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Abstract

Patient-specific implant design and pre- and intra-operative planning is becoming increasingly important in the orthopaedic field.
For clinical feasibility of these techniques, fast and accurate segmentation of bone structures from MRI is essential. However,
manual segmentation is time intensive and subject to inter- and intra-observer variation. The challenge in developing automatic
segmentation algorithms for MRI data mainly exists in the inhomogeneity problem and the low contrast among cortical bone and
adjacent tissues. In this paper, we proposed a method for automatic segmentation of knee bone structures for MRI data with a 3D
local intensity clustering-based level set and a novel approach to determine the cortical boundary utilizing the normal vector of
the trabecular surface. Application to clinical imaging data shows that our method is robust to MRI inhomogeneity. In comparing
our method to manual segmentation in 18 femurs and tibiae, we found a dice similarity coefficient (DSC) 0of 0.9611 + 0.0052 for
the femurs and 0.9591 +0.0173 for tibiae. The average surface distance error was 0.4649 £ 0.1430 mm for the femurs and 0.4712

+0.2113 mm for the tibiae. The results of the automatic technique thus strongly corresponded to the manual segmentation using
less than 3% of the time and with virtually no workload.
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1 Introduction 1. Intensity inhomogeneity due to MRI inherent problems

(coil sensitivity and B1 inhomogeneity) can cause a slow

Fast and accurate segmentation of knee bone structures from
MRI data is a topic of increasing interest as its applications
continue to broaden from direct diagnostic purposes [20] to
the creation of 3D finite element models [17], optimizing im-
plant design [22] and pre- and intra-operative planning [18].
However, accurate automated segmentation is hampered by
two problems:
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varying intensity gradient as can be noticed from the dif-
ference in brightness of trabecular fat in the two white
boxes in Fig. 1)

2. Low contrast between the structures of interest (trabecular
bone and infrapatellar fat (green box in Fig. 1), cortical
bone and ligament (blue box in Fig. 1)).

Multiple approaches have been used for knee joint segmen-
tation such as thresholding, region growing, deformable
models, clustering methods and atlas-guided approaches [1].
In 2010, several automated segmentation methods were
assessed in the grand challenge competition for segmenting
cartilage and bone in knee MRI data [10]. Prior knowledge-
based models, such as statistical shape models and atlas-based
methods, seemed to outperform pixel-based methods [9].
These methods, however, require data set training and may
be less suitable for pathologies that are not incorporated in
the training data. Hence, an alternative method to segment
the image without training may be challenging but is desirable
from both clinical and research perspective.
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Fig. 1 a Knee MRI image in
proton density weighted (PDW)
sequence. b Segmentation with
Ostu’s method (red mask is the
segmentation mask). (White box
represents the inhomogeneity
problem, green box represents the
issue of low contrast between tra-
becular bone and infrapatellar fat
and blue box represents the low
contrast problem between cortical
bone and ligament)

To the best of our knowledge, Lorigo et al. were the first to
apply active contours to segment MRI-based knee joint im-
ages [15] without utilization of training data. The texture in-
formation based on vector-valued geodesic snakes with local
variance was incorporated into the active contour framework
to detect the trabecular bone from other structures. This kind
of method to detect regions of interest through evolving con-
tours or surfaces under constraints from a given image has
been largely accepted in the segmentation field [1, 14, 23,
24]. To include cortical bone, Pang et al. added two forces
driven active contour model to segment knee structures with
fat-suppressed MR sequences, which included the directional
vector field convolution (DVFC) force and coupled prior
shape model [16]. Furthermore, Dodin et al. proposed a ray
casting technique to detect the femur and tibia boundary slice
by slice in sagittal direction [5]. Shan et al. proposed a multi-
atlas-based method to extract the femur and tibia mask [19].

Although many attempts were put into automating these
segmentations, problems in MRI inhomogeneity and weak
edges remain challenging, especially for an effective way to
estimate the boundary between the cortical bone and adjacent
tissue with similarly low intensity, i.e. ligament.

In this paper, we propose an automatic segmentation for
trabecular and cortical bone of the femur and tibia in a clini-
cally relevant MR sequence, proton density weighted contrast
[21]. We use a local energy-based level set method to obtain a
3D rough segmentation of trabecular bone and correct the
image data from the inhomogeneity problem. Subsequently,
we generate intensity lines slice by slice based on the rough
trabecular masks. Then, we optimize the trabecular boundary
based on the intensity lines and propose an iterative process to
detect the cortical boundary.

The remainder of this paper is organized as follows: In
Section 2, we introduce the MRI data, the segmentation pipe-
line and related methods. In Section 3, we compare the results
of manual segmentation and segmentation using our method
on proton density weighted MRI data. Finally, Sections 4 and
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5 summarize this research, reviews the results in comparison
to other studies and discusses the future plans.

2 Materials and methods
2.1 MRI image acquisition

A proton density weighted (PDW) contrast MRI sequence
was chosen in this study as it is frequently used to assess
pathologies of the knee in a clinical setting [11, 21]. The
PDW contrast provides data in which the ligaments, menisci
and cartilage can be simultaneously assessed for diagnosis
with a reasonable scanning time. In the PDW contrast, all
relevant structures are displayed in different intensities rang-
ing from high to low: fatty tissue (i.e. both infrapatellar fat and
trabecular bone), cartilage, muscle, ligament and virtually no
signal in the cortical bone. Scans were acquired with an eight-
channel rigid coil in a 3.0-T Philips scanner. Further sequence
details are as follows: FOV =200 x 200 x 200 mm, voxel
size =0.35x 0.35 x0.52 mm for six of the data sets and
0.60 x 0.60 x 0.90 mm for the other 12, flip angle =90, TR/
TE =1000/32.18 ms and scan duration =6 min. All data was
interpolated to 0.90 x 0.90 x 0.90 mm. To test the robustness
of the proposed segmentation pipeline, a total of 18 data sets
were used in this study. This study was approved by the local
IRB and written informed consent was provided by all sub-
jects prior to the study.

2.2 Segmentation pipeline

Figure 2 shows a schematic representation of the pipeline for
the proposed automated method, which includes 3D local in-
tensity clustering-based level set (3DLICLS), inhomogeneity
correction, generation of 2D intensity line image along the
normal vectors of the rough surface, trabecular mask optimi-
zation and cortical mask detection. Also, the required input
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Fig. 2 Segmentation pipeline for the proposed method. Rectangular boxes represent applied methods. White, grey and black parallelograms represent

input data, intermediate data and output results, respectively

data, intermediate data and corresponding output data are de-
scribed in Fig. 2.

2.3 Rough segmentation of the trabecular surface
and inhomogeneity correction

In this section, we introduce a local energy-based level set meth-
od to both obtain a rough segmentation of the trabecular bound-
ary and a bias field to remove any inhomogeneity from the data.

2.3.1 3D local intensity clustering-based level set

In 2011, Li et al. proposed a local intensity clustering frame-
work to segment the region of interest simultancously with
solving the inhomogeneity problem [12]. We extended this
method to 3D in this study. Suppose the observed volume is V:

V =bJ + Lise (1)

where J represents the actual 3D volume components; b is the
3D bias field, which accounts for the intensity inhomogeneity
among the volumes and is slowly varying; and 1, is the
Gaussian noise with zero mean. We proposed to use the mean
shift filter [4] to reduce the noise influence in this study, which
leads to the model becoming V =5J.

Based on the model, the essential ideas of 3DLICLS to
segment interested object in image with intensity inhomoge-
neity are introducing a kernel function to define local energy
function and introducing a bias variable to define the inhomo-
geneity template as follows:

E(C) = JQIinSide(C)KU (xiy) | V(x)ib(y) cinside|2dydx

+ -[Qj.outside(C) K, (x_y) | V(x)_b (y) Coutside |2dydx (2)

where V:{2€R is an input volume, x, ye (2, K, is a
Gaussian kernel with standard deviation o, cipggeand Couside
represent the constant intensity inside and outside the contour
C (such as dark green and light green in Fig. 3a (1)), respec-
tively, and b is the inhomogeneity template. The reason for
introducing the kernel function is to calculate the energy based

on local information, while the reason for introducing the bias
variable is to detect the target in the situation with
inhomogeneity.

According to level set theory, contour, C c {2, can be rep-
resented by the zero level set of a Lipschitz function ¢ : {2€ R
[3]. To minimize the cost function E with respect to ¢, the

gradient descent method is applied % — and thus, we

> ot o(/)
can obtain the curve evolution equation as:
o¢
2 = 0(0)(eimer) (3)

In order to stabilize the evolution of the level set function, a
distance regularized term [13] is incorporated into (3).
Furthermore, Euclidean length term is included to regularize
the zero contour of ¢. Finally, the final evolution equation is as
follows:

%f = ~0:(¢)(e1me2) +v0: (9 )dw(l gg)

on(Pean(7g) ) @

In (4),

{ ei(x) =
ex(x) =

During the evolution, the representatives of constant and
the bias template must be updated. Based on above assump-
tion model, V could approximately be expressed as the multi-

plication of b and constant ¢, and thus, the updated form of
Cinside AN Cpu5iqe are as follows:

[oK o (=) |V (x)=b() Cinsize dv (5)
IQKU (y—x) | V(x)_b ()/) Coutside |2dy

K ) VH(9)dy

Y )y (6)
oSOV (0))dy
outside J‘(bZ*K ) ((b))dy

and regarding b, the optimal bias filed, 13, that minimized the
energy E can be updated as follows:
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Fig. 3 a Evolution of 3DLICLS: (1): red object is the initial contour
example, green circle is used to calculate the inside energy (e;) and
outside energy (e,); (2), (3), and (4): red contours are the boundary
results in iterations 5, 14 and 60. b Red contour represents the

i) _ (V(CinsideH5(¢) + Coutside(l_Hs(gb)))) *Ky (7)
(c[nsid22H5(¢) + Cuutsidez(l_H5(¢))) *Ko'

Similar to previous level set-based method, such as [24],
Heaviside function A and Dirac function 0 used in above
equation are as follows:

H.(x) = ! 1+ Earctan (x)
2 g €/ ) xeR (8)
5 1 € ’
E(x) 7;'52 +x2

The selected iterations from the evolution are shown in
Fig. 3a. Nevertheless, the output result of 3DLICLS includes
not only the trabecular bone but also may include the
infrapatellar fat, as Fig. 3a (4) shows. In order to obtain rough
segmentations of the femur and tibia, a 3D spherical-shaped
erosion kernel with radius of 5 mm was applied (Fig. 3b).
After erosion, the femur and tibia bone area are separated from
infrapatellar fat using a connectivity search (Fig. 3c). Then, an
image dilation operation with the same kernel size of erosion
finalizes the result, a rough segmentation of the trabecular
bone of femur and tibia (see Fig. 3d). The basic theory of
3DLICLS also supports multi-phase detection [12]. In this
study, we aimed to use it to position the trabecular bones
roughly, and thus, the two phase model was selected.

2.3.2 Inhomogeneity correction

The 3DLICLS process results in a rough segmentation of the
trabecular bone of femur and tibia and a bias template of the
complete FOV as shown in Fig. 4b. This bias template is used
to remove inhomogeneity, and the bias-corrected volume is
computed as:

Vcorrected =V / b (9)

where V., ecrea 18 the corrected volume, V is the original vol-
ume and b is the bias template from 3DLICLS. The corrected
image slice is shown in Fig. 4c and the comparison between
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boundary after erosion. ¢ Red contour represents selected area for femur
and tibia. d Red contour represents the dilated rough trabecular mask for
femur and tibia

before and after correction is indicated by the red box in
Fig. 4a, c.

2.4 Generating normal vectors on the rough
trabecular surface

Previous steps provide only the rough shape of the trabecular
boundary. To obtain the precise trabecular bone boundary, an
intensity line is generated along the normal vector of the tra-
becular surface (slice by slice), as Fig. 5a shows. To determine
the normal vector of each point in the contour, such as green
point A in Fig. 5b, we can apply singular value decomposition
(SVD) among its neighbor points (yellow points) and itself
(green point). In the case of point A, the coordinates of the
points form the matrix My,

X1 X2 e Xy
My = 10
4 |:y1 Yo oo I ] (10)

To obtain optimal solution in least squares sense, the first
and second rows of M, are corrected by their respective aver-

. ! .
age Xymean AN Viyoans 1.€. X, = Xy Xpean, and obtain:

M;:{x,l 2o xr] (11)
Yi Voo o Wy

Using SVD, M /A is then decomposed into three parts, U, ¥
and V,

M, =UxvT (12)

from which U provides the orthonormal vectors, u; and u,. u,
is the tangent unit vector of point A, while u, is the normal
unit vector (the vector we use in this study). We refer to [2] for
further explanation on U, X’ and V.

In a pilot study, a length of 45 mm for the intensity line
along the normal vector (15 mm inward and 30 mm outward)
was found to be adequate for robust inclusion of the precise
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Fig. 4 Inhomogeneity correction. a Original data. b Inhomogeneity template. ¢ Inhomogeneity corrected data. (Red box represents the region can be

optimized to segment)

trabecular boundary. Combining all intensity lines around the
trabecular bone, an intensity line-based 2D image (IL2DI) is
constructed, as Fig. 6b shows.

2.5 Determination of the precise trabecular boundary

From the resulting 2D intensity lines, we now determine the
precise trabecular surface slice by slice. Figure 6 shows a
transverse slice of the femur (a), the complete set of IL2DI
(b) and a typical intensity line (c). For each intensity line,
trabecular candidate points P, are defined as the point of max-
imum decline before a local minimum P,,,. A maximum of five
candidates P, are identified per intensity line.

To calculate the precise position of the trabecular boundary,
many subsets of boundary candidates are constructed from a
set of neighboring intensity lines (M = 7 in this study). In order
to determine the suitable edge point (A or B) for the example
of row 23, six permutations are obtained as shown in Fig. 7.
The trabecular bone boundary is now determined as the

Fig. 5 Illustration of normal
vector calculation. a Red dash
contour is the result of 3DLICLS,
blue solid contour is target
boundary and yellow dash
rectangle is the enlarged area. b
Black arrow is the normal vector,
grey dash line is the tangent line
of the contour and yellow circles
are the neighbor points of target
A. u; and uprepresent the tangent
and normal vectors

candidates with minimal variance and closest to the rough
trabecular boundary as the minimum of the cost function:

n s STD, Yo abs(Pr—Prp)
min
n=ty |7 STP max STD, P max Y abs (P —Prp)

(13)

where forp and fpp are the weight for standard deviation and
distance deviation from the initial trabecular boundary, respec-
tively, and defined as fg7p =fpp=1. STD,, is the standard de-
viation of the given permutation of trabecular candidates. P,
represents m row of n permutation and P75 means the position
of rough trabecular boundary. The first term minimizes the
distance between candidates among rows, while the second
term minimizes the distance between boundary end result and
initial 3DLICLS result. The boundary selection of example in
Fig. 7 is A, and the example of selected candidates in IL2DL is
shown with red points in Fig. 8a.
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Fig. 6 a Transverse view of femur. The arrow with different color corresponds to the different colored dash line in b. b 2D intensity line image with
different colored dash line. ¢ Intensity line of blue-dashed line on b (grey point represents the local minimum, red point represents trabecular candidate)

Then, as Fig. 8b shows, the found trabecular contour is
smoothened in the IL2DI view with a Gaussian filter of kernel
size 3. The found contours are then mapped back from IL2DI
to transverse view and smoothened in slice direction to ensure
a smooth continuous trabecular mask, as Fig. 8c shows.

2.6 Cortical bone boundary detection

The main obstacle to extract the robust cortical edge exists in
the weak contrast between cortical bone and ligament tissue.
Before solving the obstacle, we make two assumptions:

1. The thickness of cortical bone on femur decreases in in-
ferior direction, while the one on tibia decreases in supe-
rior direction [7].

2. From perspective of manual segmentation, the weak
boundary is identified based on surrounding tissue among
adjacent slices (the assumption is based on discussion
with two experts who have segmented over 50 data sets

at the orthopaedic lab for the purpose of generating FE
models).

According to the assumptions, we propose two steps to
solve the challenge of cortical bone determination, especially
in the region with a weak edge.

Step 1  Construction of initial cortical boundary

Aninitial cortical boundary is obtained by searching for the
point of maximum incline after the first minimum P,,, starting
from the trabecular bone boundary P, in the IDL2L (see
Fig. 9).

This procedure provides a first guess of the cortical
bone. However, there can still be outliers in the area with
noise and weak contrast, especially near the ligaments
where a ligament boundary can be mistakenly selected
for cortical bone (yellow box in Fig. 10a). For that matter,

the actual cortical boundary is iteratively detected based
on assumption 2.

©) 3 Candidate

(ON 1 Candidate

jO8 1 Candidate

N
’

2 Candidate
O 1 Candidate

Q. 1 Candidate

0 1 Candidate

-Q
@,
O

Fig. 7 Tllustration of trabecular Row 20: O~ _
boundary determination of row T
23 (l%ne connfectlon between Row 21:
candidates (different color means
different line connection), and
black-dashed line represents the Row 22:
position of Prp)

Row 23:

Row 24:

Row 25:

Row 26:

5

@ Springer

6 Permutations

o
o]

15
Position

20 25 30



Med Biol Eng Comput (2019) 57:1015-1027

1021

Fig. 8 a Selection of trabecular
boundary in IL2DI (red points). b
Smooth version of (a) (red
points). ¢ Trabecular boundary in
transverse view (red, rough
trabecular boundary; green,
optimized trabecular boundary;
white, overlap of green and red)

Step 2 Iterative optimization of cortical boundary

Firstly, the average thickness Ry.,.c along the inferior di-
rection of femur and superior one of tibia in each slice can be
calculated by using the cortical area divided by the mean pe-
rimeter, Crc (average perimeter of cortical and trabecular
boundaries):

RMeanC - ACortical/CTC (14)

Acoricar Mmeans the area of cortical bone, which calculated
by the area of total bone (cortical and trabecular) and trabec-
ular bone (A coical = AToral — ATrabecuiar)- Figure 10b shows the

1
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Fig. 9 Intensity line of blue-dashed line in Fig. 7b (P, represents the
trabecular boundary, P,, represents the point with local minimum inten-
sity, P, represents the cortical boundary, P represents the maximum
search range and / represents the distance between P, and P)

variation of the mean cortical thickness in each slice from
inferior direction for the femur and the smoothened version.

Similar to trabecular optimization, the cortical boundary is
determined as the minimum of the cost function, which con-
sists of the candidates with minimal variance and closest to
position of Pcyean = P+ Riseanc:

STD, M abs (PP cyean)

. n

min ¢ forp + /b

n=1:N max STD, max M abs(P—Pcuean)
n=l1: n=l1:

(15)

where forp and fpp are the weight for standard deviation and
distance deviation from Pc,,..,, respectively, and defined as
fsto=fpp=1. STD,, is the standard deviation of the given
permutation of cortical candidates. P} represents /m row of n
permutation. Normally, the candidates of cortical boundary
are at most three maximum incline after the trabecular bound-
ary. Nevertheless, if the first incline is larger than the mean
thickness of correspondent points of its last three layers, the
position Pc,,...1s added to the candidate set of cortical bound-
ary. To be more exact, this step simulates the assumption 2 and
provides an extra option, position of Pc,,c., in the area may
exist the weak edge. The optimization of cortical boundary is
an iterative procedure, which will be updated until conver-
gence of the change of mean cortical thickness. The criterion
for convergence in this study was defined as a change in mean
cortical thickness between two iterations to be less than
1 pixel.

At last, same as trabecular optimization, the found cortical
contour is smoothened and mapped back to transverse view.

2.7 Evaluation
All datasets were analyzed in MATLAB 2015b. Data analysis

was carried out on a conventional laptop with CPU Intel Core
17-4700MQ (2.40 GHz) and 16 GB RAM. The manual

@ Springer
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Fig. 10 a Transverse view of femur (yellow box represents the connected area between cortical bone and ligament). b Mean cortical thickness variation
along inferior direction of femur (blue, original version; red, smoothed version)

segmentation was defined as ground truth for scoring of the
automatic segmentation. The manual segmentation was per-
formed in the Mimics software environment. The outcomes
were quantified with the Dice sensitivity coefficient (DSC) [5,
6, 8, 19] and the average surface distance (ASD) [5, 16].

3 Results

3.1 Comparison between 3DLICLS and 2DLICLS

Figure 11 shows the initial trabecular result before the erosion
operation between the 3DLICLS and 2DLICLS (performed

the algorithm slice by slice). The result from 2DLICLS shows
more leakage areas than the 3DLICLS.

3.2 Segmentation results for trabecular bone

Figure 12 shows the final trabecular result for the first data sets
in sagittal view at mid-slice position and in transversal view at

several key positions. The red contour represents rough tra-
becular result after 3DLICLS and image morphological oper-
ation and the green contour is the trabecular result after opti-
mization in 2.5.

Generally, femur and tibia are isolated with 3DLICLS, as
Fig. 12b—h shows. The inhomogeneity problem increases near
the outer slices of the FOV as can be seen in Fig. 12h.
3DLICLS however determines the bias field and is still able
to segment the trabecular bone robustly in this area.

3.3 Segmentation results for cortical bone

Figure 13 shows the cortical segmentation results including
cortical bone guess (red) in first maximum incline (2.6 step
(1)), final cortical mask within proposed method (yellow) and
manual segmented mask (green). Plus, white point represents
the overlap between proposed method and manual
segmentation.

From (b) to (e) and (h) to (f), the phenomenon of cortical
bone thinning towards the femur condyles and top of tibia can

Fig. 11 Comparison between 3DLICLS and 2DLICLS.
sagittal and axial result of 2DLICLS

@ Springer
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Fig. 12 a Sagittal view from the result of 3DLICLS. b—h Transverse view of rough trabecular masks (red contour) and the optimized trabecular masks
(green contour). White point means the overlap between rough trabecular mask and optimized mask

be noticed respectively, where the red contour (trabecular
boundary) moves more and more towards the yellow and
green contour (automatic and manual segmentation of the cor-
tical boundary).

In the shaft area without inhomogeneity (regions (b)
and (c)), there is virtually full agreement between man-
ual segmentation and our method. Difficulties arise in

the areas containing transition from cortical bone to car-
tilage and/or ligament, depicted in (d)—(g). Despite the
weak edges between ligament and cortical bone, the
automatic segmentation still displays minimal disagree-
ment with the manual one. Furthermore, the perfor-
mance in the region with inhomogeneity (h) also dis-
plays convincing result.

Fig. 13 a Sagittal view to show the position of (b)—(h). b-h Comparison
results from transverse view. Green contour is manual segmentation,
yellow contour is cortical boundary of proposed method, blue contour

is the initial cortical mask (2.6 step (1)), red contour is the optimized
trabecular mask and white point means the overlap between proposed
method and manual segmentation
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3.4 Convergence of cortical boundary detection

Figure 14a, b shows the difference of sum of average cortical
thickness along the iteration for femur and tibia among the 18
data, respectively. Generally, the change becomes converged
after eight iterations, but the result normally changes little after
four iterations.

3.5 Segmentation accuracy

As the boxplots in Fig. 15 show, the average DSC are 0.9611
+0.0052 for the femur and 0.9591 +0.0173 for the tibia. Two
typical situations with low DSC score are also shown in
Fig. 15. The average distances to surface between the auto-
matically and manually segmented bones, 0.4649 +0.1430
mm for the femur and 0.4712+0.2113 mm for tibia, are
shown in Fig. 16a, and a 3D difference for femur and tibia is
shown schematically in Fig. 16b, c.

3.6 Segmentation time

The average time needed to segment one dataset (femur and
tibia) with a matrix of 336 x 336 x 222 voxels was around
250 s and 2.5 h for automatic and manual segmentation, re-
spectively. Hence, the prosed method is efficient and promis-
ing for assisting segmentation research.

4 Discussion

In this study, we proposed an automatic workflow to segment
the cortical and trabecular bone of femur and tibia in proton
density weighted MRI. A 3D level set-based algorithm is used
to segment the rough trabecular boundary and remove any
slow varying inhomogeneity. Trabecular and cortical bone
boundaries are detected from the intensity profiles along nor-
mal vectors generated from the trabecular surface. Upon

45
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0

(a) Iteration(Femur)

testing of the method in 18 datasets, the algorithm demonstrat-
ed its capability to handle field inhomogeneity and correctly
detect trabecular and cortical bone over the full field of view
including weak edges near ligament and thinning cortical
bone. Scoring of the proposed segmentation method using
manual segmentations as a reference yielded DSC over 95%
and ASD errors less than 0.5 mm for both femur and tibia.

Table 1 shows a comparison of evaluation results from
similar studies in recent literatures. Although our method’s
results are well within the range of success rates as reported
from literatures, we must stress the difficulty in direct com-
parison between methods because of the differences in
workflow. Shan et al. [19] and Fripp et al. [6] for instance
use prior data, whereas we do not. Guo et al. [8] reported
scores on trabecular bone segmentation only, and Pang et al.
[16] reported average surface distances for specific slice loca-
tions versus over the whole bone surface.

There are several limitations in this study. Firstly, manual
segmentations from a trained expert were used as a ground
truth for scoring the automatic method. As the exact boundary
between cortical bone and ligament is often not completely
clear even for orthopaedic surgeons, this ground truth is sub-
ject to debate. Hence, the results presented in this study only
show the method’s capability to simulate the manual evalua-
tion of cortical bone. Secondly, the patients whose data was
used in this study were all in relatively good health as the knee
is concerned. Patients with pathologies that affect the bone
and cartilage (e.g. osteoporosis, osteoarthritis, bone marrow
lesions) may require re-tuning of the parameters of the auto-
matic segmentation algorithm. This requires bigger datasets
and clinical applications.

This fast and robust segmentation of trabecular and
cortical bone boundary of the femur and tibia has the
potential of providing a basis for surgical planning and
more accurate finite element models of the knee joint.
By removing the large workload that is involved in man-
ual segmentation of MRI images, these methods can

datal
data2
data3
datad
—dataS
dataé
data7
data8
data9
data10
data11
data12
data13
data14
—data15
data16
data17
data18

Average Cortical Thickness Difference(pixel)

1 2 3 4 5 6 7 8 9 10
(b) Iteration(Tibia)

Fig. 14 Average cortical thickness difference between neighbor iterations. a Femur. b Tibia
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DSC between manual and automated segmenation
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Fig. 15 Box plot of comparison between automatic and manual segmentation calculated in DSC scores (green contour is cortical boundary of manual
segmentation, yellow contour is cortical boundary of proposed method, white point represents the overlap between green and yellow point)

potentially be introduced in the clinic and in large-scale
research projects. In this study, proton density weighted
contrast was used, because of its wide availability, short
scan time and orthopaedic relevance. The method, how-
ever, could also be adjusted to extract bone from other
types of contrast, provided there is an overall difference
in contrast between trabecular bone, cortical bone and

ASD between manual and automated segmenation

—_

ASD(mm)

]
|
0.35 :
1

03 —

(a ) Femur Tibia ( b)

Bone Type

I
1 I
I 1.6
—— I
06 !
|
0.55
0.5 (
045 08
0.4

adjacent tissues, and there is enough consistency in the
trabecular to cortical bone boundary to correct any weak
edges using its surroundings.

Furthermore, as the method contains no substantial as-
sumptions, constraints or premises with respect to the shape
of the bone but rather to the contrast, it is feasible to extend
this method to the shoulder and elbow joint.

Average Surface Distance(mm)
)
®
Average Surface Distance(mm)

(c)

Fig. 16 a Box plot of average surface distance difference between automatic and manual segmentation for femur and tibia. b, ¢ Distance difference in 3D

view for femur and tibia, respectively

Table 1 Result comparison

between proposed method and DSC ASD (mm)
previous studies
Femur Tibia Femur Tibia
Dodin et al [5] 0.94+0.05 0.92+0.07 0.50+0.12 0.37+0.09
Pang et al. [16] - - 0.459+0.187 0.845+0.392
Shan et al. [19] 0.970+0.011 0.967+0.012 - -
Guo et al. [8] 0.94 0.94 - -
Fripp et al. [6] 0.96 0.96 - -
This study 0.9611+0.0052 0.9591+0.0173 0.4649 +0.1430 0.4712+0.2113
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5 Conclusion

In this paper, we presented and evaluated an automatic
workflow to segment the trabecular and cortical bone of femur
and tibia with PDW sequence in MRI. Initial results compared
with manual segmentation indicate the possibility to provide
an automatic segmentation to researchers and clinical doctors
to perform further analysis rather than the time-consuming
manual segmentation.

Future studies will include the following: an increase in the
number of patients of the test group; an extension of the method
to determine the knee bone and cartilage; and an automated
workflow to provide clinically relevant parameters, such as tibia
tubercle-trochlear groove distance (TT-TG) and patella tilt.
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