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OBJECTIVE—A number of studies have found that BMI in early
life influences the risk of developing type 2 diabetes later in life.
Our goal was to investigate if any type 2 diabetes variants
uncovered through genome-wide association studies (GWAS)
impact BMI in childhood.

RESEARCH DESIGN AND METHODS—Using data from an
ongoing GWAS of pediatric BMI in our cohort, we investigated
the association of pediatric BMI with 20 single nucleotide
polymorphisms at 18 type 2 diabetes loci uncovered through
GWAS, consisting of ADAMTS9, CDC123-CAMK1D, CDKAL1,
CDKN2A/B, EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic
region on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B,
NOTCH2, SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5. We
randomly partitioned our cohort exactly in half in order to have
a discovery cohort (n � 3,592) and a replication cohort (n �
3,592).

RESULTS—Our data show that the major type 2 diabetes
risk–conferring G allele of rs7923837 at the HHEX-IDE locus
was associated with higher pediatric BMI in both the discovery
(P � 0.0013 and survived correction for 20 tests) and replication
(P � 0.023) sets (combined P � 1.01 � 10�4). Association was
not detected with any other known type 2 diabetes loci uncov-
ered to date through GWAS except for the well-established FTO.

CONCLUSIONS—Our data show that the same genetic HHEX-

IDE variant, which is associated with type 2 diabetes from
previous studies, also influences pediatric BMI. Diabetes 59:

751–755, 2010

D
iabetes affects an estimated 194 million adults
worldwide and more than 18 million in the U.S.
with chronic complications including microvas-
cular disease and accelerated development of

cardiovascular disease. Approximately 90–95% of those
affected by diabetes have the type 2 diabetes form of the
disease. Hyperglycemia is a key feature of type 2 diabetes
and occurs through two possible mechanisms: 1) abnor-
mal insulin secretion as a result of pancreatic �-cell
defects or 2) insulin resistance in skeletal, muscle, liver,
and adipose tissue.

Type 2 diabetes has been the focus of more genome-
wide association studies (GWAS) than any other disorder
studied to date; such analyses have revealed a number of
loci (1–9). The strongest association in European popula-
tions has been with a gene established in 2006, namely, the
Wnt-signaling pathway member transcription factor 7–like
2 (TCF7L2) (10), while in China and Japan, the strongest
association has been with the gene encoding potassium
channel, voltage-gated, KQT-like subfamily, member 1
(KCNQ1) (8,9). The first batch of such studies (1–6)
revealed new loci, and with a recent meta-analysis (7) of
type 2 diabetes genome-wide single nucleotide polymor-
phism (SNP) genotype data producing another six loci,
there are now 17 genes established in the disease, includ-
ing CDKAL1, SLC30A8, and JAZF1. MNTR1B was first
implicated in multiple GWAS of the related trait of fasting
glucose and was subsequently associated with type 2
diabetes within the same studies (11–13).

All the type 2 diabetes genes uncovered by GWAS to
date have been implicated in primarily impacting insulin
secretion, with the exception of the fat mass and obesity-
associated gene (FTO), which was uncovered as a conse-
quence of a type 2 diabetes GWAS but turned out to be
operating through insulin resistance and was therefore
primarily an obesity risk factor (14).

A question therefore arises, If specific genomic variants
can impact insulin resistance or insulin secretion, can this
in turn impact BMI earlier on in life? As such, we sought to
examine these type 2 diabetes GWAS findings in a large
pediatric cohort with BMI measures and to determine the
relative impact of these variants on the trait of interest. We
used data from an ongoing GWAS in a cohort of 7,184
European American children with recorded heights and
weights randomly partitioned precisely in half in order to
have a discovery cohort and a subsequent replication
cohort.

Loci selected had been discovered directly from pub-
lished type 2 diabetes GWAS. We therefore queried for
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known variants at the 18 type 2 diabetes–associated loci
of ADAMTS9, CDC123-CAMK1D, CDKAL1, CDKN2A/B,
EXT2, FTO, HHEX-IDE, IGF2BP2, the intragenic region
on 11p12, JAZF1, KCNQ1, LOC387761, MTNR1B, NOTCH2,
SLC30A8, TCF7L2, THADA, and TSPAN8-LGR5 with re-
spect to their correlation with pediatric BMI.

RESEARCH DESIGN AND METHODS

Our study cohort consisted of 7,184 singleton children of European ancestry
with systematically recorded height and weight. All subjects were consecu-
tively and randomly recruited from the greater metropolitan area of Philadel-
phia from 2006 to 2009 at The Children’s Hospital of Philadelphia; i.e.,
participants were not specifically targeted for obesity-related traits. The study
was approved by the institutional review board of The Children’s Hospital of
Philadelphia. Parental informed consent was given for each study participant
for both the blood collection and subsequent genotyping.
Genotyping. We performed high throughput genome-wide SNP genotyping
using the Illumina Infinium II HumanHap550 or Human 610 BeadChip tech-
nology (Illumina, San Diego, CA) at The Children’s Hospital of Philadelphia’s
Center for Applied Genomics as described previously (15). The overall
genomic control value was 1.036. The SNPs analyzed survived the filtering of
the genome-wide dataset for SNPs with call rates �95%, minor allele fre-
quency �1%, missing rate per person �2%, and Hardy-Weinberg equilibrium
P � 10�5.

Most loci described from GWAS published to date have been found using
either the Affymetrix or Illumina platform. In the event a locus was reported
using both the Illumina and Affymetrix arrays, we used the SNPs present on
the Illumina array. In the event of a signal only being described on the
Affymetrix array, we either already had the SNP on our Illumina array or
identified and used the best surrogate SNP available based on the CEPH
(Centre d’Etude du Polymorphisme Humain) from Utah (CEU) HapMap
(supplemental Table 1, which can be found in an online appendix at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-0972/DC1). We used
two SNPs at the CDKAL1 (rs4712523 and rs7756992; r2 � 0.677) and
HHEX-IDE (rs1111875 and rs7923837; r2 � 0.698) loci as the association with
type 2 diabetes from various GWAS reported different SNPs, which were in
imperfect linkage disequilibrium (LD) with each other. rs3751812 at FTO was
included as a positive control as we have previously reported the association
with this SNP and both pediatric obesity and pediatric BMI (16,17).
Analysis: normalization of BMI. BMI percentiles were defined using the
standard Centers for Disease Control (CDC) growth chart z scores that take
into account age and sex. All subjects were biologically unrelated and were
between 2 and 18 years of age. All subjects were between �3 SDs of CDC
corrected BMI; i.e., outliers (n � 356) were excluded to avoid the conse-
quences of potential measurement error or Mendelian causes of extreme
obesity.
Association. We queried the data for the SNPs of interest in our pediatric
sample. All statistical analyses were carried out using the software package
PLINK (version 1.05) (18). We applied PLINK to the generation of genome-
wide identical by state estimates between all subjects and then generated
multidimensional scaling (MDS) plots for visual examination of population
outliers. To help interpret the population genetic analysis, we included 924
HapMap3 individuals from 11 populations as positive control subjects into the
MDS analysis. The individuals of European ancestry were selected by the
principal component one of �0.04 and principal component two of �0.01.
Comparing self-identified ancestry with the MDS-inferred ancestry confirmed
the reliability of MDS to identify genetically inferred individuals of European
ancestry.

By treating the normalized BMI z score as a quantitative trait, association
analysis for each SNP was carried out using linear regression (additive model)
with the SNP included as an independent variable (coded as 0, 1, and 2). With
3,592 subjects in the discovery cohort, the powers to detect 0.2, 0.3, 0.4, 0.5,
0.6, 0.8, and 1% variation at the � � 0.0025 level were 27.0, 49.0, 68.2, 82.0, 90.6,
97.9, and 99.6%, respectively.

RESULTS

In our analysis, 20 SNPs corresponding to the 18 type 2
diabetes loci previously discovered in GWAS of the disor-
der were investigated, namely, ADAMTS9, CDC123-
CAMK1D, CDKAL1, CDKN2A/B, EXT2, FTO, HHEX-IDE,
IGF2BP2, the intragenic region on 11p12, JAZF1, KCNQ1,
LOC387761, MTNR1B, NOTCH2, SLC30A8, TCF7L2,
THADA, and TSPAN8-LGR5 (Table 1).

We randomly partitioned our cohort exactly in half in
order to have a discovery cohort (n � 3,592) and a
replication cohort (n � 3,592). Five of these 20 SNPs
yielded at least nominally significant association with BMI
(P � 0.05) in the discovery cohort, representing four
different independent loci.

Of these four loci, the minor allele of rs3751812 at the
FTO locus yielded the strongest association with P �
3.81 � 10�5 and tracked with higher BMI. The direction of
effect was also readily replicated in the additional cohort
(P � 5.56 � 10�6), yielding a combined P � 1.05 � 10�9.

The major type 2 diabetes–conferring G allele of
rs7923837 at the HHEX-IDE locus was associated with
higher pediatric BMI in both the discovery (unadjusted
P � 0.0013; Bonferroni correction for 20 variants threshold
P � 0.0025) and replication (unadjusted P � 0.023) sets
(combined unadjusted P � 1.01 � 10�4). The major C
allele of rs1111875 at the same locus was also trending
with higher pediatric BMI but did not survive the Bonfer-
roni correction for multiple testing in the discovery
cohort.

The other two nominally significant loci in the discovery
cohort, rs4402960 at IGF2BP2 (P � 0.05) and rs11257622
at CDC123-CAMK1D (P � 0.024) failed to replicate in the
additional cohort. Association was not detected at all with
any of the other type 2 diabetes loci uncovered to date
through GWAS.

We also analyzed male and female subjects separately,
but the effect of the G allele rs7923837 at the HHEX-IDE

locus on pediatric BMI did not vary by sex (supplemental
Table 2). However, we did look at different age bins and
found that the variant was associated with higher pediatric
BMI most strongly in the 2- to 6-year-old age bin (supple-
mental Table 3). By further breaking down the ages into
individual years, nominally significant association for this
HHEX-IDE variant in the same direction was observed at
ages 3, 7, 14, and 16 years (supplemental Table 4). How-
ever, we did not observe an overall statistical interaction
with age, with the interaction P values for rs1111875 and
rs7923837 being 0.2507 and 0.1076, respectively.

DISCUSSION

If a genomic variant is well established to be associated
with a trait that is the consequence of a defect of recog-
nition of insulin by the body or by a fault in the amount of
insulin released for the pancreatic islets (i.e., type 2
diabetes), then if these defects are operating at all in
childhood, one might expect there to be an impact on BMI
in childhood.

With this notion in mind, we queried the existing dataset
from our ongoing GWAS of pediatric BMI if any of the type
2 diabetes loci uncovered in GWAS to date played a role in
our trait of interest; it should be noted that PPARG,
KCNJ11, and WFS1 were not included as their discovery
with respect to being type 2 diabetes loci predates GWAS
and thus have already been more extensively investigated.
Our data in fact do show that the same genetic HHEX-IDE
variant that is significantly associated with type 2 diabetes
from previous studies also influences pediatric BMI. In-
deed, the major G allele of rs7923837 at the HHEX-IDE
locus was associated with higher pediatric BMI in both the
discovery and replication cohorts, which is the same allele
that has been reported to confer risk of type 2 diabetes.
This mirrors very well what has been seen with the much
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more established FTO gene reported here and in other
studies.

SNP rs7923837 yielded the fourth strongest association
with type 2 diabetes in a Canadian/French GWAS carried
out on the Illumina HumanHap platform (1). SNPs
rs1111875 and rs7923837 yielded the strongest association
at the HHEX-IDE locus, but it should be noted that they
are far from being in perfect LD with each other (r2 �
0.698), and thus both are included in the current study.
However, despite the lack of complete concordance and
the large sample size, we were unable to separate the
effects of these SNPs as they cannot be considered to be
totally independent signals either.

One hypothesis could be that the fetal genotype for
rs7923837 is primarily associated with birth weight given
that reduced birth weight is often reported to be associ-
ated with increased BMI and type 2 diabetes later in life.
However, this does not appear to be the case as we have
already investigated and reported the role of these type 2
diabetes loci in the context of birth weight in our cohort.
Although we have agreed with previous studies that
CDKAL1 is a birth weight-associated gene, we have not
observed such an association with HHEX-IDE (19). Fur-
ther, although there is no CDC categorization for the under
2-year-old age-group, we do not observe association be-
tween rs7923837 and BMI in this age category following
our own normalization (data not shown). The correlation
between birth weight and BMI in later childhood is less
correlated than in earlier stages, suggesting that the
HHEX-IDE variant exerts its physiological influence di-
rectly rather than as a consequence of a knock-on effect
from a primary impact on birth weight. However, we do
acknowledge that of the age bins studied, the strongest
effect was observed in the 2- to 6-year-old age bin (effect
size [SE] � 0.12 [� 0.04]) (supplemental Table 3). But this
is not the whole story because at the individual age level,
although more limited in terms of power, the impact
continues to be observed into the mid-teens (supplemental
Table 4).

The assumption in this study is that deficient insulin
secretion mediates the effect on childhood BMI, but it is
also possible that higher childhood BMI results in im-
paired insulin secretion later in life. There could indeed be
pleiotropic associations from multiple independent mech-
anisms; however, we were not able to address this as we
do not have insulin secretion/sensitivity measures in our
study.

From our analysis, apart from FTO it is clear that only
one of the loci previously reported from type 2 diabetes
GWAS plays a role in our phenotype of interest, i.e.,
pediatric BMI. While this recently discovered locus unveils
a new biomolecular pathway not previously studied in the
context of type 2 diabetes and obesity, it is also important
to note that this and other genetic associations with
childhood obesity explain very little of the genetic risk for
the pathogenesis of the trait (17); indeed, an estimate of
the explained variance of the HHEX-IDE and FTO loci
combined is only 0.98%, suggesting the existence of addi-
tional loci whose number and effect size remain mainly
unknown. Current knowledge concerning the impact of
genetic factors in the determination of pediatric BMI may
still be very limited due to both the lack of availability of
large pediatric cohorts with GWAS data and methodolog-
ical difficulties in the analysis of the phenotype that
changes with age and depends on many other contributing
factors. Once our GWAS is complete, we will have the

opportunity to look for other variants in the genome
associated with BMI in childhood.
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