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Abstract
The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sex-

ually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp)

mediate many functions including adherence, twitching motility, defense against neutrophil

killing, and natural transformation. Critical for immune escape, the gonococcal Tfp under-

goes antigenic variation, a recombination event at the pilE locus that varies the surface

exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed

recombination system has the potential to produce thousands of pilin variants and can pro-

duce strains with unproductive pilin molecules that are completely unable to form Tfp. Satu-

rating mutagenesis of the 3’ third of the pilE gene identified 68 unique single nucleotide

mutations that each resulted in an underpiliated colony morphology. Notably, all isolates,

including those with undetectable levels of pilin protein and no observable surface-exposed

pili, retained an intermediate level of transformation competence not exhibited in ΔpilE
strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the

mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation com-

petence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are

not required for competence. Transformation in strains producing only the pilin Ntd has the

same genetic determinants as wild-type transformation. The Ntd corresponds to the alterna-

tive product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Muta-

tion of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the

Ntd is required for competence when a strain produces unproductive pilin molecules that

cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-

pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic

variants and suggest there are alternate forms of the Tfp assembly apparatus that mediate

various functions including transformation.
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Author Summary

Neisseria gonorrhoeae, the bacterium responsible for the disease gonorrhea, is capable of
undergoing natural DNA transformation, a critical mechanism by which bacteria can take
up DNA from the environment. Uptake of foreign DNA can lead to adaptation to a chang-
ing environment and allow the spread of antibiotic resistance, a particularly relevant issue
in N. gonorrhoeae. It has been proposed that the Type IV pilus directly mediates transfor-
mation, however, our data show that the extended pilus is not required for transformation.
Only a portion (the Ntd) of the pilin protein is required to maintain transformation ability
and this domain is released by a unique proteolysis event termed S-pilin cleavage. Release
of the Ntd allows cells to maintain competence during pilin antigenic variation, a process
vital for immune escape that frequently produces cells that cannot form Type IV pili.
While these cells were previously thought to be incapable of DNA transformation, our
data suggest that S-pilin cleavage evolved as a mechanism that allows DNA transformation
and horizontal gene transfer to occur in these cells lacking pili. We propose that a structur-
ally similar but distinct pseudopilus mediates transformation.

Introduction
Neisseria gonorrhoeae is a Gram-negative, obligate human pathogen and the etiological agent
of gonorrhea [1]. Each year, the bacterium causes an estimated 106 million new cases world-
wide[2].The rise of resistance to all available antibiotics coupled with the lack of any viable vac-
cine candidates have led the Centers for Disease Control to classify N. gonorrhoeae as an
urgent threat, underscoring the need for understanding the fundamental virulence mecha-
nisms of this organism.

The process of DNA transformation in N. gonorrhoeae and the closely related pathogen
Neisseria meningitidis has been well-studied with the majority of contributing factors having
been identified. All N. gonorrhoeae strains are naturally competent for DNA transformation,
and competence is not regulated as the organism is able to undergo transformation during all
phases of growth, which contributes to the spread of antibiotic resistance [3,4]. Transformation
in Neisseria is mediated by the Type IV pilus (Tfp) complex. The Tfp is a major virulence factor
involved in cellular adherence, microcolony formation, resistance to neutrophil mediated kill-
ing, twitching motility, and transformation [5–10]. Similar to Haemophilus influenzae, N.
gonorrhoeae preferentially takes up its own DNA that contains a 10 or 12 base DNA uptake
sequence (DUS) (5’ ATGCCGTCTGAA 3’) [11,12]. The DUS occurs frequently within Neis-
serial genomes and significantly increases efficiency of DNA transformation compared to the
same DNA lacking the sequence [13].

Tfp are several micron long, six nm wide, dynamic structures undergoing cycles of exten-
sion and retraction and exert one of the largest forces known for a biological machine [14,15].
It has been assumed that Tfp directly bind DNA and retraction of the Tfp mediates DNA
uptake into the periplasm; however, there is a lack of direct data supporting this model, and
transporting DNA through the secretin that already hosts a pilus is problematic [16]. What is
known is that the major pilin subunit (PilE or pilin), along with many of the proteins of the
Tfp complex such as the prepilin peptidase PilD are required for competence [10,17]. PilT, a
traffic ATPase that mediates retraction of pili, is required for transformation but is not required
for piliation [18]. The minor pilin ComP is responsible for recognition and binding of DNA
and is responsible for DUS recognition [19]. Expression of ComP promotes transformation
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while expression of the minor pilin PilV decreases transformation efficiency by antagonizing
ComP [20].

The pilin structure is characteristic of Tfp pilin with a 7 AA leader peptide that is cleaved by
the PilD peptidase from the N-terminal hydrophobic α-helices that form the core of the pilus
structure. The α-helices are connected to a variable C-terminal domain consisting of the αβ
loop, a β sheet, and the D Region containing a critical disulfide bond (S1A Fig). The globular
C-terminal head contains the residues that are surface exposed in the pilus fiber [21]. Some
pilin variants mediate release of the C-terminal globular head in a soluble form called S-pilin
that is the product of a specific proteolysis unique to the pathogenic Neisseria [22,23]. No role
for S-pilin in pathogenesis has been conclusively established. Pilin variants that produce fewer
pili tend to produce larger amounts of S-pilin, but the ratio of pilin to S-pilin is not directly cor-
related to the amount of elaborated pili [22,24].

Both eukaryotic and prokaryotic pathogens utilize an array of molecular tactics in order to
avoid recognition by host immune systems. Diversity generation systems are one of the most
widely used of these tactics to avoid immune detection. From the V(D)J recombination medi-
ated generation of antigen receptors in vertebrate adaptive immune responses to phase varia-
tion of antigenic determinants in bacteria, many different diversity generation systems exist
throughout nature that are vital to an organism’s survival [25,26]. Pathogen antigenic variation,
or the modification of immunogenic surface molecules, forces the host to continuously alter its
humoral immune response. Antigenic variation can provide a pathogen with the capability to
persist within a host for an extended time or to continually re-infect core populations.

The pathogenic Neisseriamediate a high-frequency, DNA-based, homologous recombina-
tion process termed pilin antigenic variation, that varies the pilE coding sequence resulting in
many different variant pilins [16]. During pilin antigenic variation, sequences from unex-
pressed silent pilin loci (pilS) donate variable coding sequences to the expression locus in a
gene conversion event. The pilE gene and pilin protein can be divided into variable regions
(semi-variable region (SV), hyper-variable loop (HVL), hyper-variable tail (HVT)) and con-
served regions (N-terminal domain, cys1, cys2) (S1B Fig). The regions with variable amino
acid residues correspond to the surface exposed regions of the mature pilus fiber and are
thought to mediate immune escape and add to the ineffectiveness of Tfp-based vaccine can-
didates. In addition, the process of pilin antigenic variation can result in pilin molecules that
are inefficiently assembled into pilus fibers or pilin phase variants that cannot form pili [27].
All gonococcal strains maintain the ability to phase vary, which may contribute to immune
escape by preventing pilus expression, but can additionally mediate the detachment of the
bacterium from epithelial surfaces and a switch from a sessile biofilm state to a free-living
planktonic state. Due to the observation that pilE deletion strains are nonfunctional for
pilus-dependent processes [7,28,29], it has been assumed that when pilus expression is dis-
rupted by the pilin antigenic variation process that all pilus associated functions are also
disrupted.

In this report, we show that pilEmutations that prevent pilus formation do not necessarily
abolish transformation competence. Mutations that disrupt the N-terminal domain (Ntd) pre-
vent transformation, while those past the S-pilin cleavage site retain transformation compe-
tence. Moreover, we show that S-pilin proteolysis is required to release the Ntd to mediate
transformation when unproductive pilin monomers are produced by antigenic variation. Our
data demonstrate that a proteolytic process maintains transformation competence even when
pilus expression is disrupted by pilin antigenic variation. These findings suggest that the
extended pilus fiber is not required for transformation and that maintaining continual trans-
formation competence is extremely important for this strict human pathogen.
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Results

Targeted genetic screen to identify C-terminal pilin residues required for
piliation
To determine the amino acid residues critical for proper Tfp formation and function we con-
ducted a random, saturating mutagenesis screen on the 3’ region of the pilE coding sequence
encoding the cys1, HVL, cys2, and HVT regions (S1B Fig). A pool of random mutant plasmids
was constructed using a series of degenerate mega-primers to introduce all possible mutations
into every nucleotide position in the 3’ region of the gene. The plasmid pool was used to trans-
form N. gonorrhoeae selecting for recombination at the native pilE locus using a linked, down-
stream chloramphenicol resistance marker (CmR) (S1B Fig). Transformants with underpiliated
(P-) colony morphologies were isolated and the pilE coding region was sequenced to determine
the causative mutation. Only mutants containing a single nucleotide change in the pilE coding
region were analyzed further.

68 unique mutations were isolated that result in a P- colony morphology in the targeted 132
3’-base pairs of pilE (S1C Fig). Nine of these mutations created early stop codons, 13 changed
either of the two absolutely conserved cysteine residues that form the critical disulfide bond,
and the remaining 46 were missense mutations. This mutagenesis screen provides a compre-
hensive analysis of which amino acid residues in the carboxy-terminus of this highly variable
protein in this strain of N. gonorrhoeae are essential for piliation. Residues in which a mutation
produced a P- phenotype were concentrated in the highly conserved cys1 and cys2 regions of
pilE. There were, however, multiple amino acid residues in the hypervariable loop that prevent
piliation when mutated. No mutations were isolated in the hypervariable tail consisting of the
five most C-terminal amino acids (S1C Fig).

Phenotypic analysis of P- pilEmutants
To further characterize representative mutant isolates for Tfp formation and function, pilin pro-
tein levels were assayed by western blot, surface exposed fibers were imaged by transmission elec-
tron microscopy (TEM), and transformation efficiencies were measured (Fig 1A–1C). While the
missense mutants expressed varying levels of pilin, the nonsense and cysteine mutants had no
detectable pilin by western blot analysis, presumably due to degradation of improperly folded
pilin (Fig 1A). A complete summary of the phenotypic characterization of every isolate from the
screen can be found in S1 Table. In addition, we were unable to detect any surface exposed pili by
TEM with selected nonsense and cysteine mutants (Fig 1B). Several Tfp defects can be sup-
pressed in a ΔpilT background, which prevents pilus retraction [30], yet a representative set of
nonsense and cysteine mutants did not display any observable pili by TEM in a ΔpilT back-
ground (Fig 1B and S2 Fig). Surprisingly, while a ΔpilEmutant is not competent, all of the pilE
mutants were transformable including the nonsense and cysteine mutants completely lacking
detectable pilin or surface exposed pili (Fig 1C). The P- isolates demonstrated a wide range of
transformation efficiencies, with mutants that express some detectable pilin protein onWestern
blot analysis generally exhibiting a higher level of transformation competence (S1 Table).

Although all experiments were performed in IPTG inducible RecA strain background to
prevent antigenic variation, it was possible that the observed transformation was due to a low
level of pilin antigenic variation restoring full-length pilin. We ruled out this possibility as all
transformants obtained from the mutants retained their non-piliated colony morphology and
sequencing of the pilE locus from a representative set of transformants showed no changes to
the pilE sequence. We tested whether the competence of the P- isolates might be due to transla-
tional miscoding allowing a small amount of full-length pilin to be expressed from the mutants,
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since it has previously been shown that only a small amount of pilin expression is sufficient for
competence [31,32]. If translational miscoding were responsible for the competence, insertion
of consecutive nonsense mutations and cysteine mutations would lower transformation effi-
ciency beyond that of a single mutant. However, upon introduction of two or three nonsense
and cysteine mutants into the 3’ region of the gene, all mutant strains maintained a similar
level of transformation as the individual nonsense and cysteine mutants isolated in the screen
(Fig 2). Consistent with the lack of mutants isolated in the HVT from the P- screen, insertion of
consecutive nonsense mutations in the HVT did not affect transformation efficiency (Fig 2).
These data show that the full-length pilin protein is not required for a reduced but biologically
relevant level of transformation competence.

Fig 1. Phenotypic characterization of P- pilEmutants. A. Representative PilE western blot of whole cell
lysates of P- isolates. The upper band is full-length PilE while the lower band is S-pilin. Lanes marked with an
* are nonsense or cysteine mutants. Western blot analysis performed using the K36 peptide anti-pilin
antibody. B. Representative TEM images of the parental strain (left), a C120Smutant (middle), and a C120S,
pilT double mutant (right). C. Transformation efficiencies of representative P- isolates from the screen
including nonsense, cysteine mutants, and missense mutants. X = nonsense mutation, ND = transformants
not detected.

doi:10.1371/journal.pgen.1006069.g001
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PilE Ntd-mediated transformation
Since a ΔpilEmutant was non-competent for transformation, but the pilE truncation mutants
retained competence, we predicted that only the N-terminal portion of pilin is required to main-
tain competence. Nonsense mutations inserted along the length of the pilE coding region showed
that strains with nonsense mutations after AA38 of mature pilin retained competence, while non-
sense mutations prior to, or at AA34, abolished detectable transformation (Fig 2). For the
remainder of the experiments in this report, we selected three representative non-piliated pilE
mutations: K44X, a short nonsense mutant expressing only the N-terminal domain (Ntd);
S115X/L117X/W118X, a triple C-terminal nonsense mutant; and C150S, a C-terminal cysteine
mutant. All three of these mutants retain competence but completely lack pili as shown by pilus
purification and electron microscopy, even when pilT was inactivated (S2 Fig). Additionally,
while Tfp could be detected in a parental strain, no short pilus filaments, or alternate filaments
formed by the Ntd, were detected in the Ntd expressing K44X strain by whole-cell enzyme-linked
immunosorbent assay (ELISA) or immuno-gold TEM using a polyclonal anti-Ntd antibody (S3
Fig). Taken together, these results confirm that Tfp are not required for competence and only the
pilin Ntd is required to allow transformation competence.

Fig 2. Nonsensemutants define the region of PilE necessary for transformation. A. Transformation
efficiencies of strains with multiple site-directed nonsense and/or cysteine mutations of pilE designated by the
original amino acid and the resultant amino acid or nonsense mutation (represented by the X). B.
Transformation efficiencies of site-directed nonsense mutants of pilE. WT is the parental FA1090 strain and
ΔpilE is a deletion derivative of that strain. X = nonsense mutation, ND = transformants not detected, *p<0.05
Student’s T-test, each mutant compared to the WT strain.

doi:10.1371/journal.pgen.1006069.g002
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To determine whether Ntd-mediated transformation was similar or distinct from the nor-
mal transformation process, we assayed for transformation efficiency of Ntd strains in several
genetic backgrounds with established effects on transformation. The role of PilD was tested by
introducing a G-1S mutation in PilE that prevents PilD cleavage [23] (Fig 3A). We also investi-
gated the role of the DNA binding minor pilin, ComP (Fig 3B), and the competing minor pilin
PilV (Fig 3C), by creating insertional mutants in the respective genes. The requirement for a
DUS was assayed by using matched constructs for transformation that only differ in the pres-
ence or absence of a DUS (Fig 3D) [13]. Transformation in pilEmutants has the same genetic
determinants as the normal process as all strains required PilD cleavage, ComP and a DUS for
full transformation efficiency, while the PilV knockouts showed increased frequencies of trans-
formation. The reliance on PilD cleavage also suggests that the Ntd must be present in the

Fig 3. Pilin processing and role of minor pilins in Ntd-mediated transformation. A. Transformation efficiencies of strains with a pilE
G-1S mutation that prevents PilD processing coupled with representative C-terminal nonsense mutations preventing piliation.B.
Transformation efficiencies of comP::npt loss-of-function strains with pilE C-terminal nonsense mutations preventing piliation. [ComP]
complements have an anhydrotetracycline (ATC) inducible copy of comP at an ectopic locus.C. Transformation efficiencies of pilV::npt
strains with C-terminal pilE nonsense mutations preventing piliation. D. Transformation efficiencies of strains with C-terminal pilE
nonsense mutations preventing piliation using as transforming DNA a plasmid either containing a 10-mer DUS (DUS10) or a scrambled
DUS (No DUS). CmR = CmR parental strain, X = nonsense mutation, ND = transformants not detected, *p<0.05 **p<0.001 Student’s T-
test.

doi:10.1371/journal.pgen.1006069.g003
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inner membrane or periplasm to mediate transformation as PilD cleavage occurs following
transport of the pilin molecule through the inner membrane [33].

S-pilin Cleavage and the Ntd
It was striking that the minimal N-terminal fragment necessary for transformation competence
was 38 amino acids long, as S-pilin cleavage occurs between amino acids 39 and 40 of the
mature pilin protein. We reasoned that the C-terminal PilE mutants unable to assemble pilus
fibers were undergoing S-pilin cleavage to allow release of the Ntd to mediate transformation.
Site-directed mutagenesis was used to make a set of double mutants in which a C-terminal
mutation that abrogates piliation was coupled with a L38L39A40-AAMmutation at the S-pilin
cleavage site that was previously described to prevent the majority of S-pilin cleavage, with the
caveat that this mutation reduces overall piliation (Fig 4A) [34]. This previously reported phe-
notype in strain MS11 was confirmed in newly constructed L38L39A40-AAMmutants in strain
FA1090 (Fig 4B). The C-terminal mutant strains each showed a drastic decrease in competence
when the S-pilin cleavage site was mutated (Fig 4C). As expected, the L38L39A40-AAM

Fig 4. S-pilin cleavage is necessary for transformation competence in pilEmutant strains. A.
Alignment of the PilE primary sequence surrounding the S-pilin cleavage site of the parental strain and the S-
pilin cleavage mutant strains. B. PilE western blot of parental strain (CmR), ΔpilEmutant, pilE L38L39A40-AAM
S-pilin cleavagemutant, a strain with P. aeruginosa PilA sequence at residues 37–43, and the S-pilin control
mutation S45A46V47-TMA. Upper band is full-length pilin. Lower band is the processed S-pilin form. Western
blot analysis performed using the K36 peptide anti-pilin antibody. C. Transformation efficiencies of a pilE C-
terminal mutations coupled with the S-pilin cleavage site mutation (L38L39A40-AAM), P. aeruginosa pilA
sequence (P.a. S-pil), or the control mutation (S45A46V47-TMA). X = nonsense mutation, CmR = CmR

parental strain, *p<0.05 **p<0.001 Student’s T-test. ND = transformants not detected.

doi:10.1371/journal.pgen.1006069.g004
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mutation did not completely abrogate transformation as the mutation does not completely pre-
vent S-pilin cleavage (Fig 4B).

In the same report describing the L38L39A40-AAM, Aas et al. also replaced the S-pilin cleav-
age region with the corresponding seven amino acid region from Pseudomonas aeruginosa
pilin, PilA (Fig 4A)[34]. While this replacement mutation reduced transformation efficiency
and destabilized Tfp in a WT background, it also prevented all production of S-pilin (Figs 4B
and S4). Full-length pilin protein can be detected in this P. aeruginosa S-pilin (P.a. S-pil:
I37LLAEGQ-LASVNPL) strain using a monoclonal antibody IE8G8 whose binding epitope is
not altered by the P. aeruginosa sequence (S4A Fig). When we constructed this mutation in
strains harboring a C-terminal pilEmutation, transformation was completely abolished (Fig
4C). The decrease in transformation efficiency observed with either of the S-pilin cleavage
mutations was specific to mutation of the S-pilin cleavage site as a similar mutation
(S45A46V47-TMA) just downstream of the S-pilin cleavage site did not decrease transformation
efficiency when coupled with a C-terminal mutation. Moreover, this control mutation, in a
WT pilE background, resulted in a P- colony morphology and completely destabilized full
length pilin protein with only S-pilin being detected in concentrated cell supernatants(Fig 4B
and 4C and S4 Fig). These data demonstrate that while any destabilizing mutation in the C-ter-
minal region will reduce the transformation efficiency, when the S-pilin cleavage site is dis-
rupted, the retained competence is lost.

Complementation of a ΔpilE strain was accomplished with a copy of pilE or the Ntd with an
anhydrotetracycline (ATC) inducible promoter at an ectopic site. These constructs restored
transformation efficiency in a ΔpilE background although not to parental levels (S5 Fig). The
ability of the complementation constructs to express pilE transcripts relative to parental levels
was measured by quantitative RT-PCR (S5A Fig). pilE transcript levels were reduced by about
1.5 logs in the complementation strains and the transformation efficiencies of the ΔpilE iga::
pilE and ΔpilE iga::pilENtd strains were reduced by a similar amount in comparison to the CmR
and L39X strains respectively (S5 Fig). The transformability of the ΔpilE iga::pilENtd strain
demonstrates that the Ntd is sufficient to mediate transformation in a PilE deletion strain. This
result, along with the transformation data from the S-pilin cleavage mutants and the demon-
strated loss of competence of any nonsense mutation upstream of the S-pilin cleavage site
proves that release of the Ntd by S-pilin cleavage is required to maintain transformation
competence.

The role of Ntd-mediated transformation during antigenic variation
One of the many possible outcomes of pilin antigenic variation is phase variation or the crea-
tion of pilin molecules that cannot efficiently assemble into pilus fibers [35]. Some pilus phase
variants are the outcome of frameshifts encoded in silent copies that result in early stop codons
very similar to the nonsense mutations isolated in our screen, but with additional amino acid
changes between the frame shift and the stop codon [27]. To determine whether naturally
occurring pilus phase variants retained competence, we allowed the parental strain to undergo
antigenic variation and isolated several unique pilE frameshift phase variants which resulted in
nonsense mutations. We tested these naturally occurring nonpiliated variants for transforma-
tion efficiency, and each retained considerable competence (Fig 5A). Notably, the P- pilin anti-
genic variant strains exhibited higher transformation efficiencies than the strains with similar
nonsense mutations created by site-directed mutagenesis. qRT-PCR of the pilE transcript
showed that the CmR used to select the mutants actually decreased the pilE transcript to a third
of wild-type levels resulting in lower PilE levels (S6A Fig). This decrease in mRNA corre-
sponded with a decrease in transformation efficiencies as mutants isolated without a selection

Pilin Ntd Mediates Gonococcal Transformation

PLOS Genetics | DOI:10.1371/journal.pgen.1006069 May 23, 2016 9 / 20



marker displayed greater competence than strains with the same mutation coupled to the CmR

(S6B Fig).
Finally, we tested whether the L38L39A40-AAMmutation, when introduced into a natural P-

phase variant also reduced transformation efficiency (Fig 5B). Consistent with the strains har-
boring other C-terminal mutations, the S-pilin cleavage mutation drastically reduced transfor-
mation efficiency of the phase variant, demonstrating that S-pilin cleavage is required for
transformation in natural antigenic variants with unproductive pilin molecules. Taken
together, these results strongly suggest that the Ntd is released by S-pilin proteolysis and can
substitute for full-length pilin by producing a form of the pilus assembly apparatus that is
active for DNA transformation during the normal process of pilus phase variation.

Discussion
We have shown in a directed mutational analysis of the 3’ pilE coding region that a variety of
pilEmutations that either alter or completely abolish pilus elaboration on the bacterial cell sur-
face do not prevent transformation. A series of site-directed pilEmutants demonstrated that
this transformation competence is not due to translational read-through, but that the mainte-
nance of competence requires the pilin Ntd, a putative cleavage product of S-pilin proteolysis.
Moreover, naturally occurring pilin variants that have pilin molecules incapable of forming an
extended pilus fiber also retain competence. In these variants, S-pilin cleavage is required for
transformation to mediate release of the Ntd from the mutated C-terminal head. We propose
that the process of S-pilin cleavage releases the Ntd to maintain competence in cells undergoing
antigenic variation, a diversity-generation system critical for immune escape during infection.

In comparing naturally occurring pilin phase variants to site-directed pilEmutants, we
determined that our method for selecting pilEmutants with a CmR in the 3’ Sma/Cla region
had the unintended consequence of suppressing pilEmRNA levels. We assume the CmR

marker has interrupted an mRNA stability element, but further investigation will be required
to define the mechanism that this insertion affects mRNA levels. It is important to note that

Fig 5. Pilus phase variants require S-pilin cleavage for competence A. Transformation efficiencies of naturally
occurring P- antigenic variants with pilE variants that encode frameshift mutations resulting in early stop codons.B.
Transformation efficiencies of P- strains resulting from antigenic variation events from donor silent loci 2c4 and 3c1 coupled
with either the S-pilin cleavage mutation (L38L39A40-AAM) or the control mutation (S45A46V47-TMA). 3c2, 2c4/3c1, 2c4
indicate silent loci which donated sequence to the variant. CmR = CmR parental strain, *p<0.05 **p<0.001 Student’s T-
test.

doi:10.1371/journal.pgen.1006069.g005
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most of the reported transformation efficiencies in this study are lowered by the action of the
CmR cassette on pilE transcript. Without the CmR cassette, Ntd mediated transformation can
still be remarkably efficient with more than one in a thousand cells being transformed (Fig 5B
and S3B Fig). While this level of transformation is significantly lower than that of the fully
piliated parental strain, it is still greater or equal to the competence efficiencies reported for the
related bacterium N.meningitidis [36] and other naturally competence bacterial species
[37,38]. Additionally, there was a notable drop in transformation efficiency as the site-directed
truncations approached amino acid 38, which is either due to instability of the shorter peptide
or loss of residues important for interaction with other factors. However, we cannot substanti-
ate this conclusion as the extreme hydrophobic nature of the α1-N domain of the Ntd (residues
1 to 28) has prevented detection by western blot and HPLC [39] and multiple epitope tagged
versions of the Ntd were not stable and prevented transformation competence. However, the
requirement of at least a 38 amino acid long pilE gene product for competence demonstrates
that the Ntd is stable enough to supply substantial biological function.

Although the L38L39A40-AAM pilin cleavage site mutant inhibits S-pilin cleavage but does
not completely prevent cleavage, and the Pseudomonas S-pilin mutation abrogates S-pilin pro-
duction but destabilizes full-length pilin; transformation assays with these two strains demon-
strate that release of the Ntd is critical for maintenance of competence when unproductive
pilin molecules with C-terminal mutations are expressed. While we cannot presently determine
whether S-pilin cleavage is required for transformation with a fully functional pilin, the fact
that the L38L39A40-AAMmutation did decrease transformation efficiency in the parental strain
leaves open the possibility that S-pilin cleavage has a role regardless of the functional status of
pilin. However, this reduction in competence may also be due to decreased ability of full-
length, L38L39A40-AAM pilin to polymerize into pili [34]. Regardless of the mechanism, these
data show that the proteolytic cleavage that releases S-pilin also releases the reciprocal Ntd
product to maintain competence.

To our knowledge, the production of S-pilin and the Ntd has only been described for the
pathogenic Neisseria, organisms also notable for producing many different piliation states
through the process of antigenic variation, but not other Tfp pili producing bacteria. We pro-
pose that S-pilin/Ntd proteolysis evolved as a mechanism to release the Ntd to maintain com-
petence in the face of pilus phase variation. These organisms undergo high frequency pilin
variation that not only modulates the immune epitopes on the pilus fiber but also mediates
phase variation, which can allow for detachment of phase variants from cell surfaces or
biofilms.

The role of S-pilin/Ntd cleavage in compensating for the consequences of pilin antigenic
variation adds another layer of adaptation to the already complex and highly evolved system.
This complexity further underscores the importance of this diversity generation system to N.
gonorrhoeae pathogenesis. Furthermore, because these organisms protect competence during
antigenic variation and undergo horizontal gene transfer so frequently that there is an inability
to establish clonal lineages [40], it appears that horizontal gene transfer is a vital function for
these human specific organisms. It is not settled why these and other naturally-competent,
human-restricted organisms require continual horizontal gene transfer, but our discovery that
there is a specific mechanism to maintain competence in an easily reversible non-piliated state
supports the notion that there is strong selection to maintain competence.

While S-pilin cleavage mediated release of the Ntd may be unique to Neisseria, a functional
role for the N-terminal alpha helix apart from the entire pilin molecule has been previously
demonstrated. Esquivel et al showed that the H-domain of the archaeal type IV pilin regulates
motility inHaloferax volcanii [41]. Additionally, other studies in organisms such as Thermus
thermophilus have demonstrated that mutations in multiple Tfp complex proteins separate the
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functions of Tfp and natural transformation [42,43]. Although it remains to be seen if the Ntd
of pilins in other organisms can have functional roles outside the context of the entire pilin
molecule, it is clear that the paradigm of Tfp-mediated transformation needs to be reexamined.

These reports, along with the data demonstrating that Tfp are not absolutely required for
transformation competence, suggest that the prevailing model of extended Tfp-mediated DNA
binding and uptake is not necessary. We propose that that there is a pseudopilus structure
[21,44], distinct from the pilus, which helps mediates transformation. Similar to the pseudopi-
lus present in Gram positive bacteria that spans the thick peptidoglycan layer, a gram-negative,
competence pseudopilus would span from the anchor in the inner membrane, across the peri-
plasmic space and through the outer membrane [21]. In the pilin mutants described here, the
pilin Ntd could form the pseudopilus within the Tfp complex to present the competence minor
pilin ComP near the cell surface but not produce a fiber that extends beyond the immediate
cell surface. Formation of a functional fiber by the Ntd is plausible as the Ntd forms the core of
the Type IV pilus structure, and extremely short type IV pilins can form Tfp such as the sixty-
one amino acid version in Geobacter sulfurreducens [45,46]. Alternatively, the Ntd may not be
included in the pseudopilus fiber, but rather serve as a structural or signaling component that
is present in the inner membrane to allow for pseudopilus formation. Consistent with this
hypothesis, several minor pilins (pilH-K) required for Tfp biogenesis are included in the pilus
fibers at very low amounts possibly acting as an initiation complex that primes pilus assembly
[39,47,48].

The composition and formation of the pseudopilus may be differentiated from a pilus fiber
by the profile of minor pilins. The data showing that loss of PilV increases transformation in
the Ntd producing mutants suggests that both PilV and ComP compete for access to the Tfp
complex. Notably, neither of these two minor pilins is required for formation of the canonical
Tfp. If this distinct transformation apparatus exists, it is possible that both full-length PilE and
the PilE-Ntd could form the core of the pseudopilus as all phenotypes observed with Ntd medi-
ated transformation in this study were consistent with transformation mediated by full-length
pilin. The decrease in transformation efficiency exhibited by PilE nonsense mutations may
indicate that full-length PilE more efficiently forms a pseudopilus, but this efficiency difference
may be due to a lower protein stability in Ntd mutant strains. If full-length pilin can complete
the pseudopilus, this model could account for transformation competence amongst all compe-
tent species that express Tfp. Whether the processed Ntd or the full-length pilin protein is
required for promoting transformation in piliated cells, the data presented here clearly show
that an extended pilus is not required for transformation. It is also possible that extended Tfp
mediate transformation during favorable conditions but that the alternative pseudopilus struc-
ture only mediates transformation when Tfp cannot be formed. Though this study focuses on
transformation, it stands to reason that the remarkable diversity of pilus-mediated functions
coupled with a variety of minor pilins corresponding to different functions may allow forma-
tion of multiple alternate arrangements of the Tfp apparatus, each mediating a distinct process.

Materials and Methods

Bacterial strains and growth
All studies were performed using strain FA1090 PilE variant 1-81-S2 [49] and its derivatives
which contain an IPTG inducible recA6 allele to control pilin antigenic variation [50]. The
ΔpilEmutant allele consists of a 924-bp deletion that includes the promoter and ribosome
binding site of pilE as previously described [51]. The ΔpilT TEM experiments were performed
in strains with an IPTG-regulatable pilT allele without IPTG induction [18]. N. gonorrhoeae
strains were grown on GCMedium Base (Difco) plus Kellogg supplements I and II (GCB) at
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37°C in 5% CO2. Antibiotics and their concentrations used for selection in GCB were: Chlor-
amphenicol (Cm) 1 ug/ml, Kanamycin (Kan) 50 ug/ml, Naldixic Acid (Nal) 0.75 ug/ml, and
Erythromycin (Erm) 2 ug/ml. Plasmids were propagated in One Shot TOP10 Electrocomp E.
coli (Invitrogen) or E. cloni 10G ELITE Electrocompetent E. coli (Lucigen). E. coli strains were
grown on Luria-Bertani (LB) solid media containing 15g/L agar or in broth at 37°C. Antibiotics
and their concentrations used for selection in LB were: Kanamycin (Kan) 50 ug/ml, Ampcillin
(Amp) 100 ug/ml, Chloramphenicol (Cm) 20 ug/ml, Tetracycline (Tet) 12 ug/ml.

Construction of pKP11 and pKP37
PCR was used to amplify the pilE gene from strain FA1090 1-81-S2 recA6. KOD DNA poly-
merase (Novagen) was used following manufacturers protocols using kinase treated primers
(T4 polynucleotide kinase, NEB) KP001 and KP002 for pKP11 and KP040 and KP002 for
pKP37. Gel purified products (QIAquick Gel Extraction Kit, Qiagen) were cloned into
pSMART LCAmp (Lucigen) following manufacturer’s instructions and electroporated in E.
coli E.cloni 10g elite cells (Lucigen). Positive clones were confirmed by DNA sequencing using
primers SL1 and SR2. Plasmids were isolated using the QIAprep Spin Miniprep Kit (Qiagen),
digested with SmaI (NEB), and CIP treated (NEB). The Cm resistance cassette was PCR ampli-
fied with primers KP005 and KP006 to add a 12-mer DUS to the sequence and blunt cloned
into the SmaI digested plasmids using T4 DNA ligase (NEB). The reaction was electroporated
into E. coli Top10 cells and positive clones were confirmed by DNA sequencing.

Single, degenerate, mega-primer mutagenesis
The pKP11 plasmid containing the pilE coding sequence was mutagenized by linear amplifica-
tion using two synthetic 90-mer oligonucleotides (KP013 and KP014) with 12 base conserved
flanking regions of homology and a central 66 base degenerate stretch (IDT) as megaprimers
targeting the 3’ 132 coding nucleotides of pilE. The degenerate stretch was made by doping the
synthesis reaction with 0.5% of each of the incorrect nucleotide resulting in the inclusion on
average of one wrong base per oligonucleotide. The reactions were composed of KOD DNA
polymerase 0.02 U/ul, MgSO4 2.0 mM, dNTPs 0.2 mM each, pKP11 50 ng, and degenerate
mega-primer 0.4 μM in 1X KOD reaction buffer. Following initial denaturation at 96°C for 2
min, linear amplification consisted of 18 cycles of 96°C for 1 min, 55°C for 1 min and 68°C for
8 min. Reactions were purified using the QIAquick PCR Purification Kit (Qiagen) and the tem-
plate DNA was digested using 30U DpnI (NEB) overnight at 37°C. Reactions were dialyzed
using 0.025 μmVSWP membrane discs (Millipore) and electroporated into E. coli E.cloni cells.
Positive clones were selected on LB plates containing Amp and Cm, and mutant pools of sev-
eral hundred were isolated by Miniprep reactions (Qiagen). DNA sequencing of select clones
confirmed that ~10% of isolates contained a single nucleotide mutation in the region of inter-
est. Mutant plasmid pools were used to transform FA1090 1-81-S2 recA6, and CmR, P- trans-
formants were isolated.

Construction of pilEmutants
All site-directed PilE mutants were made through single-primer mutagenesis of pKP11 and
pKP37 depending on the location of the desired mutation. To mutate the plasmid, a linear
amplification step was carried out with primers (KP016,021,023,024,026,043–051,054–
056,155,159,162, or 227) homologous to the region of interest with the nucleotide change
required to mutate the desired site. The primer was used in a linear amplification step with sub-
sequent processing and electroporation into E. coli in the same reaction manner as described
for the degenerate mega-primer mutagenesis. Selection of correct clones was accomplished
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through PCR amplification of the pilE sequence of CmR isolates using primers KP001 and
KP010 for pKP11 and KP040 and KP010 for pKP37 and subsequent DNA sequencing to select
those plasmids incorporating the desired mutation. Double and triple mutants were con-
structed by repeating this process using additional mutagenic primer(s).

Markerless PilE mutant strains were made by PCR amplifying the pilE coding region of
strains containing the desired mutation using primers KP173 and KP174, which contain a
DUS but do not amplify the region with the inserted CmR originally used to make the muta-
tion. The PCR reaction was performed using KOD polymerase following manufacturer’s con-
ditions and purified using the QIAquick PCR Purification Kit. The resulting DNA was used to
spot transform FA1090 1-81-S2 RecA6 and possible transformants were screened using visual
assays for the P- colony morphology. All P- colonies were isolated and selection of correct
clones whose P- phenotype was due to harboring the desired pilEmutation was accomplished
through PCR amplification of the pilE and subsequent DNA. Complementation of the ΔpilE
strain was accomplished by inserting a copy of pilE, amplified from the parental strain (iga::
pilE) or the markerless L39X strain (iga::pilENtd) using primers KP221 and KP222, under an
anhydrotetracycline inducible promoter at the iga protease locus using plasmid pMR69 [52].

Construction of comP::npt and pilV::npt
comP and pilV sequences were amplified from strain FA1090 using kinase treated primers
KP176 and KP177 (comP), and KP178 and KP179 (pilV) using KODDNA polymerase. Gel puri-
fied products were cloned into pSMART LCAmp and electroporated into E. coli BH10B cells.
Positive clones were confirmed by DNA sequencing and the labeled pSM9 for the pilV construct
and pSM18 for the comP construct. For the pilV construct pSM9, site directed mutagenesis was
carried out using primers KP180 and KP181 to insert KpnI digestion sites. The resultant con-
struct was named pSM12. pSM12 and pSM18 were digested by KpnI and PstI respectively and
both were ligated using T4 DNA ligase with the nptII cassette digested from pBSL86 to insert the
KanR gene into the coding sequence of pilV and comP. The resulting plasmids were electropo-
rated into E. coli BH10B cells and positive clones were confirmed by DNA sequencing. The
sequencing confirmed constructs pSM14 (pilV::npt) and pSM19 (comP::npt) were transformed
into their native loci in FA1090 1-81-S2 recA6 and its derivatives, selected for KanR and con-
firmed by DNA sequencing. Complementation of the comP::npt strain was accomplished by
inserting a copy of comP, amplified using primers KP157 and KP158, under an anhydrous tetra-
cycline inducible promoter at the iga protease locus using plasmid pMR69 [52].

Transformation assays
N. gonorrhoeae strains were grown for 20 hours on GCB plates and resuspended in liquid trans-
formation media (GCBL, 1mM IPTG, 5mMMgSO4 and Kellogg supplements I and II, pH 7.2)
at high density. 20 μl of the cell suspension was added to 200μl transformation media containing
150ng pSY6 DNA [53]. For DUS experiments, 150 ng of either gyrB1DUS0 or gyrB1DUS10 [54],
were used as the transforming DNA. After 20 min incubation at 37°C, the transformation reac-
tions were diluted into 2ml 37°C transformation media and incubated at 37°C in the presence of
5% CO2 for 4 h. Reactions were then serially diluted and spotted onto GCB plates in the presence
and absence of Nal. Transformation efficiencies are reported as antibiotic resistant CFU (trans-
formants) divided by total CFU, and are the mean of at least three replicates.

Western blots
Protein isolation from cell lysates was accomplished after growth of strains on GCB plates for
18 hours. Cells were swabbed into 1 mL PBS and pelleted at 4,000 x g for 5 minutes and washed
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with 500 ul PBS. Bacteria were resuspended in PBS to 520ul total volume. 20 μl was reserved
for BCA analysis (Pierce) to determine protein concentration and 5x SDS sample buffer was
added to the remaining 500 μl. To aid in loading of the sample, genomic DNA was sheared
through repeated passage of the sample through a small bore needle and stored at -20°C. For
western blots of concentrated pilin protein from cell supernatants (S4B Fig), strains were
grown as lawns on GCB for 8 hours prior to inoculation of 5 ml of amended GCBL. (GCBL
+ 0.042% sodium bicarbonate). Following overnight growth at 30°C with rotation, cells were
pelleted by ultracentrifugation at 200,000 x g for 1 hr at 4°C. Pilin protein in the supernatants
was concentrated using trichloroacetic acid as described [22] and suspended in PBS and 5x
SDS sample buffer. For western blot analysis equal amounts of protein were loaded onto 15%
SDS-PAGE gels and run at 150 V using standard technique. Gels were blotted using CAPS
buffer [10 mM 3-(cyclohexylamino)-1-propanesulfonic acid (pH 11.0); 10% methanol] to
0.45 μm polyvinylidene difluoride (PVDF) membrane using a Bio-Rad transfer cell at 100 v for
1 h at 4°C. Antibodies were used at the following dilutions: K36 (anti-PilE peptide) 1:50,000,
IE8G8 (anti-PilE monocolonal Ab) 1:1,000 and 1:500, Peroxidase-conjugated AffinPure Gt α-
Rabbit IgG (Jackson ImmunoResearch) 1:10,000. Western blots were developed using the
Enhanced Chemiluminescence (ECL) Kit (GE Healthcare) following manufacturer’s
instructions.

Pilus filament purification
Purification of Tfp was performed based on previously described methods [18]. Bacteria were
grown as lawns on GCB plates for 20 hours. Bacteria from 30 plates were suspended in 20 ml
of 0.15 M ethanolamine pH 10.5 and pili were sheered for 30 seconds in a blender at high
speed. Bacterial cells were pelleted by centrifugation at 17,000g, 4°C for 15 minutes. The super-
natant containing the pilus filaments was precipitated with one tenth volume of ammonium
sulfate saturated 0.15 M ethanolamine on ice for 30 minutes. Pili were pelleted by centrifuga-
tion at 17,000g, 4°C for 15 minutes. Supernatants were discarded and pellets were twice washed
in 10 ml 0.05 M Tris buffered saline followed by centrifugation at 17,000g, 4°C for 15 minutes.
Pili were solubilized in 100 μl PBS.

Transmission electron microscopy
Strains were plated on GCB solid media for isolated colonies and grown for 18 hrs. 300-mesh
nickel grids with carbon support films (Ladd Research) were touched to medium density colo-
nies to pick up bacterial cells, fixed for 10 min in PBS, 4% PFA and 0.2% gluteraldehyde;
washed 5X in sterile water for 5 min each; and negatively stained with 1–3% uranyl acetate for
at least 1 min prior to imaging. Immuno-gold labeled samples were fixed for 10 min in PBS,
4% PFA and 0.2% gluteraldehyde; washed 3X in PBS, 1% bovine serum albumin (BSA);
blocked for 30 min in PBS, 5% BSA and 0.1% gelatin; incubated with rabbit polyclonal anti-
Ntd antibody (1:500 dilution); washed 3X in PBS, 1% BSA; blocked for 30 min in PBS, 5% BSA
and 0.1% gelatin; incubated with 12nm Colloidal Gold-AffiniPure Goat Anti-Rabbit IgG (Jack-
son ImmunoResearch) (1:50 dilution); washed 5X in sterile water for 5 min each; and nega-
tively stained with 1% uranyl acetate for at least 1 min prior to imaging. All imaging was done
on a FEI Tecnai Spirit G2 120-kV at Northwestern’s Center for Advanced Microscopy.

ELISA
Whole-cell ELISAs were carried out as described [55] with slight modifications. Strains were
grown on GCB solid media as lawns for 20 hrs. Cells were swabbed into four ml PBS and
diluted to an OD550 of 0.2. 2X serial dilution were used to inoculate a 96-well flat bottomed
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plate (Sarstedt) with 100 ul of culture per well with six repeats per condition. The plate was
spun down at 3,220 x g for 10 min and the 75 ul of supernatant was removed. The remaining
liquid was allowed to dry at 50°C until all liquid evaporated and the cells were fixed for 10 min
at RT in 100 ul PBS, 4% PFA. The wells were washed 3X with PBS, and blocked for 10 min in
1% BSA in PBS 0.1% tween. Blocking solution was removed and 50 ul rabbit polyclonal anti-
Ntd antibody (1:4,000 dilution in blocking solution) was added for 1 hr. Primary antibody was
removed and wells were washed 3X with PBS and 50 ul peroxidase-conjugated AffinPure Gt α-
Rabbit IgG (Jackson ImmunoResearch) (1:1,000 dilution in blocking solution) was added for 1
hr. Secondary antibody was removed and the wells were washed 3X in PBS. Assay was devel-
oped using 100 ul 3,3',5,5'-tetramethylbenzidine (TMB) substrate (10mg/ml TMB in DMSO
diluted 1:100 in .01% hydrogen peroxide, citrate acetate buffer pH 6.0,) for 10 minutes and
stopped by addition of 25 ul of 2M sulfuric acid as stop solution. Absorbance was measured
450nm with corrective absorbance at 570nm. Results are the average absorbance of four serial
dilutions and three independent experiments.

qRT-PCR
pilE transcript levels were determined by quantitative RT-PCR in strains grown in liquid cul-
ture, and total RNA was isolated and cDNA was amplified as previously described [56]. Rela-
tive transcript abundance of pilE was determined using the comparative Ct method [57] with
the omp3 transcript serving as the internal control using primers KP170 and KP171 (pilE), and
KP182 and KP183 (omp3).

Supporting Information
S1 Fig. Single nucleotide mutations in pilE that result in a P- phenotype. A. Picture of the
PilE pilin structure Protein Data Bank accession no. 2HI2 [45]. B. Gene map of pilE showing
the regions of sequence conservation (grey) and variation (white) with the screened region
boxed in light red. Triangle labeled CmR indicates location of linked chloramphenicol resis-
tance cassette used to select for transformants. C. Graph depicting the location of mutations
isolated in the screen that result in a P- phenotype. The x-axis depicts the amino acid residues
corresponding to the pilE sequence with each residue divided into the 3 segments representing
the coding nucleotides. Amino acids in red lettering resulted in a P- phenotype when mutated.
The y-axis depicts the number of times a mutated residue was isolated.
(TIF)

S2 Fig. Characterization of Piliation of PilE mutants. A. PilE western blot of pilus filament
purification using monoclonal anti-PilE MAb IE8G8 at a 1:1,000 dilution. Pili were purified
from the parental strain (CmR), ΔpilE, and pilEmutants in both a WT and ΔpilT strain back-
ground using an equal number of bacteria per strain. B. Representative electron micrographs
of indicated strains in both a WT and ΔpilT strain background. X = nonsense mutation,
CmR = CmR parental strain with 1-81-S2 pilE variant.
(TIF)

S3 Fig. Analysis of Piliation in Ntd expressing strain. A.Quantification of pilus filament for-
mation of strains using whole cell ELISA with a polyclonal, anti-Ntd antibody at 1:4,000 dilu-
tion. The Abs450 is plotted relative to the signal in the WT strain. n.s.–not significant indicated
by Student’s T-test calculated p value above 0.05. B. Representative Immuno-gold TEM images
of negatively stained N. gonorrhoeae strains with labeling of pilus filaments using a polyclonal,
anti-Ntd antibody at 1:500 dilution. X = nonsense mutation.
(TIF)
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S4 Fig. Pilin production by S-pilin mutant strains: PilE western blots of whole cell lysates
(A.) and concentrated cell supernatants (B.) of parental strain (CmR), ΔpilEmutant, pilE
L38L39A40-AAM S-pilin cleavage mutant, a strain with P. aeruginosa PilA sequence at residues
37–43, and the S-pilin control mutation S45A46V47-TMA. Upper band is full-length pilin.
Lower band is the processed S-pilin form. Western blot analysis performed using monoclonal
anti-PilE MAb IE8G8 at a 1:500 dilution.
(TIF)

S5 Fig. Complementation of ΔpilE strain with the Ntd. A. Relative mRNA levels of pilE in
the presence or absence of ATC as measured by quantitative RT-PCR. B. Transformation effi-
ciencies of ΔpilE complementation strains in the presence of ATC. Strains ΔpilE iga::pilE and
ΔpilE iga::pilENtd have an ATC inducible copy of pilE or the Ntd (PilE L39X) respectively
inserted at the iga locus. X = nonsense mutation, CmR = CmR parental strain, -DNA = no
transforming DNA added to reaction, �p<0.05, ��p<0.001 Student’s T-test.
(TIF)

S6 Fig. Chloramphenicol resistance cassette inserted downstream of pilE decreases Pilin
expression. A. Relative mRNA levels of pilE as measured by quantitative RT-PCR. Strains
CmR, E35X, K44X, K98X, and C150S contain a CmR. B. Transformation efficiencies of strains
either with or without the CmR downstream of pilE. X = nonsense mutation,
ND = transformants not detected, �p<0.05 Student’s T-test.
(TIF)

S1 Table. Phenotypic characterization of P- isolates. alocation of mutation in pilE resulting in
a P- colony morphology. bresultant amino acid change. Red shading indicates a nonsense
mutation. Yellow shading indicates a cysteine mutant. cTransformation competence relative to
the WT strain (++++) and the non-competent ΔpilE strain. dPilin protein levels relative to the
WT strain (++) and the ΔpilE strain (-). eS-pilin protein levels relative to the WT strain (++)
and the ΔpilE strain (-). fPilus related colony morphology relative to WT (++) and the ΔpilE
strain (—).
(DOCX)

S2 Table. Primers used in this study.
(DOCX)
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