organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate

Graham Smith,^a* Urs D. Wermuth^a and David J. Young^b

^aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 22 April 2010; accepted 22 April 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.042; wR factor = 0.104; data-to-parameter ratio = 13.0.

In the structure of the title salt, $2C_{12}H_{10}N_3O_4^{+}C_{12}H_8O_6S_2^{2-}$. 3H₂O, determined at 173 K, the biphenyl-4,4'-disulfonate dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set $R_4^4(11)$], forming chains. The 2-(2,4dinitrobenzyl)pyridinium cations are linked to these chains through pyridinium–water N–H···O hydrogen bonds and a two-dimensional network is formed through water bridges between sulfonate and 2-nitro O atoms, while the structure also has weak cation–anion π – π aromatic ring interactions [minimum ring centroid separation = 3.8441 (13) Å].

Related literature

For structural data on 2-(2,4-dinitrobenzyl)pyridine and related compounds, see Seff & Trueblood (1968); Scherl *et al.* (1996); Naumov *et al.* (2002, 2005). For bipyridine-4,4'-disulfonate compounds, see: Swift *et al.* (1998); Swift & Ward (1998); Holman & Ward (2000); Liao *et al.* (2001). For graphset notation, see: Etter *et al.* (1990).

Experimental

Crystal data

 $2C_{12}H_{10}N_{3}O_{4}^{+}\cdot C_{12}H_{8}O_{6}S_{2}^{-2}\cdot 3H_{2}O$ $M_{r} = 886.83$ Triclinic, $P\overline{1}$ a = 8.3897 (3) Å b = 10.6455 (4) Å c = 11.7405 (5) Å $\alpha = 97.879$ (3)° $\beta = 96.926$ (3)°

Data collection

Oxford Diffraction Gemini-S CCDdetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.98, T_{\rm max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.104$	independent and constrained
S = 1.03	refinement
3844 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
296 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $\gamma = 112.066 \ (4)^{\circ}$

Z = 1

V = 945.53 (7) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.15 \text{ mm}$

8964 measured reflections

3844 independent reflections

3441 reflections with $I > 2\sigma(I)$

 $\mu = 0.23 \text{ mm}^{-3}$

T = 173 K

 $R_{\rm int} = 0.020$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1W O1W - H11W \cdots O43A^{i} O1W - H12W \cdots O41A O2W - H21W \cdots O43A O2W - H22W \cdots O21^{ii} $	0.95 (3) 0.88 (4) 0.80 (3) 0.82 (4) 0.87 (3)	1.71 (3) 1.84 (4) 2.01 (3) 1.99 (4) 2.32 (3)	2.655 (3) 2.716 (2) 2.806 (2) 2.761 (4) 2.867 (2)	175 (3) 175 (3) 172 (3) 155 (4) 124 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2763).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Holman, K. T. & Ward, M. D. (2000). Angew Chem. Int. Ed. 39, 1653–1655.
Liao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J. (2001). Acta Cryst. C57, 1215–1216.
Naumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264–7275.

- Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540–8541.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Scherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem. 100, 16175–16186.
- Seff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406-1415.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159–4168.
- Swift, J. A. & Ward, M. D. (1998). Chem. Mater. 10, 1501-1504.

Acta Cryst. (2010). E66, o1184-o1185 [doi:10.1107/S1600536810014819]

Bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate

G. Smith, U. D. Wermuth and D. J. Young

Comment

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) has been a compound of considerable interest for more than 40 years because of its unusual photochromic characteristics. Irradiation of the colourless crystals with light of wavelength 400nm or less results in the formation of a deep blue coloration in a reversible tautomeric reaction. The structure of the colourless form has been determined (Seff & Trueblood, 1968; Scherl et al., 1996), while in another determination (Naumov et al., 2002), the structures of both forms were determined, confirming the presence of two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group. The effect is not present in the p-nitro-substituted isomer. Although the structure of the chloride salt of DNBP is known (Naumov et al., 2005), no other examples of analogous compounds are present in the CSD.

Of a number of reactions of DNBP with aromatic carboxylic and sulfonic acids in 50% ethanol–water, we found that only one, biphenyl-4,4'-disulfonic acid (BPDS) gave crystals of suitable quality for X-ray analysis, the title compound $2(C_{12}H_{10}N_3O_4^+) C_{12}H_8O_6S_2^{2^-}$. 3H₂O (I), the structure of which is reported here. The structures of 1:2 proton-transfer compounds of BPDS are also not prevalent, e.g. with β -alanine (Liao et al., 2001), but the bis(guanidinium) salt is notable as a co-host structure for cooperative guest recognition in clathrate formation with numerous aromatic monocyclic and polycyclic hydrocarbons (Swift & Ward, 1998; Swift et al., 1998; Holman & Ward, 2000).

With compound (I) (Fig. 1), the BPDS dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set $R_4^4(11)$ (Etter et al., 1990)], forming one-dimensional chain structures (Fig 2). The cations are linked to these chains through pyridinium N⁺-H···O_{water} hydrogen bonds (Table 1). The second water molecule (O2W) which has only 50% occupancy, forms a O_{sulfonate}···H–O–H···O_{o-nitro} hydrogen bond, bridging the chains down the b axial direction, giving a two-dimensional network structure. There are also weak cation–anion π – π aromatic ring interactions present [minimum ring centroid separation 3.8441 (13) Å]. The hydrogen-bond-constrained o-nitro group in the DNBPY cation in the structure obviates any possible photochromic effects in this compound.

Also present in the BPDS dianions are short intramolecular H2A···H6Aⁱⁱⁱ/H6A···H2Aⁱⁱⁱ contacts (2.01 Å) [symmetry code (iii) -x + 2, -y + 1, -z +1] resulting from the BPDS species being planar. There is also a short intramolecular H···H contact involving an aromatic ring H and one of the water H atoms [H6···H22Wⁱ, 2.06 Å]. With the DNBP cation the associated o-nitro group is rotated out of the plane of the benzene ring while the unassociated p-nitro group is essentially coplanar [torsion angles C11–C21–N21–O22, 149.17 (19)° and C31–C41–N41–O42, 178.02 (9)°].

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 2-(2,4-dinitrobenzyl)pyridine with biphenyl-4,4'-disulfonic acid in 50 ml of 50% ethanol–water. After concentration to *ca*. 30 ml,

partial room temperature evaporation of the hot-filtered solution gave colourless blade-shaped flat prisms (m.p. 413 K) from which a block section was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–H = 0.93 Å (aromatic) and 0.97 Å (aliphatic) and with $U_{iso}(H) = 1.2U_{eq}(C)$], and treated as riding. One of the water molecules was found to have partial occupancy which was refined to 0.50 (1) and subsequently set invariant.

Figures

Fig. 1. Molecular configuration and atom naming scheme for the DNBP cation, the BPDS dianion and the two water molecules of solvation [O1W, O2W, with the latter having SOF = 0.5(1)], in the asymmetric unit of (I). The dianion lies across an inversion centre [symmetry code (iii) -*x* + 2, -*y* + 1, -*z* +1] and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The two-dimensional hydrogen-bonded network structure of (I) extending viewed down the approximate *a* cell direction showing the water-linked BPDS chains and water-bridged extensions down *b*. Hydrogen bonds are shown as dashed lines and non-interactive H atoms are omitted. For symmetry codes, see Table 1.

Bis[2-(2,4-dinitrobenzyl)pyridinium] biphenyl-4,4'-disulfonate trihydrate

Crystal data

$2C_{12}H_{10}N_{3}O_{4}^{+}C_{12}H_{8}O_{6}S_{2}^{2-}H_{2}O$	Z = 1
$M_r = 886.83$	F(000) = 460
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.557 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 413 K
a = 8.3897 (3) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.6455 (4) Å	Cell parameters from 5908 reflections
c = 11.7405 (5) Å	$\theta = 3.0 - 32.3^{\circ}$
$\alpha = 97.879 \ (3)^{\circ}$	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 96.926 \ (3)^{\circ}$	T = 173 K
$\gamma = 112.066 \ (4)^{\circ}$	Prism, colourless
V = 945.53 (7) Å ³	$0.30\times0.25\times0.15~mm$

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer	3844 independent reflections
Radiation source: Enhance (Mo) X-ray source	3441 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$

Detector resolution: 16.08 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.98, \ T_{\max} = 0.99$	$l = -14 \rightarrow 14$
8964 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.104$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0505P)^{2} + 0.4454P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3844 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
296 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
O21	0.5436 (2)	0.07535 (18)	0.71892 (15)	0.0487 (6)	
O22	0.51554 (19)	0.13704 (18)	0.55354 (14)	0.0460 (5)	
O41	0.9552 (2)	0.10842 (19)	0.32892 (14)	0.0548 (6)	
O42	1.2220 (2)	0.1865 (2)	0.41565 (15)	0.0627 (7)	
N1	0.7507 (2)	0.15288 (18)	1.02586 (14)	0.0291 (5)	
N21	0.6039 (2)	0.12314 (17)	0.63793 (15)	0.0319 (5)	
N41	1.0680 (2)	0.15615 (18)	0.41645 (15)	0.0350 (5)	
C2	0.8078 (2)	0.1261 (2)	0.92656 (16)	0.0276 (5)	
C3	0.8089 (3)	-0.0026 (2)	0.89375 (18)	0.0348 (6)	
C4	0.7505 (3)	-0.1008 (2)	0.9630 (2)	0.0403 (7)	
C5	0.6935 (3)	-0.0690 (2)	1.06403 (19)	0.0400 (7)	
C6	0.6954 (3)	0.0601 (2)	1.09439 (18)	0.0364 (7)	

C11	0.9122 (2)	0.21211 (18)	0.74513 (16)	0.0256 (5)	
C21	0.7921 (2)	0.16202 (18)	0.63956 (16)	0.0260 (5)	
C31	0.8394 (2)	0.14506 (19)	0.53166 (17)	0.0278 (5)	
C41	1.0145 (2)	0.17560 (19)	0.53089 (16)	0.0275 (5)	
C51	1.1393 (2)	0.2235 (2)	0.63196 (17)	0.0303 (6)	
C61	1.0871 (2)	0.2431 (2)	0.73779 (17)	0.0291 (6)	
C71	0.8663 (3)	0.2446 (2)	0.86313 (17)	0.0318 (6)	
S4A	0.60027 (6)	0.49714 (5)	0.81725 (4)	0.0279 (2)	
D41A	0.71609 (19)	0.57569 (16)	0.92704 (12)	0.0391 (5)	
D42A	0.51335 (19)	0.35151 (15)	0.81872 (14)	0.0412 (5)	
D43A	0.4786 (2)	0.55635 (18)	0.77623 (13)	0.0436 (5)	
C1A	0.9443 (2)	0.50258 (19)	0.54441 (16)	0.0272 (6)	
C2A	0.7662 (3)	0.4645 (3)	0.51220 (19)	0.0576 (9)	
C3A	0.6617 (3)	0.4658 (3)	0.59494 (19)	0.0531 (9)	
C4A	0.7357 (2)	0.50677 (19)	0.71157 (16)	0.0263 (6)	
C5A	0.9122 (3)	0.5469 (2)	0.74546 (18)	0.0399 (6)	
C6A	1.0155 (3)	0.5444 (2)	0.66214 (19)	0.0409 (7)	
D1W	0.7300 (2)	0.39624 (19)	1.07848 (14)	0.0422 (6)	
D2W	0.4510 (4)	0.7847 (3)	0.7040 (3)	0.0475 (11)	0.500
H1	0.746 (4)	0.240 (3)	1.049 (2)	0.059 (8)*	
-13	0.84830	-0.02380	0.82590	0.0420*	
-14	0.75000	-0.18830	0.94090	0.0480*	
15	0.65440	-0.13420	1.11060	0.0480*	
-16	0.65840	0.08380	1.16260	0.0440*	
H31	0.75700	0.11440	0.46260	0.0330*	
451	1.25620	0.24210	0.62900	0.0360*	
H61	1.17110	0.27820	0.80620	0.0350*	
H71	0.96790	0.31920	0.91260	0.0380*	
H72	0.77380	0.27800	0.85240	0.0380*	
H2A	0.71510	0.43730	0.43320	0.0690*	
H3A	0.54180	0.43900	0.57140	0.0640*	
H5A	0.96300	0.57590	0.82450	0.0480*	
H6A	1.13540	0.57160	0.68620	0.0490*	
H11W	0.662 (4)	0.407 (3)	1.127 (3)	0.069 (9)*	
H12W	0.719 (4)	0.441 (3)	1.031 (3)	0.062 (9)*	
H21W	0.460 (5)	0.730 (4)	0.745 (4)	0.060 (10)*	0.500
นววพ	0.515 (5)	0.860 (3)	0.755 (3)	0.065 (10)*	0.500

-	-	. ,				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O21	0.0343 (8)	0.0630 (11)	0.0535 (10)	0.0155 (8)	0.0225 (7)	0.0261 (8)
O22	0.0318 (8)	0.0596 (10)	0.0475 (9)	0.0198 (8)	0.0040 (7)	0.0119 (8)
O41	0.0577 (11)	0.0678 (12)	0.0295 (8)	0.0162 (9)	0.0131 (8)	0.0011 (8)
O42	0.0491 (10)	0.1108 (16)	0.0475 (10)	0.0453 (11)	0.0280 (8)	0.0225 (10)
N1	0.0249 (8)	0.0370 (10)	0.0239 (8)	0.0107 (7)	0.0051 (6)	0.0052 (7)
N21	0.0282 (9)	0.0288 (9)	0.0387 (9)	0.0105 (7)	0.0107 (7)	0.0053 (7)
N41	0.0446 (10)	0.0357 (9)	0.0341 (9)	0.0210 (8)	0.0187 (8)	0.0131 (8)

C2	0.0229 (9)	0.0318 (10)	0.0246 (9)	0.0074 (8)	0.0048 (7)	0.0042 (8)
C3	0.0401 (11)	0.0317 (11)	0.0320 (10)	0.0133 (9)	0.0092 (9)	0.0057 (8)
C4	0.0397 (12)	0.0326 (11)	0.0442 (12)	0.0116 (10)	-0.0008 (9)	0.0097 (9)
C5	0.0294 (11)	0.0508 (13)	0.0386 (12)	0.0104 (10)	0.0044 (9)	0.0236 (10)
C6	0.0273 (10)	0.0550 (14)	0.0270 (10)	0.0136 (10)	0.0067 (8)	0.0152 (9)
C11	0.0304 (10)	0.0207 (9)	0.0275 (9)	0.0096 (8)	0.0115 (7)	0.0068 (7)
C21	0.0253 (9)	0.0213 (9)	0.0334 (10)	0.0094 (7)	0.0102 (7)	0.0075 (7)
C31	0.0301 (10)	0.0254 (9)	0.0275 (9)	0.0106 (8)	0.0058 (7)	0.0054 (7)
C41	0.0331 (10)	0.0259 (9)	0.0287 (9)	0.0140 (8)	0.0134 (8)	0.0090 (8)
C51	0.0265 (10)	0.0333 (10)	0.0366 (11)	0.0141 (8)	0.0132 (8)	0.0116 (8)
C61	0.0286 (10)	0.0302 (10)	0.0286 (10)	0.0115 (8)	0.0051 (8)	0.0072 (8)
C71	0.0381 (11)	0.0269 (10)	0.0294 (10)	0.0106 (9)	0.0131 (8)	0.0034 (8)
S4A	0.0314 (3)	0.0369 (3)	0.0266 (2)	0.0204 (2)	0.0159 (2)	0.0132 (2)
O41A	0.0427 (8)	0.0521 (9)	0.0272 (7)	0.0214 (7)	0.0150 (6)	0.0081 (6)
O42A	0.0408 (8)	0.0418 (9)	0.0492 (9)	0.0168 (7)	0.0242 (7)	0.0205 (7)
O43A	0.0532 (9)	0.0702 (11)	0.0371 (8)	0.0471 (9)	0.0254 (7)	0.0254 (8)
C1A	0.0332 (10)	0.0285 (10)	0.0298 (10)	0.0170 (8)	0.0174 (8)	0.0136 (8)
C2A	0.0474 (14)	0.127 (2)	0.0247 (11)	0.0570 (16)	0.0166 (10)	0.0264 (13)
C3A	0.0385 (12)	0.113 (2)	0.0303 (11)	0.0483 (14)	0.0158 (10)	0.0256 (13)
C4A	0.0325 (10)	0.0283 (10)	0.0295 (9)	0.0187 (8)	0.0174 (8)	0.0129 (8)
C5A	0.0303 (10)	0.0487 (13)	0.0278 (10)	0.0045 (9)	0.0116 (8)	-0.0068 (9)
C6A	0.0241 (10)	0.0476 (13)	0.0370 (11)	0.0014 (9)	0.0144 (8)	-0.0061 (10)
O1W	0.0555 (10)	0.0677 (11)	0.0272 (8)	0.0456 (9)	0.0177 (7)	0.0154 (8)
O2W	0.0471 (19)	0.0426 (18)	0.0560 (15)	0.0206 (15)	0.0161 (15)	0.0066 (15)

Geometric parameters (Å, °)

S4A—O42A	1.4479 (16)	C21—C31	1.381 (3)
S4A—O43A	1.4558 (19)	C31—C41	1.382 (3)
S4A—C4A	1.7687 (19)	C41—C51	1.378 (3)
S4A—O41A	1.4481 (15)	C51—C61	1.381 (3)
O21—N21	1.214 (2)	С3—Н3	0.9300
O22—N21	1.224 (2)	C4—H4	0.9300
O41—N41	1.213 (2)	С5—Н5	0.9300
O42—N41	1.210 (3)	С6—Н6	0.9300
O1W—H11W	0.88 (4)	C31—H31	0.9300
O1W—H12W	0.80 (3)	C51—H51	0.9300
O2W—H21W	0.82 (4)	С61—Н61	0.9300
O2W—H22W	0.87 (3)	C71—H71	0.9700
N1—C6	1.342 (3)	С71—Н72	0.9700
N1—C2	1.348 (2)	C1A—C2A	1.381 (3)
N21—C21	1.471 (3)	C1A—C6A	1.378 (3)
N41—C41	1.479 (3)	C1A—C1A ⁱ	1.491 (3)
N1—H1	0.95 (3)	C2A—C3A	1.387 (4)
C2—C3	1.375 (3)	C3A—C4A	1.371 (3)
C2—C71	1.506 (3)	C4A—C5A	1.367 (3)
C3—C4	1.392 (3)	C5A—C6A	1.387 (3)
C4—C5	1.378 (3)	C2A—H2A	0.9300
C5—C6	1.365 (3)	СЗА—НЗА	0.9300

C11—C61	1.394 (3)	C5A—H5A	0.9300
C11—C71	1.512 (3)	С6А—Н6А	0.9300
C11—C21	1.396 (3)		
O43A—S4A—C4A	105.78 (9)	С2—С3—Н3	120.00
O41A—S4A—C4A	106.12 (9)	С4—С3—Н3	120.00
O41A—S4A—O42A	112.56 (9)	C5—C4—H4	120.00
O41A—S4A—O43A	113.37 (10)	C3—C4—H4	120.00
O42A—S4A—O43A	112.51 (10)	С6—С5—Н5	121.00
O42A—S4A—C4A	105.74 (9)	C4—C5—H5	121.00
H11W—O1W—H12W	104 (3)	N1—C6—H6	120.00
H21W—O2W—H22W	97 (4)	С5—С6—Н6	120.00
C2—N1—C6	123.13 (19)	C41—C31—H31	121.00
O21—N21—O22	123.47 (19)	C21—C31—H31	121.00
022 - N21 - C21	118 33 (17)	C61—C51—H51	121.00
021 - N21 - C21	118.17 (17)	C41 - C51 - H51	121.00
042 - N41 - C41	118.02(17)	C11—C61—H61	119.00
041 _N41_042	123.59(19)	C_{51} C_{61} H_{61}	119.00
041 - N41 - 042	125.57(17) 118.38(18)	H71 C71 H72	107.00
C6 N1 H1	117.1 (16)	11/1 - C/1 - 11/2	107.00
	117.1 (10)	$C_2 - C_1 - H_2$	108.00
C2—NI—HI	119.8 (10)	C11_C/1_H/1	108.00
NI-C2-C3	118.39 (18)	C11 = C/1 = H/2	108.00
NI-C2-C/I	114.88 (18)	C2—C/1—H/1	108.00
C3—C2—C/1	126.73 (18)	C1A ¹ —C1A—C2A	121.47 (17)
C2—C3—C4	119.4 (2)	C1A ¹ —C1A—C6A	121.02 (18)
C3—C4—C5	120.3 (2)	C2A—C1A—C6A	117.51 (19)
C4—C5—C6	118.71 (19)	C1A—C2A—C3A	121.5 (2)
N1—C6—C5	120.0 (2)	C2A—C3A—C4A	119.8 (2)
C61—C11—C71	118.98 (18)	S4A—C4A—C5A	120.50 (15)
C21—C11—C71	124.29 (18)	C3A—C4A—C5A	119.8 (2)
C21—C11—C61	116.55 (17)	S4A—C4A—C3A	119.64 (17)
C11—C21—C31	123.34 (17)	C4A—C5A—C6A	120.1 (2)
N21—C21—C11	120.82 (16)	C1A—C6A—C5A	121.4 (2)
N21—C21—C31	115.84 (16)	C1A—C2A—H2A	119.00
C21—C31—C41	117.06 (17)	C3A—C2A—H2A	119.00
N41—C41—C51	119.43 (17)	С4А—С3А—Н3А	120.00
C31—C41—C51	122.50 (17)	С2А—С3А—Н3А	120.00
N41—C41—C31	118.07 (17)	C4A—C5A—H5A	120.00
C41—C51—C61	118.54 (17)	С6А—С5А—Н5А	120.00
C11—C61—C51	121.97 (18)	С1А—С6А—Н6А	119.00
C2—C71—C11	115.69 (17)	С5А—С6А—Н6А	119.00
O43A—S4A—C4A—C5A	137.52 (17)	C61—C11—C21—C31	-1.2(3)
Q42A—S4A—C4A—C3A	73.2 (2)	C71—C11—C21—N21	-6.5(3)
O41A— $S4A$ — $C4A$ — $C3A$	-167.09 (19)	C71-C11-C21-C31	173 82 (18)
O41A— $S4A$ — $C4A$ — $C5A$	16.81 (19)	C_{21} C_{11} C_{61} C_{51}	-10(3)
042A - S4A - C4A - C5A	-102.95(18)	C71-C11-C61-C51	-17622(18)
O43A - S4A - C4A - C3A	-46 4 (2)	N_{21} C_{21} C_{31} C_{41}	-17751(17)
C6-N1-C2-C71	-179 2 (2)	$C_{11} = C_{21} = C_{31} = C_{41}$	2 2 (3)
C6-N1-C2-C3	0.2(2)	$C_{21} = C_{31} = C_{41} = N_{41}$	2.2(3) 170.06(17)
0 - 11 - 02 - 03	0.2 (3)	C21-C51-C41-N41	1/9.00(1/)

C2—N1—C6—C5	-0.7 (3)	C21—C31—C41—C	C21—C31—C41—C51	
O21—N21—C21—C11	-32.8 (3)	C31—C41—C51—C	C31—C41—C51—C61	
O21—N21—C21—C31	146.90 (19)	N41—C41—C51—C61		178.96 (18)
O22—N21—C21—C31	-31.1 (3)	C41—C51—C61—C	C41—C51—C61—C11	
O22—N21—C21—C11	149.17 (19)	C6A-C1A-C2A-	C6A—C1A—C2A—C3A	
O42—N41—C41—C31	178.02 (19)	C1A ⁱ —C1A—C2A-	C1A ⁱ —C1A—C2A—C3A	
O42—N41—C41—C51	-1.7 (3)	C2A-C1A-C6A-	-C5A	0.7 (3)
O41—N41—C41—C51	176.96 (19)	C1A ⁱ —C1A—C6A-	C1A ⁱ —C1A—C6A—C5A	
O41—N41—C41—C31	-3.3 (3)	C2A—C1A—C1A ⁱ -	C2A—C1A—C1A ⁱ —C2A ⁱ	
N1-C2-C71-C11	-173.63 (18)	C2A—C1A—C1A ⁱ -	C2A—C1A—C1A ⁱ —C6A ⁱ	
N1—C2—C3—C4	0.4 (3)	C6A—C1A—C1A ⁱ -	C6A—C1A—C1A ⁱ —C2A ⁱ	
C71—C2—C3—C4	179.8 (2)	C6A—C1A—C1A ⁱ -	C6A—C1A—C1A ⁱ —C6A ⁱ	
C3—C2—C71—C11	7.0 (3)	C1A—C2A—C3A—	C1A—C2A—C3A—C4A	
C2—C3—C4—C5	-0.6 (4)	C2A—C3A—C4A-	C2A—C3A—C4A—S4A	
C3—C4—C5—C6	0.1 (4)	C2A—C3A—C4A-	C2A—C3A—C4A—C5A	
C4—C5—C6—N1	0.5 (4)	S4A—C4A—C5A—	S4A—C4A—C5A—C6A	
C21-C11-C71-C2	88.6 (2)	C3A—C4A—C5A—	C3A—C4A—C5A—C6A	
C61—C11—C71—C2	-96.6 (2)	C4A—C5A—C6A-	C4A—C5A—C6A—C1A	
C61-C11-C21-N21	178.55 (17)			
Symmetry codes: (i) $-x+2$, $-y+1$, $-z-$	+1.			
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N1—H1···O1W	0.95 (3) 1.71 (3)	2.655 (3)	175 (3)
O1W—H11W····O43A ⁱⁱ	0.88 (4) 1.84 (4)	2.716 (2)	175 (3)
O1W—H12W…O41A	0.80 (3) 2.01 (3)	2.806 (2)	172 (3)
O2W—H21W···O43A	0.82 (4) 1.99 (4)	2.761 (4)	155 (4)
O2W—H22W···O21 ⁱⁱⁱ	0.87 (3) 2.32 (3)	2.867 (2)	124 (3)
C2A—H2A···O2W ^{iv}	0.93	2.46	3.195 (4)	136
C4—H4···O41A ^v	0.93	2.40	3.309 (3)	165
C5—H5····O42A ^{vi}	0.93	2.53	3.427 (3)	163
C5A—H5A…O41A	0.93	2.52	2.897 (3)	105
C5A—H5A…O1W ^{vii}	0.93	2.58	3.232 (3)	128
C6—H6····O2W ⁱⁱ	0.93	2.44	3.316 (4)	156
C6—H6…O21 ^{vi}	0.93	2.60	3.265 (3)	129
C71—H72···O21	0.97	2.46	2.799 (3)	100
C71—H72···O42A	0.97	2.59	3.558 (3)	176
Symmetry codes: (ii) $-x+1, -y+1, -z$ -z+2.	+2; (iii) <i>x</i> , <i>y</i> +1, <i>z</i> ; (iv) –	x+1, -y+1, -z+1; (v) x, y-1,	<i>z</i> ; (vi) – <i>x</i> +1, – <i>y</i> , –	-z+2; (vii) $-x+2$, $-y+1$,

