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Abstract: A series of chelated dehydroacetic acid–imine-based ligands L1H~L4H was synthesized by
reacting dehydroacetic acid with 2-t-butylaniline, (S)-1-phenyl-ethylamine, 4-methoxylbenzylamine,
and 2-(aminoethyl)pyridine, respectively, in moderate yields. Ligands L1H~L4H reacted with
AlMe3 in toluene to afford corresponding compounds AlMe2L1 (1), AlMe2L2 (2), AlMe2L3 (3), and
AlMe2L4 (4). All the ligands and aluminum compounds were characterized by IR spectra, 1H and 13C
NMR spectroscopy. Additionally, the ligands L1H~L4H and corresponding aluminum derivatives 1,
3, and 4 were characterized by single-crystal X-ray diffractometry. The catalytic activities using these
aluminum compounds as catalysts for the ε-caprolactone ring-opening polymerization (ROP) and
styrene oxide-CO2 coupling reactions were studied. The results show that increases in the reaction
temperature and selective solvent intensify the conversions of ε-caprolactone to polycaprolactone.
Regarding the coupling reactions of styrene oxide and CO2, the conversion rate is over 90% for a
period of 12 h at 90 ◦C. This strategy dispenses the origination of cyclic styrene carbonates, which is
an appealing concern because of the transformation of CO2 into an inexpensive, renewable and easy
excess carbon feedstock.

Keywords: aluminum; chelated dehydroacetic acid–imine ligands; ring-opening polymerization;
styrene oxide-CO2 coupling reactions; ε-caprolactone

1. Introduction

Many issues regarding the environmental situation have increased the attention being
paid to it among the scientific community. Among these issues, pollution is an important
problem nowadays due to the extent of human activities and products, and caused the
deaths of over 9 million people in 2015 [1]. Different types of pollution, including air
pollution, plastic pollution, metal waste pollution, etc., have attracted a lot of attention.
Many chemists are also trying to address these issues, and many strategies have been
developed as solutions to solve these problems. Among these issues, we are particularly
interested in synthesizing poly ε-caprolactone and cyclic carbonate. Poly ε-caprolactone
(PCL), a bio-degradable and bio-compatible polymer, has been used in many applications,
such as drug delivery systems, tissue engineering, etc., and is considered to be a substi-
tute for fossil-based plastics [2–4]. Ring-opening polymerization of ε-caprolactone using
metal catalysts is considering to be an efficient method. Many metal catalysts have been
studied and developed for catalyzing ε-caprolactone ring-opening polymerization [5–7].
Cyclic carbonates have low toxicity and low vapor pressure, and are used as precursors
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for polymers, acyclic carbonates, reagents, solvents, diluents, etc. The methods for syn-
thesizing cyclic carbonates include epoxide–CO2 or urea–polyol coupling reactions [8–12].
Catalysts used for the coupling reactions have been reviewed in many papers in recent
years [13–18]. With respect to the homogeneous catalysts for the ring-opening polymer-
ization of ε-caprolactone [19–22] and epoxide–CO2 coupling reactions [23,24], common
features of these catalysts include both of them being classified as Lewis acid metal com-
plexes bearing varieties of organic ligands. Their reaction mechanisms are shown in
Scheme 1, where Scheme 1A presents the ring-opening polymerization of a cyclic ester and
Scheme 1B presents the catalytic cycles of epoxide–CO2 coupling reactions.
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Scheme 1. (A) The catalytic reactions of ring-opening polymerization of a cyclic ester; (B) the catalytic
cycles of epoxide–CO2 coupling.

We have been involved in organometallic chemistry, which includes the synthesis,
characterization and reactivity study of main and transition metal complexes and their
catalytic activity toward cyclic esters ring-opening polymerization, for the past twenty
years [25–27]. It is known that even minor changes of the ligands on metal complexes
can have large effects on their catalytic activities. Here, we have selected bi- or tri-dentate
dehydroacetic acid–imine ligands due to their excellent chelating capacity in modern coor-
dination chemistry, especially for group 3A metals. These types of ligands are considered
to be distinctly interesting and desirable materials owing to their unusual characteristics,
which notably include resource-rich structures, easy synthetic procedures, and diverse
chemical applications. Herein, we selected these ligands to determine their catalytic ac-
tivity with respect to CO2 coupling reactions and ring-opening polymerization. Thus, we
report the synthesis and characterization of a series of aluminum compounds containing
bi- or tri-dentate dehydroacetic acid–imine ligands and their corresponding application in
epoxide–CO2 coupling reactions and the ring-opening polymerization of ε-caprolactone.

2. Results and Discussion

2.1. Synthesis and Characterization of L1H~L4H and Compounds 1–4

A series of bidentate and tridentate dehydroacetic acid–imine ligands were obtained
from the reactions of dehydroacetic acid and amines in ethanol via imine condensa-
tion [28] with a small amount of formic acid as catalyst. Refluxing dehydroacetic acid
with one equivalent of primary amine such as 2-t-butylaniline, (S)-1-phenyl-ethylamine,
4-methoxylbenzylamine, and 2-(aminoethyl)pyridine in ethanol generated L1H~L4H, re-
spectively (Scheme 2). All the ligands were purified via recrystallization and were obtained
in moderate yields. The NMR spectra of L1H~L4H are relatively similar, all showing
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characteristic methine fragments of the dehydroacetic acid rings at δ 5.75~5.63 ppm for the
1H NMR signals and ca. δ 107 ppm for the 13C{1H} NMR signals. The ligands L1H and
L2H have bulkier substituents adjacent to the imine nitrogen atoms and provide the metal
center better protection after insertion of the ligands. In contrast, ligands L3H and L4H
have benzyl or picolyl fragments on the imine nitrogen atoms, respectively resulting in less
steric protection or the provision of additional coordinating sites to the metal atoms of the
corresponding metal complexes.
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Reactions of one equivalent of AlMe3 with L1H~L4H in toluene at room temperature
give corresponding aluminum compounds AlMe2L1 (1), AlMe2L2 (2), AlMe2L3(3), and
AlMe2L4 (4), respectively, in 65~86% yields. The methine fragments of the pyrone rings of
compounds 1–4 show one singlet at ca. δ 5.42~5.69 ppm for the 1H NMR resonances and
one peak at ca. δ 105.0~106.0 ppm for the 13C{1H} NMR spectra. Interestingly, we noticed
that the methyl groups of the AlMe2 fragment appear as two singlets for compounds 1
and 2, whereas only one singlet is observed for compounds 3 and 4. Presumably, the
steric hindrance of substituted imine fragments plays an important role for the stereo-
geometries of compounds 1~4. The varible temperature 1H NMR spectra of compounds
1~4 were measured in the range of 243 K to 333 K in d8-toluene using a 300 MHz NMR
spectrometer. The results indicate that the C-N bond rotation energy barrier is correlated
with the R groups of the imine substituents, as shown in Figure 1, where the larger R group
is responsible for a higher rotation energy barrier.

Consequently, compounds 1 and 2 have large R groups along with higher C-N bond
rotation energy barrier emerging the two methyl NMR signals of AlMe2 at room tempera-
ture. After increasing the temperature to 60 ◦C, compound 2 reveals two well-separated
AlMe2 resonances, whereas 1 exhibits only one signal at ca. 55 ◦C. The C-N bond rota-
tion energy barriers are estimated at ca. 71.2 and 68.3 kJ/mol for compounds 1 and 2,
respectively [29,30]. On the other hand, the lower C-N steric congestions of compounds 3
and 4 display only one methyl resonance even at −30 ◦C, reflecting the low C-N rotation
energy barrier.
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Figure 1. A schematic drawing of the aluminum compounds 1–4 showing the steric hindrance of the
Al-Me groups with the imine substituents, * denoted chiral center.

The FTIR spectra of all of the ligands and the corresponding metal complexes were
performed in the region 4000–400 cm−1. The free ligands show three strong bands in the
1710–1740, 1680–1690 and 1570–1590 cm−1 regions, which were attributed to the ν(C=O) of
lactone, the ν(C=O) of the pyran ring, and the ν(C=N) stretching frequencies, respectively.
These data support the imine ketone resonance form of the ligand. The intense peaks
at 1150–1160 cm−1 were attributed to the stretching vibration of ν(C-O-C) of the lactone
ring, whereas the sharp band at 3060 cm−1 corresponds to the aromatic ν(=CH) stretching
vibration. A weak broad band emerges in the 2700–3000 cm−1 regions, and might be due to
the presence of intramolecular hydrogen bonding in L2H, correlated with its high boiling
point of 130 ◦C. Conversely, no such significant broad bands are perceived in the other
three ligands. In all complexes, the ν(C=O) bands increased to 1750 cm−1, and ν(C=N)
decreased to 1560 cm−1, which were attributed to the fact that the ligands were coordinated
to the Al metal.

2.2. Molecular Structures of Compounds L1H~L4H, 1, 3, and 4

Single crystals of L1H~L4H suitable for X-ray diffraction were grown from saturated
heptane at −20 ◦C. The molecular structures of L1H~L4H are shown in Figures S1–S4. A
summary of the data collection process, along with the refinement parameters and selective
bond lengths and angles, is provided in Tables S1 and S2, respectively. It is known that
dehydroacetic acid and its related imine derivatives exist in enol imine, enamine ketone,
and imine ketone tautomeric forms [31–33], as shown in Scheme 3.
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The corresponding bond lengths for L1H~L4H, are relatively similar to those described
in the literature [34–37]. However, after analyzing the corresponding bond lengths of
L1H~L4H, we conclude that these ligands in solid state most likely belong to the imine
ketone form with a small percentage of enamine ketone (Scheme 4).
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The crystals of 1, 3, and 4 were grown from saturated THF solution at −20 ◦C; the data
collection processes and selective bond lengths and angles are listed in Tables S1 and S2,
respectively. The molecular structures of 1, 3, and 4 are depicted in Figures 2–4. The
single-crystal X-ray structure reveals that the central Al atom of compounds 1 and 3 is
tetragonally surrounded by the corresponding bidentate N, O-dehydroacetic acid–imine
ligands and two methyl groups; thus, it exhibits a slightly distorted tetrahedral geometry.
The biting angles for the bidentate N, O-dehydroacetic acid–imine ligands with aluminum
atoms of compounds 1 and 3 are at 91.63(5) and 92.88(7)◦, respectively. The bond lengths of
Al-CMe, Al-N, and Al-O for compounds 1 and 3 are relatively similar, at ca. 1.95, 1.94, and
1.80 Å, respectively.
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The unit cell of compound 4 contains one Al-assisted molecular unit and two THF
molecules. The molecular geometry of 4 possesses a distorted trigonal bipyramidal en-
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vironment, where the dehydroacetic acid–imine ligand, L4, coordinates to the aluminum
atom with the O(1) and N(2) at axial positions and the bond angle of O(1)-Al(1)-N(2) is
at 163.45(5)◦. The N(1) and two methyl carbon atoms occupy the equatorial positions,
forming a trigonal plane where the total bond angle for C(1)-Al(1)-N(1), C(2)-Al(1)-N(1),
and C(1)-Al(1)-C(2) is 359.3◦. The bond lengths of Al(1)-Me, Al(1)-N(1), and Al(1)-O(1)
for compound 4 are at ca. 1.99, 1.99, and 1.90 Å, respectively, which are slightly longer
than those of the corresponding bond lengths of compounds 1 and 3. Presumably, the
pyridine coordinated aluminum atom of 4 enriches the electron density surrounding the
metal and results in a lower electron withdrawing capacity from the surrounded methyl
and dehydroacetic acid–imine ligands. The dehydroacetic acid–imine ligands L1, L3, and
L4 coordinate to the Al atom via N, O donor atoms to form the six-membered chelate ring.
The O(1)-C(3) and C(3)-C(8) bond lengths for compounds 1, 3, and 4 are longer than their
corresponding double bond disposition, which can be considered to possess a resonance
ketene character. The bond lengths of C(8)-C(9) and C(9)-N(1) are in good agreement
with the typical C-C single bond and C-N double bond characteristics. Therefore, the
dehydroacetic acid–imine ligands L1, L3, and L4 in compounds 1, 3, 4 can represent the
η3-ketene imine conformation, as shown in Scheme 5. Similar bonding modes have been
reported in the previous literature [38–41].
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2.3. The Structure Resonance Forms of Ligands and Complexes in Solution

The solid-state structures of L1H~L4H evidence the ketone–imine arrangement,
whereas the molecular structures of 1, 3, and 4 exhibit a ketene–imine conformation. Re-
garding the resonance forms for ligands L1H~L4H, as shown in Scheme 4, the structures in
solid state are dominated by the imine ketone form, in accordance with the corresponding
bond lengths. However, the resonance form may shift in solution states. The enamine
ketone and enol imine forms were expected to possess a sp2 methine proton on the pyrone
ring, and the imine ketone form should have one sp2 and one sp3 methine proton on the
pyrone ring. The 1H-13C 2D HSQC NMR spectra of L1H~L4H show only the sp2 methine
carbon and the proton cross peak; no sp3 methine proton peak was apprehended. Pre-
sumably, the ligands L1H~L4H in solution are influenced by the enamine ketone and enol
imine dispositions.

The solid-state geometries of 1, 3, 4 are denoted as having an η3-ketene imine form, in
accordance with their corresponding bond lengths, as shown in Scheme 5.

However, η5-keto-ene imine, ketonene amide, and keto imine forms are other probable
resonance forms that may exist in the metal complexes. The 1H-13C 2D-NMR spectra of
complexes 1~4 do not conclude the differentiation of these conformations. Therefore, we
performed the DFT B3LYP theoretical calculation [42,43] to determine the possible binding



Molecules 2022, 27, 164 8 of 15

modes of compounds 1~4 in solid state as well as in THF solution. The bond-length
comparisons of the theoretical calculations in solid state and in THF for compounds 1~4
are elucidated in Scheme 6. The theoretical data suggests that the aluminum atom binds to
dehydroacetic acid–imine ligand more prominently, with a η3-ketene imine form in solid
state and in THF for compounds 1~4.
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2.4. Catalytic Ring-Opening Polymerization of ε-Caprolactone and Coupling Reactions of Styrene
Oxide with CO2

Compounds 1–4 were employed as initiators for the ring-opening polymerization of
ε-caprolactone and as catalysts for the coupling reactions of styrene oxide with CO2, as
shown in Scheme 7. Regarding the polymerization of ε-caprolactone, first, we selected
compound 4 as the initiator for optimizing the solvent, reaction time, and temperature; the
results are shown in Table 1.
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Scheme 7. Aluminum compounds 1–4 as catalysts for CO2–epoxide coupling reactions and ring-
opening polymerization of ε-caprolactone.

Entries 1–3 show that the polymerization reaction of ε-caprolactone in toluene at
30 ◦C has an effective and controlled conversion rate in comparison with THF and DCM.
Therefore, toluene was selected as an appropriate solvent for exploring the ROP catalysts.
All the conversions were determined on the basis of integration of methylene protons at
δ 4.24 ppm and 4.06 ppm from the 1H NMR spectra, as depicted in Figure S5. The poly
ε-caprolactones were obtained by adding hexane to the reaction medium. The polymers
were analyzed on the basis of 1H NMR spectra and gel permeation chromatography (GPC).
As shown in entry 10, Table 1, the optimal conditions for the ring-opening polymerization
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of ε-caprolactone are the simultaneous addition of toluene as solvent and benzyl alcohol
(BnOH) as co-catalyst at 80 ◦C for 1 h. These results are in agreement with reports in
both the existing literature [44,45] and our previously published papers [46,47] that metal
alkoxides are better initiators then metal alkyls for the ring-opening polymerization of
cyclic esters. According to the practical data given in Table 2, compounds 1~4 all manifest
promising activities for the ring-opening polymerization of ε-caprolactone at 80 ◦C and 1 h
reaction time, with a conversion rate of ca. 99%. The PDI values for poly ε-caprolactone
put through compounds 1–4 as initiators vary from 1.14 to 2.10. Two major factors might
be accountable for broadening the PDI parameters: (i) possible intra- and inter-molecular
transfer esterification; and (ii) the near homogeneity of the solution due to the large equiva-
lents of monomer and the small amount of reacting solvent. These data are comparable to
previous results [48], where Zn complexes were implemented as efficient initiators for the
ROP of lactide, and the heterogeneous systems appeared to perform PLA with higher Mn.

Table 1. Ring-opening polymerization of ε-CL using compound 4 as initiator a in different solvents.

Entry Solvent Time (h) Temp (C) BnOH b Conv. c (%)

1 THF 24 30 - 7.4
2 DCM 24 30 - 3.8
3 toluene 24 30 - 12.6
4 toluene 1 30 - NR
5 toluene 1 80 - 15
6 toluene 3 80 - 47
7 toluene 6 80 - 56
8 toluene 1 30 1 NR
9 toluene 1 60 1 66
10 toluene 1 80 1 99

a Reaction condition: 0.05 mmol of catalyst; [M]/[I] = 50; solvent = 2.5 mL. b [BnOH] = 0.1 M. c Monomer
conversion as determined by 1H NMR spectra.

Table 2. Ring-opening polymerization of ε-CL using compounds 1–4 as initiator a.

Entry Initiator [M]/[I] Mn, exp. b (g/mol) Mn, theo. (g/mol) Mw PDI Conv. c (%)

1 1 50/1 5900 5700 12,000 1.14 99
2 1 100/1 14,800 11,300 45,600 1.51 99
3 1 150/1 16,900 16,900 44,300 1.67 99
4 1 200/1 27,900 22,600 78,700 1.56 99
5 1 250/1 28,200 25,700 66,800 1.34 90

6 2 50/1 6200 5700 13,100 1.19 99
7 2 100/1 9700 10,800 22,200 1.28 95
8 2 150/1 6600 14,700 21,300 1.79 86
9 2 200/1 27,200 22,600 75,000 1.54 99

10 2 250/1 26,100 28,000 98,000 2.10 99

11 3 50/1 7600 5700 16,400 1.20 99
12 3 100/1 10,800 11,300 31,800 1.65 99
13 3 150/1 15,200 16,900 48,900 1.80 99
14 3 200/1 17,200 21,700 44,700 1.39 95
15 3 250/1 17,900 28,300 47,300 1.54 99

16 4 50/1 7500 5700 20,000 1.48 98
17 4 100/1 8000 11,000 19,900 1.38 97
18 4 150/1 13,000 11,300 33,900 1.46 99
19 4 200/1 14,800 16,900 39,500 1.48 95
20 4 250/1 21,500 28,300 69,200 1.75 99

a Reaction conditions: 0.05 mmol of catalyst, solvent = 2.5 mL, [BnOH] = 0.1 M, 80 ◦C, 1 h, b Obtained from GPC
analysis using a column calibrated by polystyrene standard, multiplied by a correcting factor of 0.56. c Monomer
conversion as determined by 1H NMR spectra.
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Compounds 1~4 were implemented as catalysts for the synthesis of cyclic styrene
carbonates via the coupling reaction of styrene oxide and CO2 by varying the reaction
time and using TBAI as co-catalyst (Scheme 7) [49–52]. The CO2 pressure was set at a little
bit higher than 1 atm by using CO2 balloons, and reaction temperatures were set at 90
◦C. The conversions of styrene oxides to styrene carbonates were determined by 1H NMR
spectra to calculate the corresponding proton signal ratio of Hc vs. (Hf + Hc), as shown in
Figure S6. The impact of the catalysts coupled with the ligands, temperature and reaction
time was inspected during the coupling reaction. The results outlined in Table 3 reveal that
each of the compounds 1–4 possesses efficient catalytic activity towards styrene oxide and
CO2 coupling reaction with long time durations, thus achieving over 90% conversion after
12 h at 90 ◦C. This result is comparable with a recent study [53] in which the tetranuclear
Zn(II) complex with polyhedral oligomeric silsesquioxane was used as a catalyst for the
synthesis of cyclic carbonates from epoxide and CO2. High yields of cyclic carbonates were
achieved for terminal epoxides under mild conditions. By comparing the conversions of
the CO2/styrene oxide coupling reaction using catalysts 1–4 at 90 ◦C for 6 h, the catalytic
activity was in the order 1 > 4 > 3 > 2. These results indicate that the steric hindrance of
these complexes does not play an important role in the catalytic activity. The electronic
effects have important impacts on the catalytic activity of catalysts 1–4. In addition, entries
1, 4, 7 and 10 of Table 3 show low conversions of CO2/styrene oxide coupling reaction at
90 ◦C for 3 h, indicating that the catalytic reactions required an induction period for all of
the catalysts [54].

Table 3. Styrene oxide and CO2 coupling reactions using compounds 1~4 as catalysts a.

Entry Catalyst Temp. (◦C) Time (h) Conv.% b

1 1 90 3 2.9
2 1 90 6 42
3 1 90 12 85

4 2 90 3 4.7
5 2 90 6 11
6 2 90 12 91

7 3 90 3 2.8
8 3 90 6 23
9 3 90 12 95
10 4 90 3 5.9

11 4 90 6 31

12 4 90 12 93
a Reaction conditions: [cat.]/[styrene oxide] = 1/50, CO2 1 bar, reaction temperature 90 ◦C, TBAI = 1 eq. TBAI.
b Conversion determined by 1H NMR spectra.

3. Conclusions

In conclusion, we synthesized a series of dehydroacetic acid–imine ligands L1H~L4H
and their corresponding aluminum compounds 1–4. All the ligands and aluminum deriva-
tives were characterized by means of 1H and 13C{1H} NMR spectra along with single-crystal
X-ray diffractometry. The six-membered ring Al derivatives, 1–4, were distinctly beneficial,
with competent propagation activity towards the ROP of ε-caprolactones as well as predom-
inant towards the coupling reactions of styrene oxides with CO2. In future research, further
optimization of the polymerization kinetics, more controlled effect of the new catalysts, and
mechanistic study of epoxide/CO2 copolymerization will be proposed and investigated.

4. Experimental Section
4.1. Physical Experiments and Reagents

All the reactions were performed using standard Schlenk techniques in nitrogen
atmosphere or in glove box. Toluene and diethyl ether were dried over Na/benzophenone
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ketyl and distilled prior to use. CH2Cl2 was dried over P2O5 and distilled. L1H~L4H
were synthesized according to the published literature. 11 CDCl3 was degassed using
freeze-and-thaw cycles and dried over 4Å molecular sieves. 1H and 13C NMR spectra were
recorded on a Bruker Avance 300 spectrometer. Chemical shifts for 1H and 13C{1H} spectra
were recorded in ppm relative to the residual protons and 13C{1H} of CDCl3 (δ 7.24, 77.0
ppm) and C6D6 (δ 7.15, 128.0 ppm). Elemental analyses were performed on a Heraeus
CHN-OS Rapid Elemental Analyzer at the Instrument Center, NCHU. Due to high moisture
sensitivity and rapid decomposition, the elemental analyses of some metal complexes were
not in the error range.

4.2. Synthesis of Ligands L1H~L4H and Complexes 1~4

Synthesis of L1H. A 250 mL round bottom flask was charged with 3.00 g (17.8 mmol)
of dehydroacetic acid, 2.65 g of 2-tbutylaniline (17.8 mmol), and 150 mL of methanol. A
few drops of formic acid were added as catalyst. The solution was refluxed for 16 h and
then the volatiles were removed under vacuum. The resulting solid was recrystallized with
heptane to give white crystals of L1H in 74% (4.18 g). 1H NMR (δ, CDCl3): 7.48 (m, 1H,
phenyl CH), 7.29 (m, 2H, phenyl CH), 6.93 (s, 1H, phenyl CH), 5.75 (s, 1H, =CH), 2.45 (s,
3H, Me), 2.13 (s, 3H, Me), 1.32 (s, 9H, Me). 13C NMR (δ, CDCl3): 184.9, 175.9, 163.5, 145.6,
135.0, 128.9, 128.7, 127.6, 127.1, 107.2, 97.3, 58.3 (solvent DCM), 35.0, 30.6, 21.1, 20.0, 18.4.
Anal. Cacld. for C18H21NO3 (299.36): C, 72.22; H, 7.07; N, 4.68. Found: C, 71.15; H, 7.57; N,
4.42%. m.p. (melting point): 107 ◦C. MS (EI, M+): 299.

Synthesis of L2H. A similar procedure to that for synthesizing L1H was adopted.
Dehydroacetic acid (3.00 g, 17.8 mmol), (S)-(-)-1-phenylethylamine (2.15 g, 17.8 mmol),
and 150 mL of methanol were used and 4.86 g of solids was obtained (80%). 1H NMR (δ,
CDCl3): 7.31 (m, 5H, phenyl CH), 5.68 (s, 1H, =CH), 4.96 (q, 1H, CH), 2.51 (s, 3H, Me), 2.10
(d, 4JHH = 2 Hz, 3H, Me), 1.65 (d, 3JHH = 7 Hz, 3H, Me). 13C NMR (δ, CDCl3): 184.8, 175.5,
163.7, 162.7, 141.6, 129.2, 127.9, 125.6, 107.3, 96.7, 54.4, 24.0, 19.7, 18.7. Anal. Cacld. for
C16H17NO3 (271.31): C, 70.83; H, 6.32; N, 5.16. Found: C, 70.80; H, 6.59; N, 5.12%. m.p.
(melting point): 130 ◦C. MS (EI, M+): 271.

Synthesis of L3H. A similar procedure to that for synthesizing L1H was adopted.
Dehydroacetic acid (3.00 g, 17.8 mmol), 4-methoxybenzylamine (2.44 g, 17.8 mmol), and 150
mL of methanol were used and 4.26 g of solids was obtained (83%). 1H NMR (δ, CDCl3):
7.17 (m, 2H, phenyl CH), 6.86 (m, 2H, phenyl CH), 5.63 (d, 4JHH = 2 Hz, 1H, =CH), 4.56 (d,
2H, CH2), 3.75 (s, 3H, OMe), 2.63 (s, 3H, Me), 2.07 (d, 4JHH = 2 Hz, 3H, Me). 13C NMR (δ,
CDCl3): 184.6, 176.0, 163.7, 162.7, 159.4, 129.6, 126.9, 114.5, 107.3, 96.7, 55.2, 47.4, 19.7, 18.3.
Anal. Cacld. for C16H17NO4 (287.31): C, 66.89; H, 5.96; N, 4.88. Found: C, 66.95; H, 5.90; N,
4.78%. m.p. (melting point): 109 ◦C. MS (EI, M+): 287.

Synthesis of L4H. A similar procedure to that for synthesizing L1H was adopted.
Dehydroacetic acid (3.00 g, 17.8 mmol), 2-(aminomethyl)pyridine (1.92 g, 17.8 mmol), and
150 mL of methanol were used and 2.02 g of solids was obtained (47%). 1H NMR (δ, CDCl3):
8.59 (m, 1H, pyridine CH), 7.67 (m, 1H, pyridine CH), 7.22 (m, 2H, pyridine CH), 5.65 (s,
1H, =CH), 4.78 (d, 2H, CH2), 2.66 (s, 3H, Me), 2.07 (s, 3H, Me). 13C NMR (δ, CDCl3): 184.6,
176.4, 163.7, 162.7, 154.3, 149.8, 137.1, 122.9, 121.3, 107.3, 96.9, 49.2, 19.7, 18.6. Anal. Cacld.
for C14H14N2O3 (258.27): C, 65.11; H, 5.46; N, 10.85. Found: C, 65.07; H, 5.36; N, 10.85%.
m.p. (melting point): 118 ◦C. MS (EI, M+): 258.

Synthesis of compound AlMe2L1 (1). To a toluene (15 mL) solution of compound
L1H (1.00 g, 2.8 mmol) in a Schlenk flask, AlMe3 was added in toluene (2M in toluene,
1.40 mL, 2.8 mmol) dropwise at 0 ◦C. The solution was stirred at room temperature for
3 h and volatiles were removed under vacuum to yield orange solid. The product was
recrystallized from a saturated THF solution at −20 ◦C to give 0.86 g of pale orange crystals
(86% yield). 1H NMR (C6D6): 7.23 (m, 1H, phenyl CH), 6.89 (m, 2H, phenyl CH), 6.58 (m,
1H, phenyl CH), 5.43 (s, 1H, =CH), 2.35 (s, 3H, Me), 1.38 (s, 3H, Me), 1.19 (s, 9H, Me), −0.36
(s, 3H, Me), −0.40 (s, 3H, Me). 13C NMR (C6D6): 179.6, 179.5, 166.8, 162.3, 142.3, 140.7, 131.1,
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128.3, 127.5, 126.1, 105.4, 101.3, 36.4, 32.7, 24.3, 19.3, −10.0. Due to air sensitivity of the
complex, the error range of the elemental analysis data was a little bit higher than expected.

Synthesis of compound AlMe2L2 (2). Similar procedure to that for synthesizing
AlMe2L1 (1) was adopted. Ligand L2H (1.00 g, 3.0 mmol), AlMe3 (2M in toluene, 1.50 mL,
3.0 mmol), and toluene (15 mL) were used. The solution was stirred at room temperature
for 3 h and volatiles were removed under vacuum to give pale yellow sticky liquid 0.61 g,
yield 62%. 1H NMR (C6D6): 7.05 (m, 5H, phenyl CH), 5.47 (s, 1H, =CH), 4.59 (q, 1H, CH),
2.24 (s, 3H, Me), 1.43 (s, 3H, Me), 1.41 (s, 3H, Me), −0.39 (s, 3H, Me), −0.59 (s, 3H, Me). 13C
NMR (C6D6): 178.2, 178.1, 166.0, 162.4, 139.9, 128.9, 127.7, 127.1, 105.0, 102.5, 58.5, 21.5, 20.0,
19.2, −8.5. Due to air sensitivity of the complex, the error range of the elemental analysis
data was a little bit higher than expected.

Synthesis of compound AlMe2L3 (3). Similar procedure to that for synthesizing
AlMe2L1 (1) was adopted. Ligand L3H (1.00 g, 2.9 mmol), AlMe3 (2M in toluene, 1.50 mL,
3.0 mmol), and toluene (15 mL) were used. The solution was stirred at room temperature for
3 h and volatiles were removed under vacuum to give 0.67 g of yellowish solid (65% yield).
1H NMR (C6D6): 6.82 (m, 2H, phenyl CH), 6.67 (m, 2H, phenyl CH), 5.44 (d, 4JHH = 2 Hz,
1H, =CH), 4.22 (s, 2H, CH2), 3.25 (s, 3H, OMe), 2.25 (s, 3H, Me), 1.39 (d, 4JHH = 2 Hz, 3H,
Me), −0.39 (s, 6H, Me). 13C NMR (C6D6): 179.9, 178.3, 166.0, 162.4, 159.6, 128.5, 125.6, 114.5,
105.3, 101.9, 54.8, 51.6, 21.2, 19.3, −10.3. Anal. Cacld. for C18H22AlNO4 (343.35): C, 62.97;
H, 6.46; N, 4.08. Found: C, 62.93; H, 6.32; N, 4.00%.

Synthesis of compound AlMe2L4 (4). Similar procedure to that for synthesizing
AlMe2L1 (1) was adopted. Ligand L4H (1.00 g, 2.8 mmol), AlMe3 (2M in toluene, 1.40 mL,
2.80 mmol), and toluene (15 mL) were used. The solution was stirred at room temperature
for 3 h and volatiles were removed under vacuum to give pale pink solid. The solid
was recrystallized from a saturated THF solution at −20 ◦C to give pink crystals 0.68 g
(73% yield). 1H NMR (C6D6): 8.18 (m, 1H, pyridine CH), 6.92 (m, 1H, pyridine CH), 6.54 (m,
1H, pyridine CH), 6.27 (m, 1H, pyridine CH), 5.69 (d, 4JHH = 2 Hz, 1H, =CH), 3.86 (s, 2H,
CH2), 3.56 (m, THF), 2.20 (s, 3H, Me), 1.45 (s, 3H, Me), 1.43 (m, THF), −0.20 (s, 6H, Me). 13C
NMR (C6D6): 179.2, 179.0, 164.5, 163.4, 153.8, 144.9, 138.1, 123.2, 121.1, 106.0, 101.5, 67.8,
52.3, 25.8, 22.6, 19.4, −5.8. Anal. Cacld. for C16H19AlN2O3 (314.32): C, 61.14; H, 6.09; N,
8.91. Found: C, 60.89; H, 6.06; N, 8.57%.

4.3. Ring-Opening Polymerization of ε-Caprolactone

In a typical procedure, the initiator (0.05 mmol) was first dissolved in 2.5 mL of solvent
followed by the addition of ε-caprolactone and then stirred at specific temperature and
time to produce a gel- or solid-like polymer. The mixture was quenched with distilled
water, and the resulting solid was washed with hexane and methanol. It was dried and
gave a satisfactory yield. The molecular weight of the polymers was determined using a
gel permeation chromatography (GPC) instrument (Waters, RI 2414, pump 1515).

4.4. CO2 Coupling Reactions with Styrene Oxide

The general procedure for the coupling reaction is shown below. A Schlenk flask was
charged with 0.02 mmol of catalyst and 50 equiv. of styrene oxide. TBAI (1equiv) and CO2
balloon were used. The reaction temperature was set at 90 ◦C and the conversion was
determined by 1H NMR spectra.

4.5. X-ray Crystallography

Suitable crystals of L1H~L4H and compounds 1, 3 and 4 were attached to a fine glass
fiber and mounted on goniostat for structural refinement. Data collection was performed
at 150 K under liquid nitrogen vapor for all compounds. Data were collected on a Bruker
SMART CCD diffractometer with graphite monochromated Mo-Kα radiation. No signifi-
cant crystal decay was found. Data were corrected for absorption empirically by means of ψ
scans. All non-hydrogen atoms were refined with anisotropic displacement parameters. For
all the structures, the hydrogen atom positions were calculated, and they were constrained
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to idealized geometries and treated as riding, where the H atom displacement parameter
was calculated from the equivalent isotropic displacement parameter of the bound atom.
An absorption correction was performed with the program SADABS [55] and the structures
of both complexes were determined by direct methods procedures in SHELXS [56] and
refined by full-matrix least-squares methods, on F2’s, in SHELXL [57]. All the relevant
crystallographic data and structure refinement parameters are summarized in Table S1.

Supplementary Materials: The following are available online, Figure S1: The molecular geometry
of ligand L1H. Thermal ellipsoids are drawn at 30% probability level, Figure S2: The molecular
geometry of ligand L2H. Thermal ellipsoids are drawn at 30% probability level. Figure S3: The
molecular geometry of ligand L3H. Thermal ellipsoids are drawn at 30% probability level. Figure S4:
The molecular geometry of ligand L4H. Thermal ellipsoids are drawn at 30% probability level.
Figure S5: 1H NMR spectra of (a) ε-caprolactone (b) poly-ε-caprolactone in CDCl3 using 300 MHz
NMR spectrometer. Figure S6: The 1H NMR spectra showing the proton signals of (A) styrene oxide
and (B) mixture of styrene oxide and styrene carbonate in the range of δ 6.0~2.0. Table S1: The
summary of X-ray crystal data for L1H~L4H, 1, 3, and 4, Table S2: Selected bond lengths and angles
for L1H~L4H, 1, 3, and 4, Crystallographic data for the structures reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as supplementary publications nos.
CCDC-~2070248-2070253 (compounds L1H~L4H and compounds 1, 3 and 4). Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax:
+44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk, accessed on 23
September 2021).
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