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Abstract: The presence of contaminating gDNA in RNA preparations is a frequent cause of false
positives in RT-PCR-based analysis. However, in some cases, this cannot be avoided, especially when
there are no exons–intron junctions in the lncRNA sequences. Due to the lack of exons in few of
long noncoding RNAs (lncRNAs) and the lack of DNAse treatment step in most studies reported
so far, serious questions are raised about the specificity of lncRNA detection and the potential of
reporting false-positive results. We hypothesized that minute amounts of gDNA usually co-extracted
with RNA could give false-positive signals since primers would specifically bind to gDNA due to
the lack of junction. In the current study, we evaluated the effect of gDNA and other forms of DNA
like extrachromosomal circular DNAs (eccDNAs) contamination and the importance of including a
DNAse treatment step on lncRNAsexpression.As a model, we have chosen as one of the most widely
studied lncRNAs in cancer namely MALAT1, which lacks exons. When we tested this hypothesis
in plasma and primary tissue samples from NSCLC patients, our findings clearly indicated that
results on MALAT1 expression are highly affected by the presence of DNA contamination and that
the DNAse treatment step is absolutely necessary to avoid false positive results.

Keywords: MALAT1; non-long coding RNA; DNAse treatment; cfRNA; tumor biomarkers; false
positive results; gDNA

1. Introduction

Non-coding RNAs (ncRNAs) are RNA molecules that are not translated into a protein
but their functions are undoubtedly crucial in several mechanisms. They are divided into
short ncRNAs and long ncRNAs(lncRNAs) based on their nucleotide length. The lncRNAs
are non-protein-coding transcripts with a length over 200 nucleotides (nt), and consist
of the broadest class of ncRNAs [1]. In a meta-analysis, Iyer et al. showed that from a
consensus of around 91,000 human genes, over 68% of genes were classified as lncRNAs, of
which 79% were previously unannotated [2]. During the last decades, lncRNAs were found
to be involved in many biological processes [3] and have thus gained considerable interest
as principal regulators of gene expression in several different ways [4,5]. In addition,
numerous studies have shown that lncRNAs are abnormally expressed in many cancers,
such as breast, lung and prostate [6,7].

Various total RNA and cfRNA isolation methods have been described for the extraction
of non-long coding RNAs that are further detected by molecular techniques like RT-qPCR,
RNA sequencing, and FISH analysis. Co-isolation of genomic DNA (gDNA), and other
forms of DNA, like extrachromosomal circular DNAs (eccDNAs) during the extraction
of total RNA from plasma and tissues, is inevitable, unless a DNAse treatment step is
included prior to RT-PCR. The presence of contaminating DNAs in RNA preparations can
cause false positives in RT-PCR in case those primers are fully overlapping with gDNA

Diagnostics 2021, 11, 1160. https://doi.org/10.3390/diagnostics11071160 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7760-9701
https://orcid.org/0000-0002-7796-5914
https://doi.org/10.3390/diagnostics11071160
https://doi.org/10.3390/diagnostics11071160
https://doi.org/10.3390/diagnostics11071160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11071160
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11071160?type=check_update&version=1


Diagnostics 2021, 11, 1160 2 of 12

sequences. To avoid gDNA co-amplification, specific precautions must be taken in the
primers’ design. However, in some cases, this cannot be avoided, especially when the
target mRNA presents pseudogenes at the DNA level or when there are no exons–intron
junctions.

Many of the well-studied lncRNAs, that are considered as regulatory molecules
with various significant functions in cancer, have no junctions in their sequences such as
MALAT1, NKILA, NEAT1 and NORAD [8–11] (Table 1).

Table 1. Long non-coding RNAs which lack exons.

Long Non-Coding RNA Cancer Types Ref. Sequence

MALAT1

Lung cancer,
Esophageal carcinoma,
Acute myeloid leukemia,
Ovarian cancer, thyroid, nerve—tibial, skin,
uterus, prostate

NR_002819.4

NEAT1

Breast, lung,
Prostate cancer,
Head and neck squamous cell carcinoma,
colon cancer, thyroid cancer

NR_028272.1

DLEU
Acute myeloid leukemia, spleen, lung cancer,
esophageal carcinoma, pancreatic, laryngeal,
renal, cervical cancer

NR_002612.1

ANRASSF1 Breast, prostate, astric cancer NR_109831.1

NKILA Pancreatic adenocarcinoma, prostate, breast
cancer, uterine carcinosarcoma, lung cancer NR_131157.1

NORAD

Lymph node metastasis, pancreatic, bladder,
gastric cancer; esophageal squamous cell
carcinoma, epatocellularcarcinoma,
colorectal cancer

NR_027451.1

KCNQ1OT1

Esophageal carcinoma,
Acute myeloid leukemia,
Ovarian,
Stomach adenocarcinoma

NR_002728.3

CCAT2 Colon cancer, breast cancer,
hepatocellular carcinoma NR_109834.1

LincRNA-p21 Prostate, gastric, colorectal cancer, head and
neck squamous cell carcinoma, lung cancer CD515754.1

Thus, RNA analysis in clinical samples could lead to false-positive results, due to
gDNA contamination, and the lack of exons in few of the lncRNAs and the overlapping
of all primers designed with gDNA. We noticed that in the vast majority of lncRNAs
studies, the expression levels of lncRNAs were evaluated by RT-qPCR without taking into
account the possibility of false-positive results due to gDNA contamination. For this reason,
we aimed to examine this by analyzing clinical samples for Metastasis-Associated Lung
Adenocarcinoma Transcript 1 (MALAT1) with and without DNAse treatment.

MALAT1 is one of the most widely studied lncRNAs in cancer. MALAT1, located on
chromosome 11q13 and especially on nuclear speckles [12], was initially identified as a
prognostic marker in non-small-cell lung cancer (NSCLC) [13]. Nowadays, its function as an
oncogene has been evaluated in several types of cancer like colorectal [14], ovarian [15,16]
and gastric cancer [17]. MALAT1 has also been proposed as a reliable biomarker, not only
for diagnosis and prognosis, but also in targeted therapy for leukemia [18,19]. Interestingly,
the most abundant transcript variant of MALAT1 is the long variant (NR_002819), which
lacks exons. As expected, all studies published so far on MALAT1 in cancer use primers
that co-hybridize to genomic DNA (Figure 1). However, in the majority of these studies,
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MALAT1 expression is evaluated by RT-qPCR without any prior DNAse treatment for
the removal of contaminating gDNA (Table 2), thus giving rise to significant concerns
on specificity, and the presence of false positives, which is highly crucial for the clinical
significance of the results presented.
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In the current study, we evaluated, for the first time, the effect of gDNA contamination
and the importance of including a DNAse treatment step on the expression levels of one
of the most widely studied lncRNAs, MALAT1. We tested this in plasma and primary
tissue samples from NSCLC patients and healthy donors. Our findings clearly indicated
that most results reported so far on MALAT1 expression are highly affected by gDNA
contamination, and this could be also extrapolated to all lncRNAs without exons.

Table 2. MALAT1 expression in cancer.

Cancer Type Sample Origin Number of
Samples

Reference
Gene

DNase
Treatment

Expression of
MALAT-1 Significance Reference

NSCLC

Tissues (tumor and
adjacent) Cell Lines 40 GAPDH Yes Over-expressed Therapeutic target [20]

Plasma Tissues 105
65 GAPDH No Under-expressed Diagnostic [21]

Tissues (tumor
and adjacent) 86 GAPDH No Over-expressed Tumor progression

and development [22]

Serum (exosomes) 77 GAPDH No Over-expressed Diagnostic, prognostic,
therapeutic target [23]

Plasma 142 18S rRNA No Over-expressed Diagnosis of
EGFR-mutant patients [24]

Cell Lines
Tissues (tumor
and adjacent)

42 RNU6B No Over-expressed Therapeutic target [25]

Cell Lines
Tissues (tumor
and adjacent)

30 GAPDH or
U6 No Over-expressed Diagnostic [26]

Cell Lines
Tissues (tumor
and adjacent)

36 GAPDH No Over-expressed Therapeutic target [27]
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Table 2. Cont.

Cancer Type Sample Origin Number of
Samples

Reference
Gene

DNase
Treatment

Expression of
MALAT-1 Significance Reference

Prostate cancer
Plasma Tissues

(tumor and adjacent)
169
14 β-actin Yes Over-expressed Diagnostic [28]

Cell Lines
Tissues (tumor

and adjacent) Mice
52 β-actin No Over-expressed Therapeutic target [29]

Breast cancer
Cell Lines Mice - GAPDH Yes Under-expressed Prognostic, Therapeutic

target [30]

Cell Lines Mice - YWHAZ No Under-expressed Therapeutic target [31]
Cell Lines

Clinical samples - GAPDH No Over-expressed Prognostic [32]

Gastric cancer
Tissues Plasma 64 β-actin No Over-expressed Prognostic, diagnostic [33]

Cell Lines Tissues
(tumor and adjacent) 57 GAPDH No Over-expressed Therapeutic target [34]

Cell Lines
Tissues Mice 153 GAPDH No Over-expressed Therapeutic [35]

The bold “Yes” means that in this study DNase treatment was performed.

2. Materials and Methods
2.1. Patients and Samples

We analyzed a total of 48 clinical samples: (i) 15 peripheral blood samples from patients
with early NSCLC, (ii) 15 peripheral blood samples from healthy donors, and (iii) 9 primary
tissues of surgically resected NSCLC and their adjacent noncancerous tissue specimens.
All patients gave their informed consent, and the Ethical and Scientific Committees of the
participating institutions approved the study (28872/10-12-19). At the time of surgery, all
tissue samples were immediately flashfrozen in liquid nitrogen and stored at −70 ◦C until
use. We analyzed all samples histologically to assess the amount of tumor component (at
least 70% tumor cells) and the quality of material (i.e., absence of necrosis).

2.2. Plasma Preparation

Peripheral blood samples (30 mL) isolated in K3-EDTA tubes were centrifuged at
530× g for 10 min at room temperature, without brakes, within 6 h after collection. Plasma
was transferred to fresh tubes and centrifuged at 2000× g for 10 min. Finally, plasma was
divided into 2 mL aliquots in fresh tubes, and stored at −80 ◦C. All samples were collected
in the morning before surgery from early NSCLC patients.

2.3. RNA Extraction

Circulating cell-free RNA (ccfRNA) was extracted from 600 µL of plasma using
miRNeasy Serum/Plasma Advanced Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions, with an elution volume of 25 µL in RNase-free water. In
tissue samples, total cellular RNA isolation was performed using the QiagenRNeasy Mini
Reagent kit (Qiagen, Hilden, Germany)according to the manufacturer’s instructions [36].
All preparation and handling of RNA took place in a laminar flow hood, under RNase-free
conditions, and the isolated RNA was stored at −70 ◦C until use. RNA concentration was
determined with a NanoDrop ND-100 spectrophotometer (NanoDrop Technologies). To
accurately assess sample quality, 260/280 and 260/230 ratios were analyzed in combination
with overall spectral quality and the yield of 260/280 ratio was acceptable at ~2.0 for RNAs.
RNA of each sample was spilt into two aliquots of 10 µL each.

2.4. DNAse Treatment

Initially, in each reaction tube were added: ≤200 ng/µL input RNA, 1 µL of TURBO
DNAse Buffer (Ambion Life Technologies, Austin, TX, USA) and 0.4U DNAse I enzyme
(Ambion Life Technologies, Austin, TX, USA), and the sample was incubated at 37 ◦C for
20min. One microliter of DNAse inactivation reagent was then added for 5min followed
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by centrifugation at 10,000× g for 1.5 min. The supernatant which contains the RNA
was then carefully transferred into a fresh tube. The whole procedure was done under
DNAse-free conditions to avoid DNA contamination (dedicated specific lab areas, labware,
laminar-flow hood). In order to optimize the DNase treatment step, RT-PCR for MALAT1
and B2M in different concentrations of gDNA before and after treatment was performed.
Due to the lack of exons in MALAT1, primers would specifically bind to gDNA but B2M
primers were designed in the junction area; there was no influence of the presence of gDNA
and DNase treatment. Complete degradation of DNA was considered when there was no
detection of MALAT1 after DNase treatment in gDNA samples (Figure 2).
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Figure 2. B2M and MALAT1 expression before and after DNase treatment.

2.5. cDNA Synthesis

The high-capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA, USA) was
used for reverse transcription in 20 µL of total volume reaction. A negative control was
included in each experiment to ensure that there was no contamination by genomic DNA
(gDNA). All cDNA samples were stored at −20 ◦C until further molecular analysis.

2.6. RT-qPCR Assay

We first designed insilicohighly specific primers for MALAT1 based on its RNA
sequence (NR_002819.4) using Primer Premier 5.0 software (Premier Biosoft, San Fran-
cisco, CA, USA). The designed primers for MALAT1 are the following: forward: 5′-
CCCCACAAGCAACTTCTCTG-3′ and, reverse: 5′-TCCAAGCTACTGGCTGCATC-3′. The
experimental conditions of RT-qPCR for MALAT1 expression were optimized (annealing
temperature, time, primer MgCl2, dNTPs, and BSA concentrations). Each reaction was
performed in the LightCycler® 2.0 System (IVD instrument, Roche Diagnostics, Mannheim,
Germany) in a total volume of 10 µL, following the MIQE guidelines [37]. One microliter
of cDNA was added to a 9 µL reaction mixture. The amplification reaction for MALAT1
contained 2 µL of the PCR Synthesis Buffer (5X), 1 µL of MgCl2 (25 mM), 0.2 µL dNTPs
(10 mM), 0.5 µL BSA (10 µg/µL), 0.1 µL Hot Start DNA polymerase (HotStart, 5 U/µL,
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Promega, Dane County, WI, USA), 0.3 µL of forward and reverse primer (10 µM), 1 µL
of 1X LC Green® (Idaho Technology, Salt Lake City, UT, USA). RT-qPCR protocol begins
with one cycle at 95 ◦C for 2 min followed by 45 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s, and
72 ◦C for 10 s. Immediately after amplification, a rapid cooling cycle to 40 ◦C for 30 s was
introduced in order to prepare the melting curve acquisition step. Real-time fluorescence
acquisition was set at the elongation step (72 ◦C). The following melting curve analysis
included the steps of 55 ◦C for 20 s, 95 ◦C for 0 s with a ramp rate 0.19 ◦C/s (acquisition
mode: continuous), and 40 ◦C for 10 s. Additionally, we used our previously developed and
analytically validated RT-qPCR assays for beta-2-microglobulin (B2M), used as a reference
gene [38]. In each RT-qPCR run, we used the same cDNA from MCF-7 cells as a positive
control in order to evaluate the accuracy and reproducibility of the results.

2.7. Normalization of Data

Expression values of MALAT1 were normalized to B2M. ∆Cq values were calculated by
using Cq values for MALAT1 and the corresponding B2M for each sample. We calculated
∆∆Cq values using ∆Cq values for cancerous samples and the mean value of ∆Cq for
normal samples (∆∆Cq = ∆Cqcancer − ∆cqnormal). Relative quantification (RQ) was
based on the ∆∆Cq method as described [39]. For paired tissue samples, ∆Cq values
were calculated as the differences between ∆Cq values for each cancerous sample and
its corresponding adjacent normal tissue. MALAT1 expression data are presented as fold
change relative to the reference gene based on the formula of RQ = 2−∆∆Cq.

2.8. Statistical Analysis

We performed statistical evaluation of data using SPSS (SPSS Statistics version 26.0). A
level of p < 0.05 was considered statistically significant. Statistical analysis was performed
in all cases by using paired sample t-test.

3. Results

The experimental flowchart of the study is outlined in Figure 3.Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 13 
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3.1. Optimization of DNase Treatment Conditions
3.1.1. Enzyme Incubation

Equal amounts of total RNA (200 ng) were either treated with TURBO DNA-free™
at different incubation times (5, 10, and, 20 min) at 37 ◦C, or were left untreated. Treated
and untreated RNA samples were reverse-transcribed and cDNA were further analyzed
by RT-PCR. RT-PCR was first performed for B2M as reference gene in order to ensure
that treatment of RNA with TURBO DNA-free™ maintains target sensitivity in real-time
RT-PCR. RNA quality as estimated through B2M expression is not affected when DNAse
treatment was performed for 5 or 10 min in 37 ◦C (Figure 4a). All experiments were run
in triplicate.

3.1.2. Concentration of gDNA

We evaluated the effectiveness of the DNAse treatment step by analyzing gDNA
samples at concentrations of 20 ng/µL and 5 ng/µL, using 5 and 10 min as incubation time.
gDNA was added in the same RNA samples that were split into two aliquots of 10 µL each.
One aliquot was treated with TURBO DNA-free™ (for 5 and 10 min of enzyme incubation)
and the other aliquots were left untreated. We found out that DNAse incubation at 37 ◦C for
5 min is not enough for the complete elimination of gDNA. However, when we increased
the DNAse incubation time for 10 min, there was no signal for gDNA, while at the same
time the effect of DNAse treatment in the quality of RNA was limited (Figure 4b).

3.1.3. Repeatability of the Procedure

We evaluated the repeatability of the whole procedure (within run imprecision) by
analyzing the same RNA sample in 3 parallel determinations after DNAse treatment and
without DNAse treatment. Intra-assay CVs were satisfactory in all cases.

3.2. False-Positive Results on MALAT1 Expression in Clinical Samples
3.2.1. NSCLC Primary Tissues

We compared the expression of MALAT1 in nine pairs of NSCLC tissues and their ad-
jacent noncancerous tissues using RT-qPCR in samples with and without DNAse treatment.
MALAT1 expression was normalized with respect to B2M gene expression based on the
relative quantification approach [23]. We observed that in untreated samples, MALAT1
was found to be overexpressed in 6/9 (66.7%) NSCLC tissues, while only 3/6 (50%) re-
mained positive for MALAT1 after DNAse treatment, showing that, in total, 3/9 (30%)
tested samples were false positive before the DNAse treatment step. MALAT1 was found
to be downregulated in 3/9 (33.3%) tested paired samples before treatment but only 1/9
(11.1%) remained downregulated after DNAse treatment. In 4/9 (44.4%) paired samples,
there was no differentiation in the expression of MALAT1 (Supplementary Figure S1).
More specifically, in 3/4 (75%) of the samples, we detected MALAT1 overexpression both
with and without DNAse treatment, while in 1/4 (25%) of the samples we detected lower
expression (Table 3).

3.2.2. ccfRNA in Plasma

MALAT1 and B2M expression were evaluated in 30 RNA samples directly isolated
from plasma of early NSCLC patients (n = 15) and healthy donors (HD) (n = 15). Without
DNAse treatment, MALAT1 was detected in all samples and overexpression was observed
in 3/15 (20%) of NSCLC patients (Supplementary Figure S1). Interestingly, after DNAse
treatment, MALAT1 was detected only in 4 of the tested samples and none of them was
overexpressed in MALAT1 (Table 3), proving once again the effect of gDNA and the
detection of false-positive results.
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Table 3. MALAT1 expression in plasma (n = 15) and tissue samples (n = 9 pairs) of NSCLC patients before and after
DNase treatment.

Plasma

After DNAse treatment

Before DNAse treatment
Overexpression Underexpression

Overexpression 0 0
Underexpression 3 (False positive) 12

Paired t-test: 0.082

False positives: 3/15 (20%)

Primary Tissues

After DNAse treatment

Before DNAse treatment
Overexpression Underexpression

Overexpression 3 2
Underexpression 3 (False positive) 1

Paired t-test: 0.681
False positives: 3/9 (30%)

4. Discussion

lncRNAs have been evaluated as novel tumor biomarkers, not only in diagnosis and
prognosis, but also in targeted therapy for different types of cancer [40,41]. RT-qPCR is
extensively used for the quantification of lncRNAs transcripts. Contamination of gDNA
and other forms of DNAs like extrachromosomal circular DNAs (eccDNAs)—which are the
major form of extrachromosomal DNAs—is an inherent problem during RNA purification
due to the similar physicochemical properties of RNA and DNA [42,43].

We report in this study that false-positive results could arise due to gDNA contamina-
tion and overestimate the abundance of lncRNAs transcript levels. RT-PCR assays can be
designed to be gDNA insensitive only if primers can be designed. Such as those designed
to target exons flanking a long intron or with primers that cross exon–exon junctions. It is
expected that all RT-PCR assays for single-exon genes, like in the case of several lncRNAs,
will readily amplify contaminating gDNA.

NEAT1overexpression was associated with poor prognosis in several types of cancer,
like breast [44] and digestive system tumors [9], and it was suggested that it could be
used as a promising biomarker for diagnosis [45]. NORAD is another lncRNA, which
is reported to be overexpressed in many cancers and several studies have explored its
involvement in numerous processes associated with carcinogenesis [10]. Moreover, NKILA
underexpression was shown to be an effective prognostic and diagnostic biomarker in
human cancer [8,46]. The expression of MALAT1 has been evaluated in numerous studies
and its increased expression has been correlated with poor overall survival in patients with
solid malignancies [47,48]. A common characteristic of all these lncRNAs is the lack of
exons in their sequences. Intriguingly almost all studies that have evaluated the expression
of these lncRNAs do not include any DNAse treatment step, and thus there is a high
probability of reporting falsepositive results.

In this study, we evaluated for the first time the effect of gDNA on the expression levels
of MALAT1, a well-studied lncRNA that has a single exon, using RT-qPCR. We initially
optimized the protocol to achieve specific DNAse treatment with the lowest effect on RNA
and further compared MALAT1 expression in clinical samples before and after DNAse
treatment. Our findings clearly indicate that the expression levels of MALAT1 were signifi-
cantly affected by the presence of gDNA. In paired NSCLC tissue samples, we observed a
significant difference in the expression of MALAT1 before and after DNAse treatment in
the majority of samples (56.6%). It is highly important that MALAT1 expression was not
detected in 73.4% of plasma samples after DNAse treatment. This observation, combined
with the lack of DNAse treatment, may explain the ambiguous results of various studies
that characterized MALAT1 either as oncogene or as tumor suppressor and consequently
report that its expression is upregulated or downregulated, respectively [21,30,49,50]. One
of the few studies that performed DNAse treatment before quantification of MALAT1
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expression demonstrated that MALAT1 is a metastasis-suppressing lncRNA rather than a
metastasis promoter lncRNA in breast cancer [24].

In conclusion, we report for the first time that contamination of gDNA can seriously
affect lncRNAs expression results and cause false positives. Our findings need to be
further evaluated and validated in a large and well-defined patient cohort. Taking into
account that lncRNAs have gained widespread attention in recent years as potentially
new and crucial candidates for tumor biomarkers, we conclude that DNAse treatment is a
mandatory step in cases where there are no exons in lncRNAs sequence in order to ensure
specificity. It is only under these conditions that the clinical significance of lncRNAs will be
reliably revealed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11071160/s1, Figure S1: Direct comparison study of MALAT1 expression before
and after DNase treatment from (a) NSCLC pairs tissue samples and (b) NSCLC plasma samples.
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