GlcNAc refer-
ences. Because most O-GlcNAc scientists are interested in
the interplay with phosphorylation, the protein sequence
shows distinct highlights on O-GlcNAc sites, phosphory-
lation sites and dual sites. Users can easily jump to other
major resources (UniProtKB and GlyGen) using the entry-
specific links we provide. In addition to these essentials, one
can navigate through the nested Digest sequence collapsi-
ble element, which enables full or partial protein digestion
upon selection of protease and format for report genera-
tion. Entry-specific information can be downloaded upon
click on the nested Download element and format selec-
tion. Finally, as user feedback is a priority for us, the nested
Comment collapsible element allows anyone to discuss the
current entry, which will be sent to us for review.

Literature evaluation using ML

We used ML and developed a simple NN designed as
a logistic binary classifier, aiming to predict whether
O-GlcNAcylated proteins were experimentally validated in
the chosen article (positive or negative). Preliminary to NN
training, 1340 research articles (referred to as samples)
were extensively processed from PDF format to text expres-
sion patterns. From this, binary inputs were generated for
training (see the ‘Methods’ section). Briefly, heterogeneity
from natural language and numerical data was reduced by
translating text publications in lists of generic expressions
patterns, thus diminishing the variance among positive and
negative data sets (see, Listing S1). Then, 1252 patterns fre-
quently detected in samples were isolated, against each of
the 1340 samples, to prepare inputs as binary values for
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P16402 : H31_HUMAN Homo sapiens

Full Name: Histone H3.1 
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Figure 3. Example of search results for the protein Histone H3.1 in the O-GlcNAc Database. Protein entries are shown as collapsible elements (1),
and child elements can be accessed on click (dashed frame). Nested collapsible provides digest tools (2) in full (3) and partial (4) modes, download
(5) and comment options (6).
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regression, depending on the presence (1) or absence (0) of
a given pattern in a given sample (Figure S2, Table S2).

In order to improve model stability and accuracy
impaired by the high variance inherent to natural language
and small data sets, we proceeded with bootstrap aggre-
gation, or bagging, of single learners (Figures S3 and S4).
For each independent model, training subsets were gen-
erated by randomly selecting half of the training set. In
the training procedure, model regression was exclusively
driven by training data. Cyclical learning rate improved
model accuracy (Figure 4, Listing S2), and we employed
dropout regularization and early stopping to prevent over-
fitting. For early stopping, we saved weights and bias
parameters that corresponded to the highest accuracy cal-
culated on the testing set during the training procedure.
Before bagging, all independent models could explain the
positive and negative ensembles in the training subsets
with accuracy >90% and no evidence of severe overfit-
ting (Figure 4, Table 1). As expected, accuracy on the
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Figure 4. Training of the neural network. Top panel: scheme for learn-
ing rate cycling during training of independent models. Bottom panel:
for each independent model, accuracy was monitored along training
epochs for training subsets and testing set.

testing set for each independent model was lower, rang-
ing from 73.1% to 77.5%. However, all models could be
cross-validated by calculating the accuracy on the valida-
tion set, yielding values from 70.8% to 76.1%, consistent
with the testing set. Upon bagging and prediction of pos-
itive and negative labels on the whole training set, an
accuracy of 84.3% was obtained. Model accuracy was
greatly improved for both testing and validation sets, with
accuracies of 78.4% and 77.01%, respectively. Over the
full data set (n=1340), precision and recall were 81.87%
and 77.81%, respectively. Finally, the accuracy reached
94.9% on the full training set when including samples for
which the averaged decision was not correct but flagged
as ambiguous. Following the same rule, the accuracy
reached 88.6% and 87.2% for the testing and validation
sets, respectively (Table 1), allowing to recover a greater
fraction of relevant samples but with lower precision. Over-
all, we conclude that our aggregated model predicts the
training data well, but most importantly, the testing and
validation data (Table 1). We do not anticipate further
improvements of the model, as we consider both intrin-
sic limitations (number of samples and natural language)
and the requirement for human examination and valida-
tion of results in the context of the O-GlcNAc Database,
in order to provide the best reliability level for the scientific
community.

Computer-aided literature curation

In addition to enhancing the user experience, the adminis-
trator experience was also improved. The main goal is to
minimize maintenance time, while offering up-to-date and
reliable content to the public. Therefore, PubMed is inter-
rogated for new publications with the query ‘O-GlcNAc’
in default search on a weekly basis and requests the appro-
priate persons for full-text PDFs. Files are automatically
processed to generate inputs from which the likeliness that
each publication identifies a protein’s O-GlcNAcylation
is computed using the aggregated logistic binary classifier
model, described in the ‘Methods’ section and ’Literature
evaluation usingML’ subsection. Intermediate files are then

Table 1. Evaluation of model performance and cross-validation

Model Iter. Train. (+ Amb.) Test (+ Amb.) Val. (+ Amb.) Epoch

1 1000 0.898 0.775 0.761 518
2 1000 0.909 0.731 0.743 710
3 1000 0.921 0.757 0.708 905
4 1000 0.863 0.775 0.755 211
5 1000 0.912 0.757 0.74 803
Agg. Pred. NA 0.843 (0.949)* 0.784 (0.886) 0.7701 (0.872) NA

The maximum number of iterations, the model accuracy measured on the actual training subset and the testing and validation set are shown for each model (1–5). Epoch corresponds to the
iteration at which weight and bias matrix were saved. Upon bootstrap aggregation (Agg. Pred.), accuracy is shown for the entire training sets (*), as well as the testing and validation sets.
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Save Update
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41
Olivier-Van 
Stichelen et al.,
The FASEB 
Journal
2021 (24744147)
Download PDF

#24744147,false_pmids
#,24744147,;

Dysfunctions in Wnt signaling increase β-catenin stability and are associated with cancers, including colorectal 
cancer. In addition, β-catenin degradation is decreased by nutrient-dependent O-GlcNAcylation. Human colon 
tumors and colons from mice fed high-carbohydrate diets exhibited higher amounts of β-catenin and O-GlcNAc 
relative to healthy tissues and mice fed a standard diet, respectively. Administration of the O-GlcNAcase 
inhibitor thiamet G to mice also increased colonic expression of β-catenin. By ETD-MS/MS, we identified 4 
O-GlcNAcylation sites at the N terminus of β-catenin (S23/T40/T41/T112). Furthermore, mutation of serine and 
threonine residues within the D box of β-catenin reduced O-GlcNAcylation by 75%. Interestingly, elevating 
O-GlcNAcylation in human colon cell lines drastically reduced phosphorylation at T41, a key residue of the D 
box responsible for β-catenin stability. Analyses of β-catenin O-GlcNAcylation mutants reinforced T41 as the
most crucial residue that controls the β-catenin degradation rate.  [...]

       Aggregated Predictions: 1.00 +/- 0.00 - Independant Models: [1,1,1,1,1] 

PROTEINS:
P35222 (BCATENIN): 131
XOGT (OGT): 11 [...]

STSITES:
T41: 21
S23: 14 [...]

SPECIES:
MOUSE (MICE): 9
HUMAN (HUMAN): 3 [...]

METHODS:
WB: 33
FLAG: 18 [...]

PROTEINS, O-GLCNAC, STSITES:
To determine whether O-GLCNACYLATION competes with PHOSPHORYLATION to 
modify the catenin WE EXAMINED the LEVEL of OGLCNACYLATION of BCATEN-
IN in which S33 S37 T41 and S45 were replaced by ALA. [...]

PROTEINS, O-GLCNAC:
To answer this question WE INHIBITED O-GLCNACYLATION by treatment of MCF7 
cells with AC5SGLCNAC of OGT and tested the interaction of BCATENIN with 
ECADHERIN by COIMMUNOPRECIPITATION. [...]

PROTEINS, SPECIES:
To further characterize the relationship between O-GLCNAC and BCATENIN in 
profiled C57BL6 MICE. [...]

3 4

43

2

5

1

Figure 5. Example of literature report upon logistic binary classifier and automatization routines. The private interface contains the literature item
metadata (Authors, Title, Year, Journal, Volume, Issue, Abstract, PMID and PubMed Link) (1) as well as the prediction score from the neural network
(2). Neural network decisions are presented for each model ((2) right brackets). Decisions are then average and binomial confidence interval is
calculated ((2) left). In (3), extracted proteins, sites, species and methods are shown next to the number of iteration for each item. This information
is complemented by sentences associated with combinations of tags relevant to O-GlcNAcylated proteins (4). An update window is available for
rapid update of the master update file upon inspection of each publication (5).

generated upon PDF processing to collect and count critical
keywords, such as protein and species names ormethods, as
well as presumably informative sentences, including combi-
nations of tags such as ‘PROTEIN, OGLCNAC, STSITES’.
In the private section of theO-GlcNAcDatabase, this infor-
mation is compiled with publication metadata in an admin-
friendly interface for literature review (Figure 5). Upon PDF
upload, the classifier can be immediately triggered on one
click. Uploaded PDFs can be downloaded by lab mem-
bers for a more detailed inspection. Pending reviews can
be hidden and restored on demand. Finally, updates to the
database can be implemented using dedicated text area,
which takes simple CSV-formatted instructions, further
considered by the automated update routine. Overall, this
admin-friendly system minimized the time commitment
(<2min/article) associated with the maintenance of the
database content.

Self-maintenance and updates

Update of the O-GlcNAc Database runs automatically on
a weekly basis (Figure 6). The routine starts by pars-
ing the CSV-formatted instructions file introduced in the
’Computer-aided literature curation’ subsection (see, List-
ing S4). Upon update of MongoDB collections, the pipeline
retrieves protein information from UniProtKB and PMID
information from PubMed/MedLine and Semantic Scholar
(41) (Figure S6). It also interrogates proteomeXchange (42)
to link MS data sets associated with PMIDs. As previ-
ously introduced (43), quality control of O-GlcNAc site
residue and position is performed against relevant pro-
tein sequences fetched from UniProtKB. The pipeline then
computes all variable content found in the O-GlcNAc
Database, including the O-GlcNAc score associated with
each protein entry (43), O-GlcNAc Database statis-
tics, O-GlcNAc site consensus, downloadable content for
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: Sequence
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SMA Routine Template (SMART)act
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Compute 

Update static files

Prepare HTML content

Debug and upgrade

Development site

Human validation?

noyes

Push production

“O-GlcNAc” PubMed

Figure 6. Unified Modeling Language (UML) (11) activity diagram (act) of the O-GlcNAc automatization and self-maintenance library. Initial state
(black circle), actions (rounded rectangle), list objects (rectangle), fork and join (bold bars), decision and merge (diamond), break (crossed circle)
as well as final state (black circle) are highlighted per UML conventions. Normal (green) and error (red) completion actions are also highlighted,
together with actions for which specific activity diagrams for O-GlcNAc sites quality control (right panel) and for collection of information related to
protein and literature are given (Figure S6).

protein and literature (entries and data sets) and image
files. Finally, the pipeline greatly optimizes the server
response time by pre-calculating HTML code for essen-
tially all content delivered to users, which also preserves
clarity in the source code of the O-GlcNAc Database web
interface. These automatic weekly updates are available
locally on our development server, and lab members can
trigger the export of the MongoDB back-end database
to the production server upon inspection of changes and
validation.

Discussion

Back in 2011, the authors of the now defunct dbO-
GAP reported a total of 800 O-GlcNAcylated proteins, of
which 500 were human proteins (44). A decade later, we
document 14 474 O-GlcNAcylated proteins, which repre-
sents a growth of ∼1800%. Specifically, for humans, we
reported 7 057O-GlcNAcylated proteins, which represents
an increase of ∼1450%. More importantly, this repre-
sents approximately one-third of all canonical proteins in
the human proteome (45). As a comparison, the number
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of human phosphorylated proteins is around 10 456 (46),
which represents about half of the human proteome (45).
Finally, ∼50% of human O-GlcNAcylated proteins were
also found to be phosphorylated, emphasizing the inter-
play between the two modifications. Although we are
approaching the growth ceiling for the identification of
new O-GlcNAcylated proteins in humans, this is far from
true for other species. We also reported 7428 O-GlcNAc
sites in human proteins, which is only ∼9% of the 86
181 phosphorylation sites reported in human proteins using
comparable criteria (46). More than ever, these numbers
highlight an obvious gap for the O-GlcNAc field.

By first publishing the human O-GlcNAcome catalog
(43) and by extending it to 42 distinct species, we aim
to fill the gap left by the defunct dbOGAP. To ensure the
long-term success of this resource, we made the schemes we
developed explicit in this work, by making the O-GlcNAc
Database a sustainable resource, relying on extreme self-
maintenance and automatization processes and still pre-
serving the highest level of content reliability. Indeed, the
O-GlcNAc Database merges both the computational and
human worlds: calculation and workload for the first and
capacity of judgment for the second. As such, every bit
of content provided by the O-GlcNAc Database is and
will always be validated by human interventions absolutely
required at critical steps.

In addition to minimizing the need for human time and
programming skills, the O-GlcNAc Database was made
sustainable by lowering the need for funding over time.
Accordingly, we had no funding to declare in the cor-
responding section of this manuscript. Although widely
adopted for decades by informed individuals, we wish to
emphasize that the near zero cost for this project is entirely
made possible, thanks to the open-source community that
develops and maintains world-leading software, such as
the GNU/Linux family of operating systems, the Python
programming language or the Django web framework. In
addition to being free of charge, open-source software pro-
vides the following: the right to access the software’s source
code, the right to make improvements to the program and
the right to copy and to redistribute the original or modified
program (47). Therefore, mature open-source technology
is generally recognized as being a safer and more reliable
alternative compared to proprietary counterparts, its orga-
nizational form massively encouraging critical peer review
and the sharing of ideas (48, 49).

Finally, to make this system useful beyond the O-
GlcNAc field, we developed a python package ’utilsovs’
containing general tools derived from the O-GlcNAc
Database source code and encourage feedback to improve
this resource. To conclude, we wish the O-GlcNAc

database to be an example of reliable and sustainable scien-
tific catalogue that inspire the development of many smart
scientific database to come.

Supplementary data
Supplementary data are available at Database Online.
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