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Abstract

Humans have a comparatively higher rate of more polymorphisms in regulatory regions of

the primate CCR5 gene, an immune system gene with both general and specific functions.

This has been interpreted as allowing flexibility and diversity of gene expression in response

to varying disease loads. A broad expression repertoire is useful to humans—the only glob-

ally distributed primate—due to our unique adaptive pattern that increased pathogen expo-

sure and disease loads (e.g., sedentism, subsistence practices). The main objective of the

study was to determine if the previously observed human pattern of increased variation

extended to other members of our genus, Homo. The data for this study are mined from the

published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient

human (Ust’-Ishim), and modern humans (1000 Genomes). An average of 15 polymor-

phisms per individual were found in human populations (with a total of 262 polymorphisms).

There were 94 polymorphisms identified across extinct Homo (an average of 13 per individ-

ual) with 41 previously observed in modern humans and 53 novel polymorphisms (32 in

Denisova and 21 in Neandertal). Neither the frequency nor distribution of polymorphisms

across gene regions exhibit significant differences within the genus Homo. Thus, humans

are not unique with regards to the increased frequency of regulatory polymorphisms and the

evolution of variation patterns across CCR5 gene appears to have originated within the

genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an

advantage during the transition to confrontational foraging (and later hunting) that altered

human-environment interaction as well as during migration to Eurasia and encounters with

novel pathogens.

Introduction

Chemokine receptors facilitate communication between cells and the environment [1, 2] and

mediate the activity of chemokines, proteins secreted by the immune system genes to chemi-

cally recruit immune cells to infection sites via chemotaxis [2, 3]. The cell surface chemokine

receptor CCR5 (a G protein-coupled receptor) is best known for its adaptive immune system

role in binding the M-tropic human immunodeficiency virus (HIV) and creating a gateway to

host cell infection [3–12]. In several mammals, CCR5 genes present high levels of gene
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conversion with the chromosomally adjacent CCR2 [13–18]. Primate CCR5 gene structure,

open reading frame (ORF), and amino acid identity are evolutionary highly conserved [2, 19–

21] and interspecific gene sequences are functionally similar [20]. There is, however, common

and significant variation across species outside conserved regions. Most of these polymor-

phisms are not deleterious to health and tolerated due to the redundancy of the chemokine

family in ligand binding [2, 22]. New World Monkeys have a high number of functional poly-

morphisms due to lentivirus resistance [23]. Further, humans have been found to have a signif-

icantly high number of cis-regulatory region polymorphisms in comparison to 36 non-human

primate species of apes, Old World Monkeys, and New World Monkeys [20]. Humans also

have a specific a 32bp deletion in Exon 3, CCR5Δ32 [24, 25], that results in a non-functional

protein [24–29]) associated with HIV-resistance and West Nile Virus susceptibility in north-

ern European populations [30–42].

Located on Chromosome 3 (3p21), human CCR5 is 6,065 bases long with an ORF of 1,056

bases that codes for a protein with 352 residues. Two common transcripts (B with three exons

and the more stable A with four) likely resulted from non-coding upstream polymorphisms in

two separate gene promotors (the functionally weaker cis-acting promoter (PU) upstream of

Exon 1 and the downstream promoter (PD) upstream of Exon 3 [19, 20]. These transcripts

cause alternate splicing (differential inclusion or exclusion of exons) in messenger RNA that

affects regulation of cell surface receptor expression levels [20–22].

The plasticity in regulation of gene expression via alternate transcripts and increased poly-

morphisms [20–22] makes human CCR5 particularly interesting from a broader evolutionary

perspective. Homo has one of the broadest adaptive ranges of any species [43] and human

CCR5’s ability to rapidly respond to new pathogens [19, 20] may have served an adaptive func-

tion during evolutionary migration and shifts in human-environment relationships with

changes to subsistence. Our genomes carry vast evidence of past disease responses [44–46]

that are shared across the genus and reflect a unique disease pattern for Homo. For example,

there is strong evidence for increased disease risk via genetic load in extinct Homo and past

human populations [47] and archaeological evidence for past disease treatment (ingestion of

anti-biotic and anti-fungal non-food plants) in Neandertals [48–52]. CCR5 has been well stud-

ied due to its role in HIV infection (with a focus on natural selection acting on the 32bp dele-

tion) but no work has explored variation within the genus Homo more broadly.

The plethora of research on the evolution CCR5 was conducted prior to the generation of

deep coverage, high quality paleogenomes for extinct hominins, such as Neandertal species

and the newer Denisova species. While paleogenomic sample sizes are not robust to make

statements on selection or add to a discussion of other evolutionary forces acting on variation,

they provide an evolutionary dimension to understanding the patterns of variation character-

izing our genus and insights into possible adaptations to new environments, subsistence

regimes, and pathogens [53]. Plus, the sample of ancient genome is increasing every year. Just

a few insights gained from a single paleogenomes include ground-breaking studies on evolu-

tion of skin color in humans [54]and Neandertals [55] and the introgression of functionally

adaptive polymorphisms into the human immune system genes from Altai Neandertal [56].

Understanding the differences between derived and specific variation also enables potential

differentiation of challenges we overcame as a genus such as obligate bipedalism [57] or high-

altitude adaptation [58] versus challenges we overcame as a species such as the biocultural evo-

lution of sickle-cell trait and malaria infection [59]. Thus, the overall aim of this research is to

place humans within the context Homo and examine if the pattern of humans having a signifi-

cantly higher number of cis-regulatory region polymorphisms (compared to 36 non-human

primate species of apes, Old World Monkeys, and New World Monkeys) [20] is specific or one

that is shared by our genus.

Genetic variation in Homo CCR5
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Variation in CCR5 was examined in humans and extinct hominins to address the questions:

are there shared patterns of variation across the genus for polymorphism frequency and is the

distribution of polymorphisms across the gene suggestive of a common evolutionary trajec-

tory? Based on previous studies on human-nonhuman primate gene structure and variation

and the finding that human polymorphisms allow flexible CCR5 gene expression [19, 20], the

expectation is that there is a shared pattern of variation that aided adaptation for members of

the geographically and ecological dispersed genus Homo. Both expectations were met.

Materials

Modern human data is from the 1000 Genomes Project [60], which contains data for 2,504

individuals from 26 populations (Table 1). While coverage is low per individual, the data are

robust enough to identify the majority of polymorphisms at a frequency of at least 1% in the

populations studied, which is suitable for the current study. Extinct Homo data are: Denisova 3

[61], Denisova 2 [62], Vindija 33.19 Neandertal [63], Altai Neandertal [61], El Sidron Nean-

dertal [64], Mezmaiskaya 1 Neandertal [63], and an ancient human that contributed no genes

to modern populations, Ust’-Ishim [65]—see Table 1 for accession numbers. These species are

Pleistocene Eurasian hominins with Denisova representing an eastern Eurasian Pleistocene

population and Neandertal a western one (with some overlap with Denisova in Siberia). All

genomes have high coverage (excepting Mezmaiskaya and Sidron); contamination with mod-

ern human DNA is estimated to be less than 1% for the extinct hominins [61–63, 66, 67].

Methods

The human reference sequences for two common transcript variants for the CCR5 gene

(NM_000579 and NM_001100168) were downloaded from the National Center for Biotechnol-

ogy Information (NCBI). The modern human variation data (CCR5 and cis-acting elements)

were downloaded from 1000 Genomes via ftp as variant call format (VCF) files (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/). All data were downloaded to and analyzed using the University

of Alaska Research Computing Systems. All files were aligned to the human genome GRCh37/

hg19. VCF files for six extinct hominin species and one extinct human (Ust’-Ishim) were down-

loaded from the Max Planck Institute Leipzig. Ancient DNA often contains C-to-T deaminations

at the end of reads [68]. The lack of variation identified from paleogenomic sequence reads is

unlikely to be a result of typical problems associated with ancient DNA sequence reads since

chemical processes like deamination would increase SNPs (whether false or not). More signifi-

cantly, the paleogenomes were generated using protocols that largely eliminates this error [69].

Despite high levels of variation at this locus and evidence for balancing selection in humans at

this locus, strong levels of introgression from inter-breeding with Neandertals in Eurasia have not

been reported at this locus, as they have for other immune system loci in similar scenarios [27,

70–75]; introgression data from the Reich lab (https://reich.hms.harvard.edu/datasets) [76] con-

firm this is the case (S1 Table). Moreover, the African genetic variation is similar to European

genetic variation which suggests that diversity was already present in modern humans prior to

any admixture with archaic species in Europe.

Distribution of polymorphisms was guided by the structure provided by Mummidi et al.

[19] and included promoter regions (PU and PD), ORF, and CCR5. The target area for PU was

the most inclusive range (-1976 to +33) which avoided overlap with PD and because little dif-

ference was noted between putative PU regions studied by Mummidi et al [19]. The target area

for PD was the most productive range (+119 to +828). Significant difference in distribution of

polymorphisms across gene structure for all samples was tested using Monte Carlo methods

for the exact test.

Genetic variation in Homo CCR5
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Results and discussion

Previous research has examined gene structure [19], gene variation within primate species

[20], and selection acting on the gene primarily in response to viral load [6, 10, 21, 22, 33, 36,

37, 40, 41, 77, 78]. The goal of this research was to establish if the pattern of human variation

and distribution of polymorphisms in CCR5 [20] is specific (i.e., unique in the human species)

or genus-wide (i.e., a pattern shared by Homo).

Table 1. Samples plus polymorphism totals.

Region Population Name Pop n Var AvVar/Pop

Africa African Caribbeans in Barbados ACB 96 1464 15

Americans of African Ancestry in SW USA ASW 61 1049 17

Esan in Nigeria ESN 99 1499 15

Gambian in Western Divisions in the Gambia GWD 113 1744 15

Luhya in Webuye, Kenya LWK 99 1469 15

Mende in Sierra Leone MSL 85 1420 17

Yoruba in Ibadan, Nigeria YRI 108 1786 17

America Colombians from Medellin, Colombia CLM 94 1688 18

Mexican Ancestry from Los Angeles USA MXL 64 1111 17

Peruvians from Lima, Peru PEL 85 1184 14

Puerto Ricans from Puerto Rico PUR 104 1699 16

East Asia Chinese Dai in Xishuangbanna, China CDX 93 2222 24

Han Chinese in Bejing, China CHB 103 2278 22

Southern Han Chinese CHS 105 2328 22

Japanese in Tokyo, Japan JPT 104 1929 19

Kinh in Ho Chi Minh City, Vietnam KHV 99 2411 24

Europe Utah Residents (CEPH, North/West European ancestry) CEU 99 1664 17

Finnish in Finland FIN 99 1484 15

British in England and Scotland GBR 91 1417 16

Iberian Population in Spain IBS 107 1755 16

Toscani in Italia TSI 107 2132 20

South Asia Bengali from Bangladesh BEB 86 1729 20

Gujarati Indian from Houston, Texas GIH 103 1818 18

Indian Telugu from the UK ITU 102 1907 19

Punjabi from Lahore, Pakistan PJL 96 1831 19

Sri Lankan Tamil from the UK STU 102 1952 19

Extinct Homo Altai Neandertal (ERP002097)1 Alt 1 7 7

Denisova 3 (ERP001519)2 Den1 1 10 10

Denisova 2 (PRJEB20653)3 Den2 1 39 39

El Sidron (ERP002457)4 Sid 1 0 0

Mezmaiskaya 1 Neandertal (PRJEB21195)5 Mez 1 28 28

Ust’-Ishim (PRJEB6622)6 Ust 1 15 15

Vindija 33.19 Neandertal (PRJEB21157)7 Vin 1 8 8

1 http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/
2 http://cdna.eva.mpg.de/neandertal/altai/Denisovan/
3 http://cdna.eva.mpg.de/neandertal/Vindija/VCF/Denisova/
4 http://cdna.eva.mpg.de/neandertal/exomes/VCF/Sidron/
5 http://cdna.eva.mpg.de/neandertal/Vindija/VCF/Mez1/
6 http://cdna.eva.mpg.de/ust-ishim/VCF/
7 http://cdna.eva.mpg.de/neandertal/exomes/VCF/Vindija/

https://doi.org/10.1371/journal.pone.0204989.t001
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Are there shared patterns of variation across the genus for polymorphism frequency? In the

modern human sample, 262 known SNPs were observed (Tables 2 and S2 contains all 1000

Genomes variants). SNP frequency per individual (total SNPs in a population/total number of

individuals) within the 26 populations ranged from 14 to 24, with East Asians exhibiting the

highest variation and Africa and the Americas the least (Table 1). There were 94 polymor-

phisms identified across all extinct Homo samples (Altai, Denisova 3 and 2, Mezmaiskaya,

Ust’-Ishim, Vindija, and El Sid), an average of 13 per individual included in analysis (Tables 1

and 2 and S1). No polymorphisms were found in the El Sidron specimen and, as a result, it is

not included in the tables. Some polymorphisms in extinct Homo (n = 41) have been previ-

ously observed in modern humans (Table 2). There were 53 novel polymorphisms identified,

32 in Denisova (1 in Denisova 3, 31 in Denisova 2) and 21 in Mezmaiskaya. Table 2 summa-

rizes extinct Homo polymorphisms.

Is the distribution of polymorphisms across the gene suggestive of a common evolutionary

trajectory? The frequency of polymorphisms across gene structure are used rather than counts

because the human sample is much larger and captures an exponentially greater number of

polymorphisms as a result (see S3 Table for raw count summary). Both humans and extinct

members of our genus exhibit more polymorphisms in gene regulatory regions (Table 3) sug-

gesting a shared pattern of variation across Homo. When polymorphisms occur in both PU

and PD, there is a greater frequency in the functionally stronger regulatory area, PD, but in four

ancient samples (Altai, Denisova 3, Vindija, and Ust-Ishim), they only occur in PU (see S3

Table); only Denisova 2 and Mezmaiskaya had no polymorphisms in the ORF. The compara-

tively lower frequency across all samples reflects the conservation trend noted in primates [19,

20]. A structural analysis of the distribution of polymorphisms via an Exact Test indicated no

significant statistical differences among all samples (results not shown). Given the expected

frequency of polymorphism (based on the perception of CCR5 covered by an area of interest

—see Table 3 footnotes), there is a significant pattern in the samples. First, modern humans

and Denisova 2 have a greater than expected number of polymorphisms in the ORF (even if

these are exceeded by polymorphisms in regulatory regions). All samples (except Denisova 2)

have a greater than expected number of polymorphisms in the promoter regions.

Prior research found that humans have a potentially unique plasticity in gene expression

due to the effect of alternate splicing [57]. The distribution of polymorphisms across gene

regions in Homo suggests plasticity in gene regulation and expression in response to viral

loads, as noted in previous studies [19, 20]. The pattern of immune gene introgression, partic-

ularly regulatory haplotypes in the antiviral OAS gene cluster [70], has suggested that selective

forces in our close relatives operated on expression, not protein variation—same as seen in

non-human primate CCR5 variation [19, 20]—and those adaptations were also useful to

humans. Thus, an increase in polymorphisms that allowed plasticity in regulation and expres-

sion in CCR5 makes sense even if it is not due to introgression. Without functional testing, the

exact nature of the polymorphisms is not known other than by inference and comparative

analysis, as done here. And, without more paleo-genomes to compare, we cannot know if the

variation in these genomes represents true species variation but the data presented here indi-

cate that the pattern is not human specific, rather one shared by recent members of Homo.

The expectation that extinct hominins and modern humans would share this pattern of

increased variation in the regulatory areas of the gene is met in the current study. Our genus

has several unique behavioral and genetic adaptations compared to nonhuman primates and

these adaptations might hold some avenues for further research. For instance, a genus-wide

shift in subsistence activities occurred during the Plio-Pleistocene (roughly 2 million years

ago) from opportunistic non-confrontational scavenging to confrontational scavenging and,

later, top predatory behaviors; this alteration to hominin-environment interaction brought

Genetic variation in Homo CCR5
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Table 2. Homo CCR5 polymorphisms marked by�.

Position RefSeq Ref Alt Structure 1KG Alt Den3 Den2 Mez Ust Vin

46409845 Novel C A PU �

46410036 rs7637813 G A PU � � � � � �

46410114 Novel C G PU �

46410146 Novel G A PU �

46410306 rs41499550 T C PU � � �

46410494 rs2856757 A C PU � �

46410499 rs41395049 T C PU � � �

46410507 rs41412948 C T PU � � � �

46410936 rs2734225 G T PU � �

46410992 Novel G A PU �

46411074 Novel C T PU �

46411080 Novel C T PU �

46411083 rs553230690 C T PU � �

46411133 rs41475349 G A PU � � �

46411295 Novel C T PU �

46411390 Novel C G PU �

46411542 rs2227010 G A PU � � � � � �

46411782 Novel G C CCR5 �

46411784 Novel G A CCR5 �

46411790 Novel T G CCR5 �

46411840 rs2734648 G T CCR5 � � �

46411869 Novel G A CCR5 �

46411870 Novel G A CCR5 �

46411935 rs1799987 A G CCR5 � � � � � � �

46412208 Novel G A CCR5 �

46412259 rs1799988 C T CCR5 � � � � � �

46412271 Novel G A CCR5 �

46412285 Novel C T CCR5 �

46412308 rs1800023 A G CCR5 � �

46412495 Novel G A CCR5 �

46412559 rs1800024 C T CCR5 � �

46413157 Novel G A CCR5 �

46413192 Novel G A CCR5 �

46413193 Novel G A CCR5 �

46413334 rs2856762 C T CCR5 � � � �

46413418 rs2254089 C T CCR5 � �

46413629 Novel T G CCR5 �

46413631 Novel G T CCR5 �

46413632 rs188423028 G A CCR5 � �

46413633 Novel C G CCR5 �

46413638 Novel A G CCR5 �

46413647 Novel C A CCR5 �

46413743 rs2856764 C T CCR5 � �

46413911 Novel T C CCR5 �

46413914 Novel A C CCR5 �

46413927 Novel G T CCR5 �

46413950 rs2856765 G A CCR5 � �

(Continued )
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hominins into greater and regular contact with animal carcasses [79–84]. Neandertals in

Europe have also been shown to be active hunters and foragers [85] who experienced increased

Table 2. (Continued)

Position RefSeq Ref Alt Structure 1KG Alt Den3 Den2 Mez Ust Vin

46414035 rs41515644 A G CCR5 � �

46414612 Novel C G CCR5, PD, ORF �

46414618 rs1800941 T C CCR5, PD, ORF � �

46414794 Novel T A CCR5, PD, ORF �

46414925 rs199824195 T C CCR5, PD, ORF � �

46414926 Novel G C CCR5, PD, ORF �

46414975 Novel G T CCR5, PD, ORF �

46415095 Novel G A CCR5, PD, ORF �

46415202 Novel G C CCR5, PD, ORF �

46415216 Novel T C CCR5, PD, ORF �

46415264 Novel T G CCR5, ORF �

46415383 Novel G C CCR5, ORF �

46415453 Novel C T CCR5, ORF �

46415501 Novel T A CCR5, ORF �

46415771 Novel C T CCR5 �

46415857 Novel G A CCR5 �

46415858 Novel G A CCR5 �

46416030 Novel G A CCR5 �

46416038 Novel G T CCR5 �

46416216 rs17765882 C T CCR5 � �

46416413 Novel G C CCR5 �

46416470 rs1800874 G T CCR5 � �

46416512 Novel T G CCR5 �

46416517 Novel A G CCR5 �

46416525 Novel T C CCR5 �

46416633 Novel C T CCR5 �

46417004 Novel C T CCR5 �

46417069 rs41442546 C A CCR5 � �

46417219 Novel A T CCR5 �

46417302 Novel T C CCR5 �

46417312 rs746492 G T CCR5 � � � � �

46417614 Novel G A CCR5 �

� Polymorphism present

https://doi.org/10.1371/journal.pone.0204989.t002

Table 3. Variation in gene structure, polymorphisms as percentage.

Expected Actual

RefSeq 1kg alt den3 den2 mez ust vin

ORF1 17.46% 22.33% 0.00% 0.00% 32.35% 11.11% 0.00% 0.00%

PU
2 33.80% 32.94% 75.00% 100.00% 28.89% 55.00% 36.36% 60.00%

1 Percent CCR5 covered by ORF
2 Percent Promoter+CCR5 covered by promoters

https://doi.org/10.1371/journal.pone.0204989.t003
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pathogen exposure and disease load as a result [48, 49, 51, 86]. Humans and European Nean-

dertals would have shared similar ecological adaptive pressures in Europe—broad and varied

—whereas Altai Neandertal (related to European Neandertals) and Denisova would have

shared similar ecological adaptive pressures in Siberia with Ust’-Ishim—less varied. Key patho-

gens year-round in tropical to temperate zones are more likely to be viral (vector-borne) or

bacterial (zoonotic) with transmission via interaction with the environment [87]; high latitude

pathogens year-round are more likely parasitic due to the reliance on marine mammals [88]

and the short season for viral vector reproductive cycles to transmit infection from insects to

hominins [35]. Evidence for gene introgression from extinct hominin species to modern

humans is clustered (among other domains) in immune system genes [27, 72, 76, 89]; in par-

ticular, the OAS anti-viral gene cluster on Chromosome 12 shows signatures of positive selec-

tion [72, 76], which suggests that adaptation to Eurasian pathogens may have been partly

facilitated by prior adaptative mutations to local viral loads. At a minimum, the environmental

challenge faced by non-human members of Homo facilitated human adaptation to a new envi-

ronment—a shared challenge with a similar solution.

While previous studies have examined variation in CCR5, particularly CCR5Δ32 which has

a more recent origin [36–42], as a product of more recent human-disease interaction, the

widespread pattern of increased variation in the gene across the genus Homo identified in this

study suggests a potential evolutionary adaptation. A key event distinguishing members of the

genus Homo from the last common ancestor with Australopithecus was the shift to confronta-

tional scavenging and, later, hunting; this alteration to human-environment interaction added

a new point of disease contact as evidenced by modern data showing hunting bushmeat

(which ancient hominins did too [83]) alters disease exposure via introduction of retroviruses

and other pathogens [90–94]. Given CCR5‘s role in both innate and adaptive immune system

functioning, its plasticity may have provided an advantage to members of Homo across these

varied disease ecologies and its potentially greater than normal interaction with the environ-

ment in foraging and hunting activities. As more ancient genomes become sequenced, we can

have more robust data with which to work and invest resources into functional testing and

experimentation of what function these polymorphisms might have had.
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