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Abstract

Mitochondria and the energy metabolism are linked to both, the availability of Ca and P to

provide the eukaryotic cell with energy. Both minerals are commonly used supplements in

the feed of laying hens but little is known about the relationship between the feed content,

energy metabolism and genetic background. In this study, we provide a large-scaled gene

expression analysis of 31 mitochondrial and nuclear encoded genes in 80 laying hens in the

context of dietary P and Ca concentrations. The setup included five tissues and gene

expression was analysed under four different diets of recommended and reduced Ca and P

concentrations. Our study shows, that mitochondrial gene expression is reacting to a reduc-

tion in P and that an imbalance of the nutrients has a higher impact than a combined reduc-

tion. The results suggest, that both strains (Lohmann Brown and Lohmann Selected

Leghorn) react in a similar way to the changes and that a reduction of both nutrients might

be possible without crucial influence on the animals’ health or gene expression.

Introduction

Phosphorus (P) is an essential mineral for all living organisms which must be continuously

supplied and is needed in poultry for growth, health and the energy metabolism [1]. The ability

of poultry to degrade the natural present phytic-acid (InsP6) is limited [2, 3] and thus feed sup-

plements derived from rock phosphate are added to maintain the P supply. The availability of

rock phosphate is limited [4] and thus a reduction of its usage is of utmost interest.

Another important mineral essential for laying hens is calcium (Ca) [5] which is needed e.g.

to form eggshells. Recent studies in broiler chickens have shown, that endogenous InsP6 degra-

dation is reduced when mineral P and Ca are supplemented [6–8] and there is a strong interac-

tion of P and Ca content regarding egg-shell quality and the number of produced eggs [9].

Many studies suggested, that the recommended dietary P content in the feed of laying hens

might be too high, and can be reduced, without significant negative effects on performance

and health of the animals [5, 10–12]. Hence, a better understanding of the effects of dietary P

and Ca is necessary to implement these suggestions and adjust their dietary provision

accordingly.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270550 June 24, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dreyling C, Hasselmann M (2022) The

impact of dietary calcium and phosphorus on

mitochondrial-linked gene expression in five

tissues of laying hens. PLoS ONE 17(6): e0270550.

https://doi.org/10.1371/journal.pone.0270550

Editor: Ewa Tomaszewska, University of Life

Sciences in Lublin, POLAND

Received: August 26, 2021

Accepted: June 12, 2022

Published: June 24, 2022

Copyright: © 2022 Dreyling, Hasselmann. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) (Project number HA 5499/9-1) and

was part of the Research Unit 2601: Inositol

phosphates and myo-inositol in the domestic fowl:

Exploring the interface of genetics, physiology,

microbiome, and nutrition.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-7099-7924
https://doi.org/10.1371/journal.pone.0270550
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270550&domain=pdf&date_stamp=2022-06-24
https://doi.org/10.1371/journal.pone.0270550
http://creativecommons.org/licenses/by/4.0/


Both used strains (Lohmann Brown and Lohmann Selected Leghorn) are commercial

important and selected for egg production [13–15]. Despite their similarities in egg production

previous studies have shown differences between them concerning body weight, gene expres-

sion and phytate degradation in the context of the productive life span and changes in dietary

Ca and P concentrations [10, 16, 17]. These results suggest differences in the strains reaction

to dietary changes, which will be analysed in this work.

In this study we focus on mitochondrial gene expression since mitochondria are linked to P

and Ca availability as well as to the animals’ fitness and energy metabolism. Mitochondria are

the main energy producers of the cell through the process of oxidative phosphorylation

(OXPHOS) [18] and this process depends on the availability [1] and is influenced by the con-

centration [19] of P. In addition, they play a major role in regulating Ca2+ homeostasis [20],

which is an important factor in cell signalling since Ca2+ controls many cellular functions [21]

including gene expression [22] and the regulation of OXPHOS [23].

In our experimental setup, we included all mitochondrial encoded OXPHOS subunits, as

well as nuclear encoded ones such as NDUFB6, which is a subunit essential for the electron

transport in complex I of the respiration chain [24] and SOD2, which detoxifies reactive oxy-

gen species (ROS) produced during OXPHOS in mitochondria [25, 26]. In addition, we

included nuclear genes which are part of the regulatory network, linking mitochondrial gene

expression and biogenesis to external stimuli, such as PGC1α [27], nutrient sensitive factors

such as MTOR as well as subunits of AMPK, which is part of the adaptive response to energy

deficit [27]. Another important key player is IGF-1α, which has been described as participating

in P transport [28], and a reduced IGF1 expression increase the effect of Ca deficiency on bone

accretion in mice [29]. IGF-1α has also been linked to body weight in chickens [30], which

makes it a promising gene in our experimental setup.

Preliminary studies mostly focus on physiological traits important for agricultural purposes,

but also try to understand the mechanisms behind the effects of dietary P and Ca. In a study

focusing on phytate degradation, transcellular mineral transporters, and mineral utilization of

the same hens [10] no P-mediated effects were identified and a major question rising from this

studies is, how the animals react to compensate the reduced amount of P and Ca. In this study,

we focus on the expression of mitochondrial-linked and nutrient sensitive genes and test the

following hypotheses:

1. Mitochondrial gene expression reacts to the reduction of P and Ca

2. The strains react differently to the changes in the diet composition

3. Genes regulating mitochondrial gene expression and biogenesis react to the dietary

changes

Our study benefits from the already published analysis of phenotypic traits [10] as well

from the known genetic background of the two strains [31]. Together with the possibility of a

controlled environment during the experimental procedure it was possible to detect and ana-

lyse gene expression changes in the context of dietary adjustment.

Material and methods

Animals and experimental setup

The animal experiments were performed at the Agricultural Experiment Station of the Univer-

sity of Hohenheim, Germany. They were approved by the Regierungspräsidium Tübingen,

Germany (Project no. HOH50/17TE) in accordance with the German Animal Welfare

Legislation.
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We used 80 laying hens: 40 Lohmann brown classic (LB) and 40 Lohmann LSL-classic

(LSL) white leghorn hybrids contributed by Lohmann Tierzucht (Cuxhaven, Germany). The

hens originated from an experiment addressing the utilization of phosphorus (P) and calcium

(Ca) under different dietary conditions [10]. The experimental setup is described in detail in

Sommerfeld, Omotoso, et al., 2020 [10] and will only be outlined briefly in the following.

The hens were reared together under standard conditions, with diets according to the

requirements of each period, based on soy and corn meal. Ten father lines per strain were

selected prior to the start of the experimental phase. After 27 weeks four hens per rooster were

chosen and placed individually in metabolism units (1m × 1m × 1m) where the hens received

specific diets for the following three weeks. Four different feed compositions were used

(Table 1) and fed ad libitum, each group contained one hen per father line.

Samples and RNA extraction

Samples of five tissues (breast muscle, ileum, duodenum, liver and ovary) were taken on four

consecutive days with random distribution of the four diets in week 31. The animals were indi-

vidually stunned with a gas mixture of 35% CO2, 35% N2, and 30% O2 and killed by decapita-

tion at the Agricultural Experiment Station of the University of Hohenheim [10]. The samples

were directly taken after slaughtering and were immediately placed on dry ice and stored at

-80˚C until RNA extraction.

RNA was extracted using TRIzol Reagent (Thermo Fisher scientific Inc., Massachusetts,

USA) according to the manufacturers’ instructions with modifications described in Dreyling

and Hasselmann 2022 [32]. Samples were dissolved in nuclease-free water, RNA concentration

and quality in form of 260/280 and 260/230 ratios were measured using a NanoDrop 2000/

2000c Spectrophotometer (Thermo Fisher scientific Inc., Massachusetts, USA). In addition to

the provided NanoDrop values for all samples, a representative subset including samples of

different quality and quantity was measured on a Qubit 4 (Thermo Fisher scientific Inc., Mas-

sachusetts, USA) using the Qubit RNA IQ Assay Kit (Thermo Fisher scientific Inc., Massachu-

setts, USA). The samples were stored at -80˚C until further processing.

Real time PCR

The primer design and assay evaluation are already published in Dreyling and Hasselmann

(2022) [32], and were not repeated specific for this experiment. The experimental procedure is

identical and only described in brief in the following. In this study, 28 candidate genes were

used, whereas now five additional genes have been integrated into the final set of primers:

ATPF0, ND2, ND3, PRKAB1, and PRKAG3. A list with the gene names and their abbreviations

used in this study can be found in Table 2.The used primer set including product size, primer

efficiency and accession numbers of the reference sequences can be found in S1 Table. In

Table 1. P and Ca content (g/kg, dry mass) of the four diets. A table containing detailed information about the

nutrients in the diets can be found in Sommerfeld et al., 2020.

Ingredient, g/kg P+Ca+ (diet 1) P-Ca- (diet2) P+Ca- (diet3) P-Ca+ (diet 4)

Calculated concentrations

Total P 5.3 4.7 5.3 4.7

Ca 39.6 33.9 33.9 39.6

Analysed concentrations

Total P 5.3 4.7 5.3 4.7

Ca 39.5 34.4 35.1 40.3

https://doi.org/10.1371/journal.pone.0270550.t001
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addition, melting and standard curves are provided which were produced the same way as

described in Dreyling and Hasselmann (2022) [32].

All analyses were performed on a Biomark HD system (Fluidigm Corporation, San Francisco,

USA), following the protocols for gene expression analysis using five 96.96 IFCs using the Delta

Gene Assays protocol with the manufacturers standard protocol for fast PCR and melting curve

as described in S2 Table. The protocol includes a DNase digestion prior to the reverse transcrip-

tion and a pre-amplification with multiplexed primers followed by an Exonuclease I treatment.

Pre-amplification bias was already described and discussed in Dreyling and Hasselmann (2022)

[32]. All qPCRs were performed in duplicates and the samples were placed randomly on the

chips, only grouped by individual to avoid any bias of sample arrangement. An internal control

and a negative control (throughout all preparation steps) were included to detect variance

between the runs and potential contamination. In each well of the IFC 2.25μl of the diluted Exo I

digested sample were added, resulting in 3.015nl in each reaction chamber. Information about the

primer-pairs and thermal cycling conditions can be found in Table A-C in S1 File.

Data preparation

Quality control. For data evaluation and quality control the Fluidigm Real-Time PCR

analysis software was used. Only Cq-values from reactions with logarithmic increase of fluo-

rescence and specific melting points were used for the following analyses. After the automatic

quality check of the software, the results were evaluated by eye and revised manually if neces-

sary. The quality threshold was set to 0.65 and the peak ratio threshold to 0.8.

The results of the internal control were checked to detect possible variation due to technical

issues.

Reference gene evaluation. We used PPIA and ACTB as reference genes for normalization.

Our previous evaluation already showed that GAPDH is strongly influenced by tissue and thus we

included it as candidate gene in our study. To verify that GAPDH shows high variance between

tissues in this experiment as well, we performed a reference gene evaluation using Normfinder

[33]. As input one individual of each strain and diet was used, including all five tissues per individ-

ual to cover all our variables of interest. Normalization was tested for tissue type and diet.

Calculating relative gene expression. Means of duplicates were calculated of all samples

with two successful runs. For samples that only had one successful duplicate this run was used.

Table 2. Genes used in this study with abbreviations and genome in which they are encoded.

Abbreviation Genome Gene

ACTB Nuclear Actin beta

ATP6, ATP8, ATP5F1, ATPF0 MitochondrialNuclear ATP-synthase F0 subunits

COX1, COX2, COX3, COXC6, COX5A MitochondrialNuclear Cytochrome oxidase subunits

CytB Mitochondrial Cytochrome b

GAPDH Nuclear Glycerinaldehyd-3-phosphat-Dehydrogenase

IGF-1α Nuclear Insulin-like growth factor 1α

MTOR Nuclear Mechanistic target of rapamycin

ND1-ND4, ND4L, ND5, ND6, NDUFB6 MitochondrialNuclear NADH:ubiquinone oxidoreductase subunits

PGC1α Nuclear Peroxisome proliferator-activated receptor gamma coactivator 1-α

PPIA Nuclear Peptidyl-prolyl cis-trans isomerase A

AMPK (PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG2, PRKAG3) Nuclear AMP-activated protein kinase and its α1, α2, β1, β2, γ1, and γ2 subunits

SDHA, SDHB Nuclear Succinate dehydrogenase complex subunits

SOD2 Nuclear Superoxide dismutase

UQCRC1, UQCRC2 Nuclear Cytochrome b-c1 complex subunits 1 and 2

https://doi.org/10.1371/journal.pone.0270550.t002
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Gene expression relative to the reference genes was calculated using the Pfaffl-method [34] as

optimized for multiple reference genes [35, 36]:

rel:gene expression ¼
RQGOI

geomean½RQrefs�

Where RQ = EΔct and E ¼ primer efficiency %
100

� �
þ 1.

Δct was calculated as the difference between the average cycle threshold (ct) of the internal

control to the ct of the corresponding sample. E refers to the converted primer efficiency and GOI

to gene of interest. RQ are relative quantity values calculated using E and Δct. PPIA and ACTB
were used as reference genes (refs). The data was log2 transformed prior to statistical analysis.

Statistical analysis

Linear mixed models were implemented and adjusted to each of the genes.

Y � strainþ diet þ tissueþ tissue � strain � diet þ tissue � strainþ tissue � diet þ strain
þ diet þ individual þ father þ ε

Where Y is relative gene expression, ε is the residual error; strain, diet and tissue are fixed

effects, with individual and father as random effects. All modelling was performed in R (R

Core Team 2019, Version 3.6.1) using the lmerTest [37]. A three factorial analysis of variance

(anova) was performed to evaluate the influence of fixed effects and pairwise tukey posthoc
tests (package emmeans [38]) were performed to detect differences between strain, diet and tis-

sues in various combinations. The output of the model is estimated marginal means

(emmeans), which are used for statistical analyses throughout the whole study. The fulfilling of

normal distribution and the homogeneity of variance were evaluated using QQ and residual

plots. Outliers were removed for each dataset using the interquartile range, except for SDHA,

PRKAA2, PRKAB2 and GAPDH because for these datasets a removal of outliers would have

included too many samples to perform a proper analysis.

Results

After the quality filtering, we received a dataset of 13,487 ct values from 35 Genes and all 400

samples. From 184 samples we obtained high-quality ct values for all genes, whereas for the

remaining samples at least one gene was missing. In the final analyses all samples were

included since no relationship between sample quality and the successful run of all genes was

recognizable. Tables containing concentrations and quality of the RNA extracts can be found

in S3 File.

The calculated Δct values ranged from -6.49 (min. for PRKAA2) to 13.38 (max for

PRKAG3).

The statistical model revealed, that no included gene was significantly influenced by the

strain, two genes were influenced by diet and all genes by the tissue. The most frequent interac-

tion was between strain:tissue (6), followed by strain:diet and strain:tissue:diet (1) while there

was no significant interaction of tissue:diet. The results of the tests derived from the statistical

models for all genes and factors can be found in S1 Table. Sample numbers per gene, strain, tis-

sue and diet can be found in S2 and S3 Tables.

Strain differences

The two-way hierarchical clustering analyses revealed a different number of clusters within

each strain of laying hens. Two clusters were calculated by the cubic clustering criterion [39]
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for both strains (Fig 1). The analysis was performed on 92 samples of each strain, including 19

to 25 samples per diet per strain and 14 to 24 samples per tissue and strain. In general, both

strains showed differentiation different tissue types, especially breast and liver, with more pro-

nounced tissue specific expression pattern in the LSL strain. Consistent for both strains, a

strikingly high up-regulation of three subunits of AMPK (PRKAA2, PRKAB2 and PRKAG3)

and GAPDH are found within breast tissue. The number of clusters was two in the LB and four

in the LSL strain, which reflects the clearer separation of tissue types in the LSL strain.

Using our statistical linear mixed model, we tested for the overall impacts of strain, tissue

and diet on gene expression. We observed no difference between the two strains for all genes

under all four nutritional conditions, except for IGF-1α and UQCRC1 (Fig 2). Both genes were

showing higher gene expression in the LSL strain for all four diets, with a significant difference

under low P and high Ca (diet 4) for IGF-1α (p = 0.0076), and low Ca and low P conditions

(diet 2) for UQCRC1 (p = 0.0214).

For IGF-1α these strain differences are most pronounced in three tissues: breast (higher in

LB hens under low P conditions (p = 0.0227 for P-Ca- and p = 0.0415 for P-Ca+)), liver (always

higher in the LSL strain, p = 0.003 for P+Ca+, p = 0.0001 for P-Ca- and p<0.0001 for P+Ca-

and P-Ca+) and ovary tissue with contrasting pattern among the diets under P+Ca-

(p = 0.0116) and P-Ca+ (p = 0.0037) (Fig 3). In ovary tissue, the significant decrease of gene

expression in the LB strain under P-Ca+ is consistent with the overall trend (Fig 5) while the

increase in the LSL strain does not follow this pattern.

Fig 1. Heat maps of two-way hierarchical cluster analysis for individuals of the LB (left) and LSL (right) strain using Ward’s minimum variance method [40],

the number clusters was estimated using the cubic clustering criterion [39].

https://doi.org/10.1371/journal.pone.0270550.g001
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Fig 2. Relative gene expression of IGF-1α and UQCRC1 of both strains for all diets. Shown are emmeans and standard

errors estimated by the statistical model over all tissues. Statistical significance was declared when p<0.05.

https://doi.org/10.1371/journal.pone.0270550.g002
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Differences between the diets

The overall gene expression (mean of all genes, tissues and strains per diet) was lowest under

low P and high Ca conditions; however, the differences between the diets were not significant.

The statistical model revealed, that the expression of only two genes (SOD2 and NDUFB6) was

affected by the diet. Nevertheless, with pairwise comparisons of the diets, more genes showed

significant gene expression differences: ND3, CytB, SOD2, COXC6, and NDUFB6. For all these

genes, the expression was lowest under low P and high Ca conditions. The expression of

SOD2, COXC6 and NDUFB6 was significantly higher under high P compared to low P under

high Ca conditions (Fig 4) for both strains analysed together. In addition, the LB strain showed

expression differences in CytB, where the expression was higher under high P and Ca levels as

well as under low P and Ca levels compared to diet 4 (P- Ca+).

In addition to the already described differences between the strains in the expression of

IGF-1α, the differences between P+Ca- and P-Ca+ in ovary tissue were significant in the LB

strain (p = 0.0062) and strong but not significant in the LSL strain (p = 0.0563) (Fig 3). Addi-

tionally, the expression in the LB strain was significantly higher in liver tissue under P-Ca-

compared to P-Ca+ (p = 0.0088)

Tissue differences

As already discussed in the context of time dependent gene expression [32], the tissue had the

strongest influence in our experimental setup, influencing the expression of all included genes.

The gene expression was significantly highest for all genes in breast muscle compared to the

remaining four tissues (p<0.001 for all except PRKAA1 where p = 0.048 when breast com-

pared to liver), except for IGF-1α and PRKAG2, where there was no difference compared to

Fig 3. Relative gene expression of IGF-1α per strain and diet in ovary tissue. Shown are emmeans and standard errors

estimated by the statistical model over all tissues. Statistical significance was declared when p<0.05.

https://doi.org/10.1371/journal.pone.0270550.g003
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Fig 4. Relative gene expression of ND3, CytB, SOD2, COXC6 and NDUFB6 for both, the LB and the LSL strain for all diets.

Shown are emmeans and standard errors estimated by the statistical model over all tissues. Statistical significance was declared when

p< 0.05.

https://doi.org/10.1371/journal.pone.0270550.g004
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liver tissue. The expression was lowest in all tissues when fed diet 4 (P-Ca+) (Fig 5). The

already described diet-dependent gene expression changes in SOD2 and NDUFB6 were only

observed in breast muscle tissue, where the expression was significantly lower under P-Ca

+ than under P+Ca+ levels (for more details see S3 Table). In GAPDH highly significant differ-

ences between all pairwise tissue comparisons were observed (p<0.0001), which supports the

decision to abandon it as a reference gene in our study.

Discussion

In our experimental setup we were able to analyse a vast number of mitochondrial and nutri-

tional linked genes in the context of dietary changes in P and Ca contents. We hypothesized,

that one compensatory mechanism of changes in the diets is the adaption of mitochondrial

gene expression, since it is directly linked to the availability of P and the fitness of the

individuals.

Differences between the strains

For none of our candidate genes, the gene expression differed between the strains, and only

two genes (IGF-1α and UQCRC1) showed different gene expression in specific diets (under

low P concentration). These observations indicate, that both strains react to the changes in die-

tary P and Ca content the same way and also in the hierarchical clustering analyses, the pattern

of both strains was similar. A genome wide gene expression analysis comparing the same

strains as included in this work identified genes related to the GO-cluster of phosphorous

metabolism (GO-IDs: GO:006468, GO:0006793, GO:0006796, GO:0016310) to be down regu-

lated in hens of the LSL strain [14] and Sommerfeld et al., 2020 [10] identified two sodium/

Fig 5. Relative gene expression in five tissues and diets. Shown are means and standard derivations of the emmeans of all genes

calculated by the statistical model.

https://doi.org/10.1371/journal.pone.0270550.g005
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phosphate co transporters to be higher expressed in the LSL strain using the same individuals

as in this work. These results indicate, that there are differences between the strains related to

P metabolism, however the genes included in this work showed no general differences between

the two strains. It must also be noted, that Sommerfeld et al. 2020 [10] identified no interaction

of strain and diet on the included genes, which supports the hypothesis that the reduction of P

and Ca content in the used diets was not sufficient to improve the expression levels of our gene

targets significantly. Even if we were able to show differences in gene expression between

strains and diets in some genes in our study, the majority of the included genes showed no

reaction to the dietary changes. A significant change in the mineral concentrations with an

detrimental effect on the whole animal might lead to stronger effects on the animals as

described in this work or by Sommefeld et al. 2020 [10].

Mitochondrial gene expression in the context of dietary changes

Since both nutrients are linked to the mitochondrial energy-metabolism [1, 23] we suggested

an adaption of mitochondrial gene expression as a compensatory reaction to the changing

amount of the minerals. Our data revealed, that most genes showed no significant difference

in gene expression according to the changes in the diet. However, the gene expression was low-

est under P-Ca+ conditions, while the reduction of both minerals or only Ca had a smaller

effect on gene expression. These results suggest, that the effect of reduced P concentrations is

stronger, when there is an imbalance of the proportion, especially under low P.

Four of the five genes showing significant differences were part of the electron respiratory

chain, representing complexes I, III, and IV and the ROS detoxifying gene SOD2. The gene

expression was significantly lower under P-Ca+ compared to P+Ca+ in genes representing

subunits from Complex I and IV of the respiration chain and the ROS detoxifying gene SOD2.

The same observation was made for CytB in the LB strain (Fig 4). This observation suggests

that the reduced availability of P impacts distinct parts of the respiratory system, resulting in

reduced gene expression. Since it is known, that the expression of whole complexes can be reg-

ulated by the expression of individual subunits [41, 42], the reduced expression of single sub-

units might regulate the amount of the whole complex. Additionally, previous studies showed

pattern of co-expression of the OXPHOS complexes [43], which is also shown in our analysis

under low P and high Ca conditions.

A general reduction of assembled OXPHOS complexes might be the result of the observed

expression pattern. The potential reduced production of ROS resulting from diminished

OXPHOS activity leads to a reduced need of SOD2. SOD2 expression has been linked to

impact immunity against bacterial infections in zebrafish [44] and ROS are known to play a

role in the reaction to inflammatory disease [45–47]. Thus, the differences in SOD2 expression

in laying hens might indicate differences in resistance to infections as well. In addition, an

increase in the production of ROS in the mitochondrion is linked to the process of ageing in

many species [48] and the increase of SOD2-expression protects the mitochondrion from

damage, which would otherwise lead to the death of the cell (as stated in Santos et al., 2018

[48], Yin et al., 2018 [49] and cited references within). Regarding the missing of differences in

gene expression between the other treatments suggests that a reduction of P alone is more cru-

cial than a reduction of P and Ca or Ca.

Gene expression differs between different tissue types

As described in the context of life span [32] the gene expression in breast muscle was signifi-

cantly higher than in all other tissues, followed by liver tissue. Studies in humans and chimpan-

zees have shown, that the differences in gene expression are higher between tissues than
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between species and suggests to include different tissue types in functional genomics studies

[50]. In liver, the high rates of gene expression might be explainable by the high amount of

functions of the tissue, ranging from the conversion of glucose into glycogen, the filtration of

blood to the production of cholesterol [51]. In the duodenum and ileum the mucosa and

microbiome are important participants in the process of digestion and uptake of nutrients

[52], which might explain the lower rates in the tissue itself. However, the high activity in

breast muscle tissue is surprising, especially since the process of growing was already finished

during sampling and the purpose of the strains focuses on egg laying instead of meat produc-

tion. In general, there are not many studies comparing gene expression rates between tissues

since most studies focus on differences between different treatments, diseases or developmen-

tal states.

IGF-1α in the context of nutritional changes

We observed most differences in gene expression between strains and diets in the growth fac-

tor IGF-1α. This gene plays a major role in a variety of tissues and functions, e.g. metabolic

homeostasis [53, 54], and growth [55, 56] and nutrition has been identified as a key factor of

IGF1 regulation in humans [57, 58]. This sensitivity might be the reason of the significant dif-

ferences in expression between the diets observed in this study, especially since malnutrition is

known to reduce circulating IGF1 in mice [59]. Additionally, malnutrition has been linked to

decreasing IGF1 expression in liver tissue [60], which is reflected by the significantly lower

expression under P-Ca+ compared to P-Ca- in liver tissue of the LB strain in this study. This

observation also leads to the conclusion, that an imbalance of the minerals is detrimental com-

pared to the reduction of both minerals, and is thus a form of malnutrition. An interaction of

P and Ca content have also been shown in the context od egg-shell quality and quantity of eggs

[9]. Simultaneously the gene expression is significantly lower under P-Ca+ conditions in the

LB strain, which is another indication of differences in the reaction to the reduction of Ca in

both strains. The most prominent difference between the strains was the contrary expression

of the strains under P+Ca- and P-Ca+ conditions. Even if it is long known, that IGF-1α plays a

role in avian ovaries [61], we could not observe any changes in egg weight between the strains

matching the change in expression pattern [10].

Expression changes in nutrient sensitive and mitochondrial regulatory

genes

We included nutrient sensitive genes such as MTOR and AMPK and the nutrient sensitive

mitochondrial regulator PGC1α in our study and the missing reaction to our dietary changes

is striking. All of these genes have been analysed in the context of changes during the produc-

tive life span of laying hens [32] using the same technical approach, which makes it rather

unlikely, that our setup is failing in detecting expression changes. The same hens have been

analysed in the context of performance traits such as body weight, feed intake, average egg

weight and P/Ca efficiency, where no diet specific changes could be observed [10]. In accor-

dance to other studies [5, 11, 12] the authors conclude, that a 20% reduction of P is not affect-

ing the animals and thus, the recommended concentrations in the feed of these animals might

be too high. The missing effect on genes that are part of the mitochondrial regulatory network

supports this hypothesis.

Conclusion

We performed a large-scaled analysis of mitochondria-linked gene expression in laying hens

in the context of P and Ca content in the diets. Our study revealed interesting differences of

PLOS ONE Mitochondrial-linked gene expression in laying hens under different dietary conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0270550 June 24, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0270550


gene expression of subunits covering most OXPHOS complexes under low P and normal Ca

concentrations in the diets. Together with the decrease in the expression of the ROS detoxify-

ing gene SOD2, an interesting part of the regulation of mitochondrial gene expression has

been revealed. In addition, the effects on the growth factor IGF-1α showed that the reduction

of P in the diet has an effect on the mitochondrial regulatory network as well. We also observed

that an imbalance of both minerals seems to have greater influence of gene expression than the

reduction of both nutrients, especially under low P conditions.
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