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Abstract

Leishmaniasis remains a serious public health problem in many tropical regions of the world. Among neglected
tropical diseases, the mortality rate of leishmaniasis is second only to malaria. All currently approved therapeutics have
toxic side effects and face rapidly increasing resistance. To identify existing drugs with antileishmanial activity and
predict the mechanism of action, we designed a drug-discovery pipeline utilizing both in-silico and in-vitro methods.
First, we screened compounds from the Selleckchem Bio-Active Compound Library containing ~1622 FDA-approved
drugs and narrowed these down to 96 candidates based on data mining for possible anti-parasitic properties. Next, we
completed preliminary in-vitro testing of compounds against Leishmania amastigotes and selected the most promising
active compounds, Lansoprazole and Posaconazole. We identified possible Leishmania drug targets of Lansoprazole and
Posaconazole using several available servers. Our in-silico screen identified likely Lansoprazole targets as the closely
related calcium-transporting ATPases (LdBPK_352080.1, LdBPK_040010.1, and LdBPK_170660.1), and the Posaconazole
target as lanosterol 14-alpha-demethylase (LdBPK_111100.1). Further validation showed LdBPK_352080.1 to be the most
plausible target based on induced-fit docking followed by long (100ns) MD simulations to confirm the stability of the
docked complexes. We present a likely ion channel-based mechanism of action of Lansoprazole against Leishmania
calcium-transporting ATPases, which are essential for parasite metabolism and infectivity. The LdBPK_111100.1 inter-
action with Posaconazole is very similar to the known fungal orthologue. Herein, we present two novel anti-leishmanial
agents, Posaconazole and Lansoprazole, already approved by the FDA for different indications and propose plausible
mechanisms of action for their antileishmanial activity.
Keywords: Drug repurposing, Lansoprazole, Leishmaniasis, Molecular dynamics, Posaconazole

1. Introduction

A mong parasitic infections, leishmaniasis re-
mains a leading cause of human morbidity

and mortality in tropical regions around the world.
Leishmaniasis is endemic in over 98 countries and

affects 350 million people globally [1], inflicting
great suffering in addition to a socioeconomic
burden [2]. The disease is responsible for 57,000
deaths per year and 981,000 disability-adjusted life
years (DALYs) [2]. Leishmaniasis is caused by the
protozoan parasitic species (spp.) belonging to the
phylum Kinetoplastida of the genus Leishmania and
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is transmitted by female sandflies [3]. The disease is
divided into three clinical syndromes: visceral (VL),
cutaneous (CL), and mucocutaneous (ML) leish-
maniasis, and mainly affects populations that live in
low and middle-income countries (LMIC) [4].
Furthermore, co-infection with HIV is concerning as
observed in Brazil, India, Ethiopia, and Nigeria [5].
Liposomal amphotericin B, pentavalent antimo-

nials, and miltefosine remain the primary drugs of
choice for the management of leishmaniasis, how-
ever, the continued use of these medications is
hampered by prohibitive costs, toxicities, and long
treatment courses [8]. As steps have been taken to
prevent the rise in the prevalence and to implement
disease control measures, Leishmania spp. continue
to develop resistance against these first-line medi-
cations [9]. Producing new chemotherapeutics
would require significant cost and time, further
delaying the development of new treatments.
Therefore, new approaches are needed to identify
existing drugs for combating drug resistance. As
such, a promising approach to treating neglected
tropical diseases (NTDs) including leishmaniasis is
employing repurposed drugs [10,11]. One approach
toward repurposing involves the application of both
in-silico and in-vitro approaches. Through computer-
aided drug design (CADD) assisted screening, this
integrated approach has identified several effective
therapeutics against Leishmania [12]. By virtue of
prior FDA approval, repurposed therapeutics have
available ADME and toxicity data in humans,
thereby reducing associated time and costs.
In the current study, we discuss the tandem in-

silico and in-vitro approaches used for discovering
the repurposable drugs, Lansoprazole and Pos-
aconazole, and their efficacy against Leishmania
donovani amastigotes, the causal agents of VL. We
also propose the plausible ion channel-based
mechanism of action (MOA) of Lansoprazole tar-
geting L. donovani calcium-transporting ATPases,
and Posaconazole targeting the Lanosterol 14-a
demethylase enzyme. Through the combination of
in-silico target identification followed by in-vitro
antileishmanial testing, we conclude that Lanso-
prazole and Posaconazole can likely be repurposed
to effectively treat leishmaniasis.

2. Materials and methods

2.1. Cell line and parasite maintenance

THP-1 cells (human monocytic leukemia) were
maintained in RPMI-1640 medium (pH 7.4) sup-
plemented with 10% FBS and 1% streptomycin/
penicillin (Gibco 15140) at 37 �C in a 5% CO2

incubator. The L. donovani (DsRed2 LV82) trans-
genic line expressing DsRed2 and LUC (SwaI frag-
ment from plasmid pIR1SAT-LUC-DsRed2; strain
B5947) [13,14] was kindly provided by Dr. Abhay
Satoskar (The Wexner Medical Centre, The Ohio
State University, USA). Promastigotes were main-
tained at 25 �C, 5% CO2, in M199 media supple-
mented with 4.62 mM NaHCO3, 5 mg/L hemin, and
10% heat-inactivated FBS (Gibco) and 1% strepto-
mycin/penicillin (Gibco, 15140). Parasite density was
maintained between 1 � 106 parasites/mL and
4 � 107 parasites/mL by dilution with complete
media for less than 10 sub-culture cycles to maintain
genetic variability. Fluorescence was monitored
before each experiment to confirm the stability of
the line.

2.2. Preliminary drug screening

The Selleckchem Bio-Active Compound Library
(Catalog# Selleck_L1700, was comprised of a 4718-
member Bioactive Compound Library-I as of May,
2019 which included 1622 FDA approved com-
pounds and the rest were advanced investigational
compounds at different stages in drug development
and was subjected to curation based on known ac-
tivity against different intracellular parasites. The
sources for the data were gathered from all known
available resources including journals, patents, and
other published literature. To associate known ac-
tivity against protozoan parasites within the FDA-
approved compound library, data mining was per-
formed using text-, structure-, and activity- etc.
based queries on CHEMBL [15] and ChemSpider
servers [16]. The FDA-approved library was thus
shortlisted to 96 compounds. These compounds
were subjected to initial exploratory screening
against L. donovani amastigotes with two concen-
trations of 100 mM and 10 mM (from 10 mM stocks) in
triplicate for each compound using live-cell fluo-
rescence imaging as described in detail under the
drug susceptibility assay heading below.

2.3. Parasite infection and drug susceptibility assay

THP-1 cells at 5 � 105 cells/mL were differentiated
with 50 ng/mL of phorbol 12-myristate 13-acetate
(PMA, Sigma P1585) for 48 h at 37 �C, 5% CO2.
Differentiated THP-1 cells were mixed with 6-day-
old Leishmania promastigotes (enriched with meta-
cyclic promastigotes) at a final density of 4 � 105

THP-1/mL and 2 � 107 parasites/mL in RPMI me-
dium supplemented with 10% FBS. This homoge-
neous mixture of differentiated THP-1 cells and
parasites was seeded in 96-well clear-bottom plates
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at 50 mL/well followed by 5 days incubation at 37 �C,
5% CO2. The wells were washed 2 times with
incomplete media (RPMI-1640) and 1 time with
complete media. Eight wells (11th column in the
plate) were seeded with THP1 cells only and used as
the control for 100% compound response. Eight
wells (12th column in the plate) were seeded with
promastigotes only, which were washed away as
part of the washing step and hence were blanks. The
first columns of the plates were flooded with an
additional 50 mL complete media and 1 mL of drugs/
test compounds from a 10 mM stock (100 mM final
concentration). The media was gently mixed and
50 mL media was carried forward to an adjacent well,
therefore diluting the original concentration by half.
The same process was repeated up to the 10th well,
generating a drug concentration gradient through
serial dilution (100 mM; 50 mM; 25 mM; 12.5 mM;
6.25 mM; 3.12 mM; 1.56 mM; 0.78 mM; 0.39 mM;
0.19 mM). All the serial dilutions were carried out in
triplicates for each compound. The antileishmanial
reference drugs used were amphotericin B (Sigma,
A9528), miltefosine (Merck, 475841), and pentami-
dine isethionate salt (Sigma, P0547). The reference
drugs and tested compounds were added 24 h after
infection and incubated at 37 �C and 5% CO2 for 4
days.

2.4. High-throughput image analysis

Following incubation with drug compounds, cells
were washed twice to remove non-adherent cells
and preincubated in the incubation/imaging cham-
ber for imaging on the ImageXpress Pico Automated
Cell Imaging System (#IX Pico; Molecular Devices,
San Jose, CA). For each well, images were captured
at 10x magnification in a stitched 4 � 4 grid to create
an acquisition region that covered 75% of the well.
The macrophage cell count and area of total red
fluorescence area observed were quantified by
CellReporterXpress (Version 2.5.1.0 Beta: Molecular
Devices, San Jose, CA). The total red fluorescence
area was directly proportional to the parasitemia
observed and sigmoid curves were plotted for the
same to calculate IC50 values. Values of IC50 were
obtained using Prism® 8.0 software (Graph-Pad
Software Inc.) with statistical significance set at
P < 0.05 and then subjected to nonlinear regression
analysis using normalized values as percentage
parasitemia vs. Log 10 drug concentration.

2.5. Target protein prediction

The repurposable drugs that were found to be
highly active in both preliminary screening as well

as in the drug susceptibility assay were further
analyzed for likely targets within the Leishmania
proteome. The in-silico modeling was performed to
predict target proteins in the parasites and under-
stand the potential mechanism(s) of action. In this
study, the identified drugs were Lansoprazole and
Posaconazole. The Lansoprazole target in myco-
bacterium reported by Rybniker (qcrB, Rv2196) is
absent in L. donovani [17] indicating that Lansopra-
zole has a different mechanistic target in leishmania.
We data-mined several drug-target web servers
including Stitch, Swiss Target Prediction, MolTar-
Prep, Super Prediction, and Target Hunter. Through
each of these drug-target prediction servers, Lan-
soprazole was repeatedly shown to bind to calcium-
transporting ATPases (SERCA/P-type family). Pos-
conazole's anti-leishmaniasis activity is likely due to
inhibition of a sterol 14a-demethylase LDBPK_11
1100 in leishmania, as this enzyme is a highly
conserved orthologue of the enzyme responsible for
the compound's known antiparasitic activity.

2.6. Target sequence analysis

Sequences for each predicted target homolog and
orthologues from different Leishmania species were
downloaded from the VEuPathDB Bioinformatics
Resource Center [18] previously known as
EuPathDB [19]. This was carried out using the
BLAST tool within one reference strain of each
Leishmania spp. analyzed. The sequence set of P-
type ATPases family for each Leishmania spp.
reference strain was realigned using the ClustalU
online server [20]. The alignments were highlighted
by Boxshade 3.21 server [21] and trees were visual-
ized using dendroscope-3 software [22].

2.7. Target protein modeling and preliminary
docking

Four L. donovani target proteins, LdBPK_352080.1,
LdBPK_040010.1, and LdBPK_170660.1, were found
to be closely related to the SERCA family of calcium
transporting ATPases as likely Lansoprazole targets,
while Posaconazole's predicted target LDBPK_11
1100 (CYP51) involved in sterol synthesis belongs to
the Cytochrome P450 superfamily and is mem-
brane-associated with a single transmembrane
domain at the N-terminus. I-TASSER was used to
predict the target protein structure of the four tar-
gets and the active site map through COACH
analysis [23]. Protein structures were validated by
online servers accredited by CASP-13 [24]. Pre-
liminary target protein prediction for Lansoprazole
was tested with molecular docking analysis using
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PatchDock followed by FireDock refinement
without selecting a target site, which showed a sig-
nificant interaction of Lansoprazole with the ATP
binding site of all three ATPase proteins, whereas
Posaconazole showed a highly specific binding
interaction with CYP51 with heme involvement in
the sterol 14ɑ-demethylase [25]. For the in-silico
work, both (S)- & (R)-enantiomers of Lansoprazole
were docked and simulated separately, as while
Lansoprazole is marketed as a racemate, the two
enantiomers differ in their pharmacodynamics and
pharmacokinetics. As these four proteins are trans-
membrane-associated, the complete analysis of
Lansoprazole and Posaconazole interactions was
carried out to further confirm the target protein for
each drug.

2.8. Induced fit docking

The Lansoprazole (Pubchem Compound ID:
3883) & Posaconazole (Pubchem Compound ID:
468595) 2D and 3D structures were retrieved from
the NCBI PubChem database including the enan-
tiomers (S)-Lansoprazole: 138530-95-7, and (R)-
Lansoprazole: 138530-94-6 [26]. These structures
were then prepared using the LigPrep application
in Schr€odinger [27] with energy minimizations and
energy optimizations. The Induced Fit Docking
(IFD) application/workflow in Schr€odinger was
used to perform flexible protein-ligand docking in
the presence of an implicit membrane position
predicted by the OPM server [28]. The ATP
binding site predicted by the COACH server was
used to generate a receptor grid of the protein for
the Lansoprazole targets. For the Posaconazole
target, the heme and Posaconazole binding grids
were generated based on the solved X-ray struc-
ture of the fungal homolog (PDB-ID; 6E8Q). The
“trim-side chains” and “protein preparation con-
strained refinement” options were not selected as
preliminary docking with automated servers
(Patchdock/Firedock) did not indicate a ligand
entry block. Follow-up re-docking and scoring
were performed by extra precision (XP) within
30.0 kcal/mol of the best structures, comprising 20
structures overall utilizing the generated Glide
score (kcal/mol) and IFD score (kcal/mol). While
the Glide score is based on various energies
involved in ligand and binding site interactions,
the IFD score is calculated by the addition of
Prime energy calculations. The top conformer was
selected by re-ranking using Prime-MMGBSA,

which calculates additional ligand strain in the
predicted docked pose [29]. For Posaconazole the
docking was performed in two sequential
steps by first docking the heme, then docking
Posaconazole.

2.9. Molecular dynamic simulations

Although IFD considers the ligand-induced re-
ceptor flexibility, the channels studied had trans-
membrane regions very close to the ATP binding
site. Also, Posaconazole had a very typical binding
with a slot canyon-like binding site stabilized by the
heme. Therefore, a long 100ns MD simulation was
additionally performed using the Desmond module
of the Schr€odinger suite to evaluate the binding
stability of the ligand in the presence of water,
physiological ions, and transmembrane surface
tension [30]. The boundary conditions were defined
by forming a 10 Å � 10 Å x 10 Å orthorhombic box
around the protein-ligand complex. A POPC mem-
brane system was set up around the transmembrane
regions predicted by the Orientations of Proteins in
Membranes (OPM) server [28]. The systems were
then solvated in a predefined TIP3P water
arrangement. The protein model was neutralized by
access to Naþ/Cl� ions with an excess 0.15M NaCl
solution mimicking physiological conditions. Re-
laxations of model systems were performed before
simulations in NPgT ensemble class at constant
temperature (300.0 K), pressure (1.013 bar), and
surface tension (0.0 bar Å). The energy was recorded
at regular intervals of 1.2ps for a total 100ns simu-
lation time with a 20ps trajectory recording (5K
frames). Trajectory analysis was performed by
generating a simulation interaction diagram (SID).

3. Results

3.1. Drug susceptibility in parasite infection assay:
IC50 values for FDA approved therapeutics and
cytotoxicity assay results

The IC50 values from the doseeresponse experi-
ments for Lansoprazole, Posaconazole, and the
standard antileishmanial chemotherapeutics are
shown in Fig. 1. The IC50 values of Lansoprazole and
Posaconazole were 0.80 mm and 1.64 mm, respec-
tively. These values compare favorably to the IC50

values of the approved antileishmanial agents' Mil-
tefosine (hexadecylphosphocholine) (0.84 mm),
Pentamidine (Pentamidine diisethionate) (0.92 mm),
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and Amphotericin B (0.74 mm). Compared to these
standard drugs, Lansoprazole is as effective in
inhibiting L. donovani as Miltefosine and pentami-
dine. Amphotericin B appears to be slightly more
potent, but that difference is not statistically signif-
icant. Another important factor is that the inherent
red fluorescence of Lansoprazole has been shown to
possibly give a false negative reading, consistent
with a potentially higher potency of Lansoprazole in
killing the parasites than indicated by the measured
IC50. Posaconazole is shown to have a higher (less
potent) IC50 than Lansoprazole and the standard
anti-leishmanial drugs, indicating that Lansoprazole
is more effective against Leishmania amastigotes.
Nevertheless, the approved dosage of Posaconazole
is 20 times that of Lansoprazole given its tolerable
toxicity profile making it also a prime candidate for
a repurposable drug to treat leishmaniasis. Neither

compound showed any toxicity up to 100 mM in
HEK293 cells in an Alamar blue assay, consistent
with their known breakpoints. The pharmacologic
profiles of Lansoprazole & Posaconazole are sum-
marized in Table S2.

3.2. Putative Lansoprazole and Posaconazole
targets and their homology among Leishmania spp.

The putative Ca2þ transporting ATPase protein
targets in L. donovani share high homology, indi-
cating a potential for broad-spectrum anti-
leishmanial (VL and CL) activities for compounds
that target these proteins. The amino acid sequences
of the respective protein targets of L. donovani are
illustrated in Fig. 2A. As shown in Fig. 2B., the ge-
netic origins of Ca2þ ATPase channels are shared
among different species of leishmania. In addition,

Fig. 1. IC50 values for Lansoprazole and Posaconazole were tested and obtained against standard anti-leishmanial drug therapeutics. Figures were
created and IC50 values were calculated using GraphPad Prism version 8 software (GraphPad Software, Inc., La Jolla, CA, USA). The doseeresponse
curve function of this software was used for IC50 calculations for standard as well as experimentally tested drugs. The horizontal straight orange line
on the Y-axis is the average concentration of drugs tested that give half-maximal effects which is higher than 50% (~77%) because the maximum
inhibition is at 40% due to residual background fluorescence from lysed pathogens. The Parasiticidal activity was calculated with the live fluorescent
imaging (Fig. S3.) after 24h treatment with different concentrations of control and experimental drugs (50, 25, 12.5, 6.2, 3.1, 1.6, 0.8, 0.4, 0.2, and
0.1 mM). The relative infection rate in live imaging was determined by red fluorescent area (parasite expressing reporter gene DsRed2) in the captured
well image of a 96 well plate. Inset is the calculated IC50s of all the drugs. The relative infection rate of untreated infected cells was the starting point
of the curve.

132 JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:128e149

O
R
IG

IN
A
L
A
R
T
IC

L
E



Fig. 2. (A) Multiple sequence alignment of P-type calcium transporting ATPases of L. donovani. These isotypes have high homology in the ATP
binding site, which is highlighted in pink. Proteins LdBPK_170660.1, LdBPK_040010.1, and LdBPK_352080.1 are the accession numbers of amino
acid sequences used for analysis. (B) Phylogenetic tree of P-type calcium transporting ATPases from different species of Leishmania commonly
pathogenic to humans. Gene accession prefixes represent reference strains of different species: LbrM (L.{Viannia}braziliensis {MHOM/BR/75/
M2904}), LmjF (Leishmania major{ strain Friedlin}), LmxM (Leishmania mexicana{MHOM/GT/2001/U1103}), LdBPK (L. donovani {BPK282A1}),
LinJ (Leishmania infantum{JPCM5}) LpaL13(Leishmania panamensis {MHOM/COL/81/L13}) and LAMA (Leishmania amazonensis{ MHOM/BR/
71973/M2269 }).
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the genetic origins of calcium-transporting ATPases
can be traced back to the origins of P-type Hþ

ATPases, calcium-transporting ATPase organelles,
calcium motive P-type ATPases, P-type calcium
ATPase vacuolar, and P-type calcium ATPase
vacuolar antileishmanial targets. Proteins
LdBPK_040010.1, LdBPK_352080.1, and
LdBPK_170660.1 are located in the calcium-trans-
porting ATPase organelle, in the calcium motive P-
type ATPase, and the P-Type calcium ATPase
vacuolar, respectively. The genetic map provides
further insight into potential protein targets that are
essential to the lifecycle of L. donovani and other
Leishmania spp. It is important to note that the
similarities between protein targets create oppor-
tunities for broad-spectrum application of chemo-
therapeutics targeting these proteins in all strains
sharing these homologous proteins. Table S1. shows
the essential nature of orthologs of calcium ion
transporting ATPase enzymes through the results of
knock-out studies and for lanosterol 14a demethy-
lase for Posaconazole. Phylogenetic analysis of both
targets (LdBPK_352080.1 for Lansoprazole and
LdBPK_111100.1 for Posaconazole) with the ortho-
logues revealed high conservancy of these targets
among different Leishmania spp. infecting humans.
Figure S4. shows more than 92% conservancy of
LdBPK_352080.1 among human leishmaniasis
orthologs with no gaps in the Lansoprazole or ATP
binding regions. For the Posaconazole target
LdBPK_111100.1 (Fig. S5.) there was 85% identity,
while the rest of the polymorphisms showed
biochemical conservancy including the pos-
aconazole and heme-binding sites which were 100%
conserved.
The calcium-transporting ATPase in L. donovani is

shown to have homology with a similar isotype
pattern among different Leishmania species, indi-
cating highly specialized and energy-driven Cal-
cium regulation and sequestration in all the species
responsible for the majority of human infections.
We know there are unique calcium storing organ-
elles called calciosomes in kinetoplexans as well as
apicomplexans [31]. The putative protein targets
LdBPK_040010.1, LdBPK_352080.1, and
LdBPK_170660.1 are shown in calcium-transporting
ATPase organelle, calcium motive P-type ATPase,
and P-type calcium ATPase vacuolar, respectively.

3.3. Induced fit docking and validation by MD
simulations of drug-bound Lansoprazole and
Posaconazole targets

Induced fit docking of Lansoprazole yielded very
stable complexes according to follow-up MM-GBSA

analysis (Fig. 3). All the isoforms of P-type Ca2þ

ATPase had very strong predicted interactions with
all three targets for both Lansoprazole enantiomers.
Docking of Posaconazole was comparable to re-
ported interactions with the fungal homolog [32].
The heme moiety played an essential role in stabi-
lizing the complex participating in p-stacking in-
teractions with the 1,2,4-triazole ring.
LdBPK_352080.1 seems to have similar and ener-
getically favorable interactions with both Lanso-
prazole enantiomers, but (R)-Lansoprazole bound
with LdBPK_352080.1 is the most stable complex in
terms of binding energy and ligand strain.
To validate the stability and dynamics of the three

putative leishmanial protein targets (LdBPK_35
2080.1, LdBPK_040010.1, and LdBPK_170660.1) and
the Posaconazole target (LdBPK_111100.1), we
completed a 100ns MD simulation of the induced fit
docked ligand-protein complexes that showed high
affinity and low relative binding energy. MD simu-
lation allows for analysis of root means square de-
viation (RMSD) and root mean square fluctuation
(RMSF). RMSD measures the average displacement
of the protein during the simulation, thus it corre-
lates with the stability of the ligand-protein inter-
action, while a lower RMSD correlates with greater
protein stability. Meanwhile, the RMSF measures
local changes along the protein chain or the devia-
tion between the position of the ligand and a set
reference position within the protein [33]. As shown
in Figs. 4 & 5, the data demonstrate the molecular
binding for Lansoprazole with the three target
proteins and Posaconazole with its target. Figs. 4 & 5
show the schematic of ligand atom interactions with
protein residues, demonstrating the percentage of
time that a particular interaction occurs. A higher
percentage for an interaction correlates with a more
significant interaction with the binding site.

3.3.1. Molecular dynamics simulations of
lansoprazole enantiomers docked to the ATP binding
domain in the target proteins
Figs. 4A, & E, and 5D illustrate the protein RMSD

(left Y-axis), which provides insight into the struc-
tural conformation of the protein and ligand during
the simulation. A stable value in Å (<4Å fluctua-
tions) indicates that the interaction has equilibrated.
The ligand RMSD (right Y-axis) indicates how stable
the ligand is within the protein's binding pocket.
Figures 4B, C, F and G, and 5 B and E show the
protein interactions at the amino acid side chain
residue level throughout the simulation that is
categorized into four types: hydrogen bonds, hy-
drophobic, ionic, and water bridges. Specific amino
acid residue side chains within the binding pocket
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Fig. 3. (A, B, C, D, E, and F) Schematic representation of the 2D interaction maps of Lansoprazole enantiomers bound to the ATP binding site of three
plausible targets belonging to P-type calcium channels. The MMGBSA energy scores (DG) and ligand efficiencies denote ligand strain and unfa-
vorable steric interactions in a particular docking pose. (G) Schematic representation of (S)-Lansoprazole with LdBPK_352080.1. The yellow surface
represents the membrane topology, a protein embedded in the membrane is green, and the ATP binding site with the docked (S)-Lansoprazole
molecule (red) is close to the transmembrane region. Inset is the (S)-Lansoprazole molecule (red) within the binding pocket. Based on docking energies
and stability during MD simulations this protein is the likely target for Lansoprazole antileishmanial activity.
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Fig. 4. (A, B, C, & D) Results of a 100 nanosecond (ns) molecular dynamics simulation of (S)-Lansoprazole bound to LdBPK_352080.1. (A) Root mean
square deviations between the calcium pump ATP binding site and bound ligand. The graph obtained for the RMSF value of the ligand (purple line)
from the protein backbone (green line) revealing that there was no major conformational change and the ligand stayed in the binding site throughout
the simulation. (B) Critical protein-ligand contacts of amino acid side chain residues with their interaction types designated by color. (C) Schematic
2D representation of bound ligand interactions of (S)-Lansoprazole with the side chains of amino acid residues lining the binding pocket throughout
the simulation. (D) Atomic index showing RMSF of different components of the ligand showing individual movements. The trifluoromethoxy has a
wide rotational range of motion but it does not influence the binding affinity of the ligand as a whole. (E, F, G, & H) Results of a 100 nanosecond (ns)
molecular dynamics of (R)-Lansoprazole bound to LdBPK_352080.1. (E). Root mean square difference between the calcium pump ATP binding site
and bound ligand. The graph obtained for the RMSF value of ligand (purple line) from the protein backbone (green line) revealing that there was no
major conformational change and that the ligand stayed in the binding site throughout the simulation. The total RMSD of ligand post 10ns sta-
bilization was less than 2 Å compared to the maximum allowed value of 4 Å. (F) Critical protein-ligand contacts of amino acid side chain residues
with the interaction types designated by color. (G) Schematic 2D representation of bound ligand interactions of (S)-Lansoprazole with sidechains of
amino acid residues of the binding pocket throughout the simulation. (H) Atomic index showing RMSF of different components of ligands showing
individual movements. The trifluoromethoxy has a wide rotational range of motion but it does not influence the binding affinity of the ligand as a
whole.
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are found on the X-axis. The fraction of interactions
noted on the Y-axis correlates to the proportion of
time that a specific interaction is maintained.
Generally, the nitrogen and carbon protein termini
fluctuate the most, while secondary structures are
usually more rigid than loop regions, as expected.
As lansoprazole is marketed as a racemate, both

enantiomers were investigated in-silico, and the
LdBPK_352080.1 ATP binding site has a strong
binding affinity to both Lansoprazole enantiomers.
The overall RMSD for this complex was in the
desirable range (<4 Å) after an initial stabilization
phase of 10ns, and the ligand strain was minimal as
the ligand-binding further improved and water
molecules enhanced the stability of the complex
rather than displacing the ligand. The RMSD of the
LdBPK_352080.1 protein was found to increase
initially and reached 6.4 Å at 40ns and remained
constant for the remaining simulation. Protein-

ligand interactions correlated well and demon-
strated the conformational stability of ligand-pro-
tein interaction. For the (S)-Lansoprazole/
LdBPK_352080.1 complex (Figs. 3G & 4AeD), Asp-
1041 and Thr-1054 played critical roles in ligand
binding. Asp-1041 accepted hydrogen bonds 65%
of the time from (S)-Lansoprazole, while Thr-1054
donated hydrogen bonds to the oxygen of (S)-
Lansoprazole 67% of the time. Asp-1041 is in the
same site that ATP binds to on the LdBPK_3
52080.1 protein (Fig. 4). For (R)-Lansoprazole
LdBPK_352080.1 (Fig. 4 E-H) the complex seems to
be more stable, while initial docking has quite a
similar interaction profile, both enantiomers inter-
acted differently in the MD phase. (R)-Lansopra-
zole was more stable throughout the simulation
with less than 2 Å deviation post initial 10ns sta-
bilization. Arg-41 and Lys-322 played critical roles
in stabilizing pyridine and benzimidazole

Fig. 5. Induced fit docking and Molecular dynamics (100ns) of Posaconazole with LDBPK_111100 (CYP51): (A) Schematic representation of Pos-
aconazole bound to LDBPK_111100. The protein is represented in ribbon form, and the ligand-binding site with the docked (S)-heme molecule (red) is
close to the Posaconazole (blue) binding site. (B) Schematic 2D representation of bound ligand interactions of Posaconazole with sidechains of amino
acid residues lining the binding pocket throughout the simulation. (C) Schematic representation of the binding topology of Posaconazole (blue) and
heme (red). (D) Root mean square deviations between the calcium pump ATP binding site and bound ligand. The graph obtained for the RMSF value
of ligand (purple line) from the protein backbone (green line) revealing that there was no major conformational change and that the ligand stayed in
the binding site throughout the simulation total RMSD of ligand post 10ns stabilization was less than 2 Å compared the maximum allowed value of
4 Å (E). Critical protein-ligand contacts of amino acid side chain residues with the interaction properties.
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substructures respectively. Asp-1059 formed a
water bridge with the trifluoromethoxy oxygen
intermittently from (R)-Lansoprazole. The simula-
tion with the docked molecule was most stable not
only concerning retained binding characteristics
throughout the simulation, but in addition, the
water molecules further strengthened the in-
teractions as the energy of the complex decreased
and were hence stabilized in the course of the long
simulation.
LdBPK_111100.1 was also subjected to in silico

simulation and was initially docked with the heme,
forming a complex very similar to fungal ortho-
logues [32]. The binding site for Posaconazole is a
slot canyon-like linear fissure. The piperazine and
phenyl rings in the middle regions bind to the hy-
drophobic trench formed by amino acid residues:
multiple Met residues, two Phe, and one Val (Fig. 5
B and E). The triazole stacks with heme moiety. The
tetrahydrofuran and alkoxy phenyl substructures sit
in a stable pocket comprised of Phe-289 and Glu-
100. Throughout MD simulations the hydrophobic
region was most stable and was nearly immobile.
Following the initial stabilization of 10ns, the total
RMSD of the ligand was less than 2 Å. This was
surprising given the large size and minimum
intramolecular folding of the ligand suggesting a
strong and highly specific binding.

4. Discussion

We report the first known activity of Lansoprazole
and Posaconazole against L. donovani amastigotes
and extended the study to present a plausible MOA
of these FDA-approved compounds in the parasites.
Based on our studies, lansoprazole targets the
Leishmania calcium-transporting ATPases, and Pos-
aconazole targets lanosterol 14-alpha-demethylase
(LDBPK_111100). In the current study, three of these
closely related ATPase targets were found to have
high affinity and low binding energy with Lanso-
prazole: LdBPK_352080.1, LdBPK_040010.1, and
LdBPK_170660.1. These proteins act as a calcium
motive P-type ATPase, a calcium-transporting
ATPase, and a P-type ATPase, respectively. Through
induced-fit docking followed by longer MD simu-
lations of 100ns to assess the long-term stability of
binding, we have demonstrated that Lansoprazole
binds to the ATP binding site of these proteins.
Furthermore, we show that LdBPK_352080.1 is the
most plausible Lansoprazole target based on the
greater stability of the drug-target interactions

(Fig. 3G). As the docking with the other two ho-
mologs was favorable, and though the simulation
was not optimal as described in the respective result
section, the ligand remained in the binding site
throughout the molecular dynamics run. Therefore,
efficacy may be a cumulative effect derived from
somewhat weaker binding to each of these three
homologs. As these proteins are ATPases, they are
performing energetically essential functions, and
blocking these functions would have a detrimental
effect on parasite calcium homeostasis. Calcium
homeostasis has been shown to play a role in critical
functions of leishmania, including the process of cell
invasion in Leishmania amazonensis [34]. Further-
more, none of these proteins have any significant
homology with human host sequences. They
contain highly conserved sites at the pore region,
ATP binding site, and calcium-sensing/binding re-
gion, and have only 0e6% similarity with the closest
human orthologues [31].
Compared to Amphotericin B, Pentamidine, and

Miltefosine, Lansoprazole has a comparable IC50.
While the approved dosage of Lansoprazole is
20e50 mg daily which is much lower than a normal
antibiotic dose with similar activity. Oral doses up to
5000 mg/kg in rats (approximately 1300 times the
30 mg human dose based on body surface area) and
mice (about 675.7 times the 30 mg human dose
based on body surface area) did not produce deaths
or any clinical signs; also, there is a case report with
a patient consuming 600 mg of Lansoprazole (Pre-
vacid) without any adverse side effects [35]. This
further indicates that compared to the standard
drug therapeutics, Lansoprazole is both safe and
equally effective in inhibiting L. donovani's life cycle,
as measured by a decrease in relative red fluores-
cence in the assay. Posaconazole is shown to have a
higher IC50 than Lansoprazole and the standard
anti-leishmanial drugs, indicating it is not as potent.
However, the approved dosage of Posaconazole is
20X that of Lansoprazole suggesting a strong case
for repurposing for both drugs.
Lanosterol C-14 demethylase (LDBPK_111100.1) is

a lipid metabolism enzyme and a member of the
ergosterol biosynthesis pathway. Many members of
this pathway, such as HMG-CoA reductase, squa-
lene epoxidase, lanosterol C-14 demethylase, and
sterol C-24 methyltransferase, are proven drug tar-
gets [36]. Lanosterol-C14-demethylase is a critical
P450 family enzyme for trypanosomatids, including
Leishmania, with its inhibition resulting in mem-
brane permeability alterations, reduced infectivity,
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and impaired mitochondrial functions [37]. In
leishmania, another member of the cytochrome
P450 family, CYP5122A1 (LdBPK_270090.1) [38], also
modulates ergosterol levels and probably supports
extracellular survival of Leishmania upon inhibition
of lanosterol C-14 demethylase [39]. CYP51 (sterol
14a-demethylase) is highly conserved across eu-
karyotes at the structural level [40] but there is
negligible homology of the same with human
orthologues. The essentiality and drug targetability
of CYP51 have been well documented with exam-
ples of successful drug targeting [41]. Through
induced-fit docking followed by longer MD simu-
lations of 100ns to assess the stability of binding, we
have demonstrated that Posaconazole binding to the
known binding site of Lanosterol C-14 demethylase
(LDBPK_111100.1) is comparable to fungal counter-
parts and has the heme (porphyrin ring) as an
interacting partner.
Several drugs are currently used to treat leish-

maniasis [42]. The first-line treatment for Leishmania
infection is pentavalent antimony sodium stibo-
gluconate, an organometallic prodrug that works by
inhibiting trypanothione reductase [43]. Sodium
stibogluconate is very toxic to the veins at the site of
injection, and pancreatitis is a common side effect of
the drug. Second-line medications are pentamidine
(PTM) and amphotericin B, which work by inhibit-
ing DNA and sterol biosynthetic pathways, respec-
tively [44]. PTM is no longer used due to toxic side
effects in humans and drug resistance in parasites,
while amphotericin B treatment requires hospitali-
zation and high cost due to the requirement of lipid
formulation [45,46]. Other medications used to treat
Leishmania include miltefosine and paromomycin.
Miltefosine is the only orally available anti-leish-
maniasis drug and exhibits its effect by inhibiting
phosphatidylcholine, but it is teratogenic.
In this study, we have also explored the impor-

tance of calcium channels (CCs) and P-type ATPases
as novel therapeutic targets. Several studies have
shown that calcium concentrations in L. donovani are
critical for parasite metabolism and invasion [31].
Calcium is tightly regulated through transporters in
the plasma membrane, ER, mitochondria, and
acidocalcisomes [47]. Drugs that modulate CCs have
been used for chemosensitization, which improves
the efficacy of antiparasitic drugs [31]. CCs are a
promising antiparasitic drug target to combat
growing drug resistance [31]. In addition, P-type
ATPases have an integral function in maintaining
lipid membrane asymmetry and cellular ion

homeostasis by moving phospholipids and ions
against their concentration gradients [48]. ATPases
are important for Leishmania spp. to withstand
changes in the external environment they encounter
throughout the parasitic life cycle. This study dem-
onstrates that Lansoprazole and Posaconazole
should be investigated clinically as repurposed
antileishmanial drugs.
Lansoprazole is an FDA-approved PPI drug,

extensively used to reduce gastric acid production
via inhibition of Hþ/Kþ ATPase pumps in humans.
It is also used to treat gastric Helicobacter pylori in-
fections in combination with antibiotics. Like all
PPIs, Lansoprazole is labile in strong acid and forms
an active sulfenamide derivative below pH 4. The
reactive sulfenamide intermediate leads to the for-
mation of a covalent disulfide bond between
cysteine residues of the gastric proton pump a-
subunit, thus deactivating the enzyme [49]. Our
studies demonstrate the utility of the parent mole-
cule, independent of acid-mediated sulfonamide
formation. Importantly for its use as a repurposable
drug, Lansoprazole is available as a generic oral
drug at low cost from multiple international phar-
maceutical manufacturers. Furthermore, we have
shown Lansoprazole to be effective against multi-
drug-resistant Plasmodium falciparum, the parasite
responsible for causing severe malaria, with an IC50

range of 7e11 mM [50]. However, the underlying
antimalarial mechanism of action for Lansoprazole
against P. falciparum is unknown. Jiang et al.
demonstrated that another PPI, omeprazole, is
effective against Leishmania by targeting P-type Kþ/
Hþ-ATPase on the surface membrane [51]. As noted
by Riel et al., it is unlikely that the internal envi-
ronment of a parasite could produce a pH low
enough to form the active Lansoprazole intermedi-
ate, suggesting an alternate antiparasitic mechanism
of action. Lansoprazole may be effective against
parasites through an intracellular sulfoxide reduc-
tion (a similar pathway is reported in mycobacte-
rium) [17].
Herein, we present Lansoprazole and Pos-

aconazole as potentially repurposable chemothera-
peutics for treating leishmaniasis, targeting proteins
specific in L. donovani with negligible similarity to
host orthologues. Our study employed in-silico ap-
proaches combined with in-vitro studies to demon-
strate that Lansoprazole and Posaconazole are
effective in combating L. donovani. The low cost and
limited side effects of these compounds make them
promising candidates for drug repurposing while
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maintaining potency comparable to currently used
therapeutics for treating leishmaniasis. This is of
critical importance as L. donovani and other Leish-
mania spp. have developed multidrug resistance to
available therapeutics. The utilization of Lansopra-
zole as a repurposed therapeutic may eliminate the
need to create new therapeutics, which would
require significant time and economic cost. As these
compounds are already FDA-approved, they should
be immediately tested in animal models for in-vivo
efficacies and subsequently assessed in human trials
in endemic regions. Furthermore, the drug discov-
ery pipeline utilized in the current study can be
used to further discover new treatments utilizing
new targets in other infectious diseases via high-
throughput virtual screening and integrated drug-
target identification.

5. Conclusion

Our results from integrated drug discovery
methodologies demonstrate that FDA-approved
drugs and other well-characterized drug libraries
can be utilized to facilitate the screening of target-
specific inhibitors of L. donovani and other parasitic
species. In the current study, we have discovered
two widely used FDA-approved drugs, Lansopra-
zole and Posaconazole, as promising chemothera-
peutics to combat leishmaniasis. Our results also
predicted a conserved mechanism for Pos-
aconazole (sterol 14-alpha-demethylase) and a
novel mechanism of action for Lansoprazole
pointing to calcium-transporting ATPases, which
act in the ER membrane of Leishmania. These
target proteins have been deemed essential and
critical to L. donovani survival. Stability in MD
simulations further supports LdBPK_352080.1 as
the most plausible target for Lansoprazole. Further
experiments are needed to confirm this likely
mechanism of action as well as demonstrate a

possible synergy of Lansoprazole and/or Pos-
aconazole with other approved therapeutics as
seen with various calcium modulators. The current
study complements parallel studies that have
demonstrated Lansoprazole and Posaconazole to
be effective antiparasitic drugs. The already-mar-
keted drugs Lansoprazole and Posaconazole are
inexpensive and carry minimal side effects
compared to currently used anti-leishmaniasis
drugs and may prove to be powerful tools in
combatting drug resistance in L. donovani observed
with current therapeutics.
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Appendix

Fig. S1. Molecular dynamics of (S)-Lansoprazole with LdBPK_040010.1. (i) Gln 111 donated hydrogen bonds to oxygen on Lansoprazole 71% of the
time. Gln 259 donated hydrogen bonds to nitrogen on Lansoprazole 40% of the time. (ii) The ligand Å values are similar to the RMSD of
LdBPK_040010.1, indicating that Lansoprazole is stable within the binding site. The RMSD of LdBPK_040010.1 was found to increase initially and
reached 8.0 Å at 20ns and remained constant until 60ns when it decreased to 7.0 Å, where it remained stable for the remainder of the simulation. (iii)
Protein-ligand interactions are consistent with conformational stability and correlated well. Gln 111 and Gln 249 were integral to ligand binding. (iv,
v) There was no significant deviation in the RMSF of each amino acid residue measured with respect to its Ca carbon atom. The RMSD of
LdBPK_040010.1 increased initially and reached 8.0 Å at 20ns and remained steady until 60ns when it decreased to 7.0 Å, thereafter it continued
stably for the remainder of the simulation. Like LdBPK_352080.1, there was no significant deviation in the RMSF of each amino acid residue
measured with respect to the Ca atom. Protein-ligand interactions demonstrated conformational stability and correlated well. Gln 111 and Gln 249
were integral to ligand binding. Gln donated hydrogen bonds to oxygen on Lansoprazole 71% of the time. Gln 259 donated hydrogen bonds to
nitrogen on Lansoprazole 40% of the time (Fig. 5). While the ligand stayed in the docked site throughout simulation a significant wobble was observed
with the trifluoride region completely dislodging from the predicted binding site causing an increase in ‘wobble’ and the energy decrease during
simulation can be attributed to the protein component of the complex rather than the intermolecular interactions.
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Fig. S2. Molecular dynamics of (S)-Lansoprazole with LdBPK_170660.1. (i) Ser922 donated hydrogen bonds to oxygen on Lansoprazole 99% of the
time (ii) The RMSD of LdBPK_170660.1 was found to increase initially and reached 10.0 Å from 5 to 40ns and then increased again to 15 Å at 50ns.
The RMSD of Lansoprazole remained constant at 7 Å throughout the simulation. (iii) Protein-ligand interactions correlated well and are consistent
with the conformational stability of ligand-protein interaction. For LdBPK_170660.1, Ser 1041 played an integral role in ligand binding. (iv, v) There
was a moderate deviation in the RMSF of each amino acid residue measured with respect to its Ca carbon atom. The RMSD of LdBPK_170660.1 was
found to increase during initial simulations and reached 10.0 Å from 5 to 40ns and then increased again to 15 Å at 50ns. The RMSD of Lansoprazole
remained constant at 7 Å throughout the simulation. There was a moderate deviation in the RMSF of each amino acid residue measured with respect
to the Ca atom. Furthermore, protein-ligand interactions demonstrated conformational stability and correlated well. Ser 922 was critical to ligand
binding and donated hydrogen bonds to oxygen on Lansoprazole 99% of the time (Fig. 4). The interactions were mostly electrostatic which was
weakened by water solvation during the simulation and the ligand interactions became destabilized during simulation without much change in the
ATP binding site architecture. These findings support low docking scores by poor performance in simulation in terms of complex stability.
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Fig. S3. An example image set (each panel is 1/8th area of one well from a triplicate set) of live imaging (ImageExpress Pico) at 10X with L. donovani
amastigotes infected macrophages post-treatment with different drugs. Here we have shown a three-drug i.e. Amphotericin B (A, B, C & D), Lan-
soprazole (E, F, G, & H), and Posaconazole (I, J, K, & L). The doseeresponse area with red fluorescence i.e. parasites expressing reporter gene DsRed2
is shown. Macrophages infected with leishmania attract more macrophages forming infection masses making the total fluorescence area a reliable
parasite load estimation tool as compared to counting individual parasites. Latter requires much higher resolution screening but is less affected by
background fluorescence from lysed parasites. Panels A, E, & I are negative controls with untreated and uninfected macrophages. Panels B, F, J
(50 mM) and C, G, K (3.1 mM) are infected macrophages treated with different drug concentrations. Panels D, H, J are positive control panels with
untreated and infected macrophages. All pannels were seeded with the same number of THP-1 cells and except for uninfected controls, the rest were
introduced with the same number of promastigotes.
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Fig. S4. Orthologs of Posaconazole targeted Lanosterol C-14 demethylase (LDBPK_111100.1) from reference strains of different species of leishmania
were obtained from plasmoDB (VEUpathDB) [52] using BLAST similarity searches. Orthologs further analyzed were: Leishmania infantum
(LINJ_111100), Leishmania Mexicana (LMXM_111100), Leishmania major (LMJF_111100), Leishmania braziliensis (LBRM_110880), and Leish-
mania panamensis (LPMP111090). The phylogenetic analyses of the orthologs were performed on the Phylogeny.fr server [53]. A. The phylogenetic
trees were constructed using the PhyML program (v3.1/3.0 aLRT) with the maximum-likelihood method with default settings. B. The multiple
sequence alignment (MSA) was obtained with MUSCLE (v3.8.31) and gaps and/or poorly aligned regions were removed by Gblocks (v0.91b) with
default settings. Publication-quality outputs of the sequence alignments were generated with the BOXSHADE 3.21.5 server [21].
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Supplementary Video. Molecular dynamics of (S)-
Lansoprazole with LdBPK_352080.1. The membrane
is shown as a surface translucent cloud and protein
is represented as ribbons. The interacting amino-
acids side-chain residues and drug molecules are
represented as line models of their chemical struc-
ture. The transmembrane topology remains stable
throughout the 100ns simulation. However, the
protein had a lot of swinging but stable movement
showing it to be a good model. (S)-Lansoprazole
remained in the binding site, and though had
movements throughout the simulation they seem to
be partly due to whole protein movements and not

due to weakness in interaction or ligand strain.
While the molecule remains within the ATP binding
site and does not fly off an alternate stable pose is
formed at 80ns time point with less than 4 Å devia-
tion and retaining 85% of interacting amino-acid
side chain residues. This transition doesn’t affect the
binding energy but having multiple binding poses
increase the engagement time favoring the
competitive inhibitor over the natural substrate. The
Supplementary video can be found at https://www.
jfda-online.com/cgi/viewcontent.cgi?filename¼12&
article¼3394&context¼journal&type¼additional&
preview_mode¼1.

Fig. S5. Orthologs of Lansoprazole targeted calcium channel (LdBPK_352080.1) from reference strains of different species of leishmania were obtained
from plasmoDB (VEUpathDB) [52] using BLAST similarity searches. Orthologs further analyzed were: L. infantum (LINJ_352080), L. major
(LMJF_352080), L. Mexicana (LMXM_342080), L. braziliensis (LBRM_341990), and L. panamensis (LPMP_341910). The phylogenetic analyses of
the orthologs were performed on the Phylogeny.fr server [53]. A. The phylogenetic trees were constructed using the PhyML program (v3.1/3.0 aLRT)
with the maximum-likelihood method with default settings. B. The multiple sequence alignment (MSA) was obtained with MUSCLE (v3.8.31) and
gaps and/or poorly aligned regions were removed by Gblocks (v0.91b) with default settings. Publication-quality outputs of the sequence alignments
were generated with the BOXSHADE 3.21.5 server [21].
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Table S1. Gene significance analysis based on experimental evidence from knock-out studies with orthologs of calcium ion transporting ATPase channels and Sterol 14a demethylase in related
organisms.

Gene/Orthologs Organism Essentiality/Phenotype Source Study
(TDRtargets.org)

Lansoprazole Tb927.5.3400 Trypanosoma brucei significant loss of fitness in the bloodstream
(3 days)

[54]

Tb927.5.3400 Trypanosoma brucei significant loss of fitness in the bloodstream
(6 days)

Tb927.5.3400 Trypanosoma brucei A significant gain of fitness in procyclic
Tb927.5.3400 Trypanosoma brucei no significant loss or gain of fitness in the

differentiation of procyclic to bloodstream
forms

CELE_K11D9.2 Caenorhabditis elegans embryonic lethal [55]
CELE_K11D9.2 Caenorhabditis elegans larval arrest
CELE_K11D9.2 Caenorhabditis elegans larval lethal
CELE_K11D9.2 Caenorhabditis elegans slow growth
CELE_K11D9.2 Caenorhabditis elegans sterile
PBANKA_0207000 Plasmodium berghei essential [56]
PBANKA_0610400 Plasmodium berghei slow
TGME49_230420 Toxoplasma gondii probably essential [57]

Posaconazole PF3D7_1355300 Plasmodium falciparum Highly essential [58]
Tb11.02.4080 Trypanosoma brucei significant loss of fitness in the bloodstream

(6 days)
[59]

Tb11.02.4080 Trypanosoma brucei significant loss of fitness in the differentiation
of procyclic to bloodstream forms

YHR007C Saccharomyces cerevisiae inviable [60]

146
JO

U
R
N
A
L
O
F
FO

O
D

A
N
D

D
R
U
G

A
N
A
L
Y
S
IS

2022;30:128
e
149

ORIGINALARTICLE

http://TDRtargets.org


Table S2. Lansoprazole & Posaconazole: human pharmacological profile and completed trials.

Category aLansoprazole aPosaconazole

General Use Reduce gastric acid secretion to treat gastric ulcers, duodenal ulcers,
esophagitis, and gastroesophageal reflux disease.

Triazole antifungal drug to treat invasive infections by Candida
species and Aspergillus species in severely immunocompromised
patients

Pharmaco-dynamics Targets Hþ/K þ ATPase on gastric parietal cells. Inhibits the fungal enzyme lanosterol 14a-demethylase
Mechanism of Action Lansoprazole requires protonation in a strongly acidic environment to

become activated as a PPI. Once activated, lansoprazole interacts with
cysteine residues on the Hþ/Kþ ATPase enzyme on parietal cells to form
a stable disulfide bond. This covalent bond provides prolonged inhibition
of gastric acid secretion.

Posaconazole exerts its antifungal activity through blockage of the
cytochrome P-450 dependent enzyme, sterol 14a-demethylase in
fungi by binding to the heme cofactor located on the enzyme. This
leads to the inhibition of the synthesis of ergosterol, a key
component of the fungal cell membrane, with an accumulation of
methylated sterol precursors

Side Effects and Toxicity Manifestations include abdominal pain, constipation, diarrhea, and
nausea. Classified for pregnancy as category B indicating that no risk was
observed in animals and that there are not adequate and well-controlled
studies in pregnant women.

No related adverse events were noted up to 1,600 mg/day

US Clinical Trials Safety and Efficacy of Lansoprazole in Patients with Reflux Disease. An
Open, Single-Arm, Long-term Study (2002e2008), ClinicalTrials.gov
Identifier: NCT01135368.
Therapeutic Response to Lansoprazole Among Different Subgroups of
Functional Dyspepsia: a Multicenter, Randomized, Double-blind, Pla-
cebo-controlled Trial (2009e2013), ClinicalTrials.gov Identifier:
NCT01040455.
Long-term Use of Takepron on the Prevention of Recurrence of Gastric/
Duodenal Ulcer in Patients Receiving Non-Steroidal Anti-inflammatory
(2010e2014), ClinicalTrials.gov Identifier: NCT02099708.

aPosaconazole Pharmacokinetics in Patients Receiving Chemo-
therapy or Stem Cell Transplants (POPULAR) (ClinicalTrials.gov
Identifier: NCT03717623) (Currently recruiting). A New Pos-
aconazole Dosing Regimen for Pediatric Patients with Cystic
Fibrosis and Aspergillus Infection (cASPerCF) (NCT04966234),
(Recruiting now). Pharmacokinetics and Safety of Intravenous
Posaconazole (MK-5592) in Chinese Participants at High Risk for
Invasive Fungal Infections (MK-5592-120) (NCT03336502, just
completed). Posaconazole for Pulmonary Fungal Infection Pro-
phylaxis in Hematopoietic Stem Cell Transplantation Patients
(Recruitment not started) (NCT04725942).

a Multiple sources: https://go.drugbank.com/drugs/DB01263 and https://clinicaltrials.gov.
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ABBREVIATIONS

ADME: Absorption, distribution, metabolism, and excretion;
CC: Calcium channel;
CADD: computer-aided drug design;
CL: cutaneous leishmania;
VL: visceral leishmania;
DALY: disability-adjusted life year;
ER: endoplasmic reticulum;
FDA: Food and Drug Administration;
IC50: 50% inhibitory concentration;
IFD: induced-fit docking;
LMIC: low and middle income countries;
MOA: mechanism of action;
OPM: Orientations of Proteins in Membranes;
POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine;
PPI: proton-pump inhibitor;
PTM: pentamidine;
RMSD: root means square deviation;
RMSF: root mean square fluctuation;
spp.: several species;
SID: simulation interaction diagram;
WHO: World Health Organization.

JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:128e149 149

O
R
IG

IN
A
L
A
R
T
IC

L
E

https://doi.org/10.1016/j.bbapap.2010.06.006
https://doi.org/10.1016/j.bbapap.2010.06.006
https://doi.org/10.1371/journal.pntd.0003588
https://doi.org/10.1021/cr500365f
https://doi.org/10.1007/s00436-020-06736-x
https://doi.org/10.1007/s13346-021-00910-z
https://doi.org/10.1007/s13346-021-00910-z
https://doi.org/10.2217/nnm-2020-0482
https://doi.org/10.2217/nnm-2020-0482
https://doi.org/10.1016/S1369-5274(03)00091-2
https://doi.org/10.1016/S1369-5274(03)00091-2
https://doi.org/10.1051/parasite/2019069
https://doi.org/10.1051/parasite/2019069
https://doi.org/10.1007/s11894-008-0098-4
https://doi.org/10.1007/s11894-008-0098-4
https://doi.org/10.1128/AAC.46.8.2627-2632.2002
https://doi.org/10.1128/AAC.46.8.2627-2632.2002
https://doi.org/10.1002/jcp.1041590109
https://doi.org/10.1002/jcp.1041590109
https://doi.org/10.1093/nar/gkn180
https://doi.org/10.1038/nprot.2015.005
https://doi.org/10.1038/nprot.2015.005
https://doi.org/10.1371/journal.pbio.0000012
https://doi.org/10.1371/journal.pbio.0000012
https://doi.org/10.1016/j.cell.2019.10.030
https://doi.org/10.1016/j.cell.2019.10.030
https://doi.org/10.1016/j.cell.2016.08.019
https://doi.org/10.1128/mSphere.00273-16
https://doi.org/10.1101/gr.115089.110
https://doi.org/10.1101/gr.115089.110
https://doi.org/10.1186/1471-2164-14-838
https://doi.org/10.1186/1471-2164-14-838

	Repurposing Lansoprazole and Posaconazole to treat Leishmaniasis: Integration of in vitro testing, pharmacological corroboration, and mechanisms of action
	Recommended Citation

	Repurposing Lansoprazole and Posaconazole to treat Leishmaniasis: Integration of in vitro testing, pharmacological corroboration, and mechanisms of action
	Cover Page Footnote

	Repurposing Lansoprazole and Posaconazole to treat leishmaniasis: Integration of in vitro testing, pharmacological corrobor ...
	1. Introduction
	2. Materials and methods
	2.1. Cell line and parasite maintenance
	2.2. Preliminary drug screening
	2.3. Parasite infection and drug susceptibility assay
	2.4. High-throughput image analysis
	2.5. Target protein prediction
	2.6. Target sequence analysis
	2.7. Target protein modeling and preliminary docking
	2.8. Induced fit docking
	2.9. Molecular dynamic simulations

	3. Results
	3.1. Drug susceptibility in parasite infection assay: IC50 values for FDA approved therapeutics and cytotoxicity assay results
	3.2. Putative Lansoprazole and Posaconazole targets and their homology among Leishmania spp.
	3.3. Induced fit docking and validation by MD simulations of drug-bound Lansoprazole and Posaconazole targets
	3.3.1. Molecular dynamics simulations of lansoprazole enantiomers docked to the ATP binding domain in the target proteins


	4. Discussion
	5. Conclusion
	Author contributions
	Conflicts of interests
	Conflicts of interests
	Acknowledgement
	References


