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Coherent manipulation of valley states at multiple
charge configurations of a silicon quantum dot
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Qubits based on silicon quantum dots are emerging as leading candidates for the solid-state

implementation of quantum information processing. In silicon, valley states represent a

degree of freedom in addition to spin and charge. Characterizing and controlling valley states

is critical for the encoding and read-out of electrons-in-silicon-based qubits. Here, we report

the coherent manipulation of a qubit, which is based on the two valley states of an electron

confined in a silicon quantum dot. We carry out valley qubit operations at multiple charge

configurations of the double quantum dot device. The dependence of coherent oscillations on

pulse excitation level and duration allows us to map out the energy dispersion as a function of

detuning as well as the phase coherence time of the valley qubit. The coherent manipulation

also provides a method of measuring valley splittings that are too small to probe with

conventional methods.
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Gate-defined quantum dots (QDs) in silicon hetero-
structures are emerging as a leading candidate for the
physical implementation of quantum computing in

the solid state, mainly due to the long coherence times of the
individual spins in silicon and the potentials for scaling and
integration with mainstream classical electronics1. During the last
several years, coherent control of spin-based qubits in Si QDs has
been successfully demonstrated by a number of groups2–5.

However, the characterization and control of the valley degree
of freedom in silicon nanostructures presents a major challenge.
Electrons in bulk silicon have six degenerate states, known as
valley states, which, when confined to two dimensions, separate
into four high-energy states with higher effective mass and two
lower energy states. Only the two low-energy valley states are
energetically relevant to charge/spin states in QDs. They are
nondegenerate with a splitting energy that depends on the
microscopic details of the interface6–9. The valley states often
affect both the encoding and the read-out of qubits1. Thus,
characterization and control of valley states is important in order
to develop a scalable quantum-computing architecture using
silicon-based QDs.

Here, we report the coherent manipulation of a qubit based on
the two valley states of an electron confined in a silicon quantum
dot. Coherent evolution between the states that have a relatively
small energy splitting of 20 μeV is excited by a fast electrical pulse,
and the results are projected as the occupations of two different
charge states for read-out by a nearby charge-sensing channel.
We carry out the valley qubit operations at multiple charge
configurations of the double quantum dot device. The depen-
dence of coherent oscillations on pulse excitation level and
duration allows us to map out the energy dispersion as a function
of detuning as well as the phase coherence time of the valley
qubit. The energy structure of the valley qubit is similar to
spin–charge hybrid qubits5, 10, 11, and it shares a desirable
resistance to charge noise. The experiment shows that the valley
states being manipulated are good quantum numbers. The
coherent manipulation presented here also provides a method of
measuring valley splittings that are too small to probe with
conventional methods of magnetospectroscopy.

Results
Device description. Experiments were performed in a device
lithographically identical to the device shown in Fig. 1a. After
accumulating a 2-dimensional electron gas (2DEG) with a global
top gate, quantum dots, where individual electrons can be trap-
ped, are formed by applying confining voltages (labeled VL, VR,
etc.) to the side gates. A charge-sensing quantum point contact
(QPC), runs adjacent to the dots with a current, IQPC. This
current is sensitive to the electron occupation of the dots,
and abrupt spikes or dips in the transconductance, Gε � dIQPC

dVε
,

represent transitions between charge configurations as an electron
is either loaded into, unloaded from, or transferred between the
dots in response to a small change in Vε≡VL−VR. The device was
tuned into a triple dot regime. A charge stability diagram (where
Gε is mapped out as a function of VL and VR) can be found in
Fig. 1b. The regions between charge transitions are labeled by a
three-number tuple with the number of electrons in the left,
middle, and right dots, (NL, NM, and NR, respectively).

To operate as a qubit, the device is tuned close to a so-called
quadruple point, where there is a charge transition from the
(0,1,1) configuration to the (1,0,1) configuration. It is important
to point out that although there are the three available quantum
dots, the states of only a single electron and its transition between
the left and middle dots are used to produce qubit behavior. For
this reason, and to emphasize the motion of the single electron, in

the detailed stability diagram in Fig. 1c and subsequently in the
body of the text, we relabel these charge configurations as (0,1)
and (1,0), respectively, where the tuple, (NL, NM), represents the
left and middle dot electron occupation numbers. Furthermore,
we label the electron states associated with the charge configura-
tions (0,1) and (1,0) as |M〉 and |L〉, respectively, with subscripts
added as needed to refer to specific valley states within these
charge configurations.

For qubit operation, the primary control parameter is the
middle-left dot detuning, ε, which is a measure of potential
energy asymmetry between the two dots induced by the confining
gates. Adjusting ε allows for the electron to transfer between
the (0,1) and (1,0) states. As defined in this paper, at positive
detuning, the (1,0) configuration is energetically favored and at
negative detuning the (0,1) configuration is favored. When
detuning is zero, the two configurations are equally favored. This
case corresponds to the detuning line in Fig. 1c, represented by a
dotted line at the boundary between the (1,0) and (0,1) regions of
the stability diagram. The solid arrow represents the directions of
increasing and decreasing ε.

If no valley splitting is present, or if its value is too large to be
relevant to the dynamics, the energy spectrum of the system as a
function of detuning would be that of a standard charge qubit as
shown in Fig. 2a. In contrast, Fig. 2b shows the spectrum in the
presence of a small valley splitting in the left dot, as in the case in
our experiments.

When strongly detuned into the (1,0) charge configuration, the
ground and the first excited valley states, Lv1j i and Lv2j i,
respectively, are separated by the valley splitting δ. The qubit
subspace will be the Hilbert space spanned by these two valley
states. A model Hamiltonian describing this system, on the basis
of {|M〉, Lv1j i, and Lv2j i} is given by

H ¼

ε
2 Δ1 Δ2

Δ1 � ε
2 0

Δ2 0 � ε
2 þ δ

0
BBBBBBBB@

1
CCCCCCCCA
; ð1Þ

where Δ1(Δ2) is the interdot tunnel couplings between the middle
dot and the left ground (excited) state.

Interference and coherent oscillations between valley states.
To perform the experiment, positive voltage square pulses were
applied to VL in Fig. 1c in order to induce an interdot electron
transition. Applying such a pulse results in the clear interference
fringes present in the stability diagram in Fig. 1c. Applying a
pulse to only a single gate may temporarily bring the system to a
part of voltage space outside of either the (0,1) or (1,0) region.
However, because the tunneling rates to the electron reservoirs
are slow relative to the pulse durations, which are a few nano-
seconds at the longest, the electrons are unlikely to be either
loaded or unloaded from the dots during the pulse. Therefore, in
Fig. 1c, the detuning line is extended into the regions (0,0) and
(1,1) to represent that these states are generally invisible to the
qubit during its operation time, but that this line continues to
represent the boundary between voltage regions, where (0,1) and
(1,0) are preferred relative to one another. The effect of applying
a simultaneous negative voltage pulse to VR is discussed in
Supplementary Note 2.

The generated pulses were nominally square, starting at an
initial detuning, ε0, and nominally rising to a detuning of εp for a
pulse time tp. But, crucially, in practice they had a nonzero rise
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time, trise. To a reasonable approximation, the detuning rises at a
constant rate, v � dε

dt �
εp�ε0
trise

. The pulse then reaches a maximum
detuning, εmax, where it remains for a time tmax, corresponding to
the remainder of tp. (If the rise time is longer than tp, then tmax

might be zero. If tp> trise, then εp= εmax.) After tp has elapsed,
the detuning returns to ε0, again at a rate of roughly v, where it
remains for 30 ns until the next pulse.

The clear interference fringes in Fig. 1c induced by a short
pulse of 500 ps are a signature of the coherent evolution between
the two valley states in the left QD during the pulse duration
(detailed discussion in next section). We believe that the energy
splitting in the middle dot is much larger, as no interference
can be observed when the pulse is pumped in the opposite
direction.

Fixing the DC voltages of the side gates at a point within the
interference region, coherent time domain oscillations of Gε are
observed by varying pulse width. Figure 1d shows the differential
measurement QPC current, which relates to the probability of
being in state (0,1), |M〉, at the end of operation time, as a
function of tp, for a given pulse height. Also shown as a solid line
is a decaying sinusoid fit used to extract both the oscillation
frequency and decay times, the latter of which serves as a lower
bound on T�

2 .

Principle of the valley qubit operation and read-out. The qubit
operation is outlined in Fig. 2c–f. To avoid possible confusion,
we emphasize here, for this experiment, that the left QD is the
operation QD, where qubit operation takes place, and the middle
QD is the measurement QD, where the projective read-out is
performed. In step 1, the system begins at a negative initial
detuning, ε0, with the electron in the ground state, |M〉. Then, so
long as the level anticrossing between |M〉 and at least one of the
left states is highly gapped relative to

ffiffiffiffiffi
�hv

p
, the pulse adiabatically

brings the electron from state |M〉 to the left dot. As the pulse
continues to rise, the system is brought nonadiabatically through
a level anticrossing that occurs at detuning εx. Near this
anticrossing, the lower two eigenstates are both superpositions of
Lv1j i and Lv2j i, a feature that is indicated in yellow on the spectra
in Figs. 2b, 3b and d. The total effect of these two transitions is a
unitary transformation that loads the state |M〉 into a state
approximately given by eiΦ 0ð Þ cos θload

2

� �
Lv1j i þ eiϕload sin θload

2

� �
Lv2j i� �

,
where θload and ϕload are angles in the Bloch sphere defined by
Lv1j i and Lv2j i, and Φ(0) is an overall phase that does not affect
measurement. This unitary transformation as well as the overall
loading fidelity into the left subspace are dependent on v.

In step 2, once the pulse reaches its maximum detuning, εmax,
the system is far detuned toward the left dot, and assuming that

Gε (nA V–1)
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Fig. 1 Observation of coherent effects. a A scanning electron micrograph of the quantum-dot-forming region in a lithographically identical device: The three
circles represent the estimated location of three dots. The squares represent ohmic contacts. The grey scale bar pictured at left represents 500 nm. b The
charge stability diagram, which maps out the ground state electron occupancy of the three dots as a function of side gate voltages: c A close-up of
interference fringes at the (0,1,1)↔(1,0,1) charge transition: A 500 ps square pulse with an amplitude of +30mV is placed on VL. The 0 detuning line is
shown as a dotted line and the detuning axis is shown as a solid arrow. d Time domain oscillations: Fixing VL and VR at values within the interference region
and fixing the pulse height at +24mV, the nominal time of the square pulse is varied, resulting in an oscillatory average charge occupation. Error bars
are the one standard deviation range for that data point as taken over 10 averages. Also shown is a fitted decaying sinusoid used to extract a frequency
(4.41± 0.01 GHz here) and decay time (0.90± 0.04 ns), the latter of which serves as a lower bound on T�

2 . A moving average with a window of several
periods of the oscillation has been subtracted prior to fitting to counteract pulse duty cycle effects
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tp> trise, the detuning level is now constant for a time tmax, so the
state will evolve according to the Schrödinger equation as

Ψj i ¼ eiΦ tð Þ a ψ1j i þ e�iΔE12 εmaxð Þ
�h Δtb ψ2j i

� �
: ð2Þ

Given that near εmax, the eigenstates |ψ1〉 and |ψ2〉 are almost
exactly the states Lv1j i and Lv2j i, this may be approximated as

Ψj i ¼ eiΦ tð Þ a Lv1j i þ e�iΔE12 εmaxð Þ
�h Δtb Lv2j i

� �
; ð3Þ

where |ψ1〉 and |ψ2〉 are the ground and first excited state,
respectively, ΔE12 is their energy difference, a and b are the initial
coefficients when εmax is first reached, Δt≡t−trise is the time spent
at εmax, and Φ(t) is a time-dependent overall phase that does not
affect measurement. The axis of control is almost purely along the
z-axis of the Bloch sphere. Therefore, the state processes around
the z-axis at a Larmor frequency given by ΔE12. The effect on the
qubit state of the system being maximally detuned for a time tmax

is approximately given by Rz(Δϕ), where Rz ϕð Þ � eiϕσz and
Δϕ ¼ ΔE12

�h tmax.
In step 3, as the pulse returns to its initial value, ε0, the system

first pulses through the anticrossing at εx, experiencing another
nonadiabatic transition. The system then experiences another

adiabatic charge transition, where the ground state is projected to
|M〉 and the first excited state is projected to the left states. The
net result of this step is that the total phase accumulated, 2ϕload +Δϕ,
is encoded in the probability of the electron returning to the
middle dot, as shown in Fig. 2g. As these two states correspond to
different charge configurations, they are discernible to the QPC,
which collapses the system to one of these two measurement
states. If the electron is measured to have remained in the left dot,
it will remain there until it relaxes back to the ground state. It is
worth noting here that the valley relaxation time in a single QD is
known to be very long, on the order of microseconds12–14, several
orders of magnitude longer than our pulse repetition time.

Step 4, the measurement/re-initialization phase, is much longer
than tp; so its average charge configuration is the primary
contributor to the differential transconductance, Gε. Therefore,
Gε is sensitive to the probability of the electron finally being in
state |M〉 and ultimately to Δϕ. Further enhancing the sensitivity
of the QPC is the fact that as the charge relaxation rate, T1,
is likely longer than the measurement/initialization time of 30 ns,
the read-out will be most pronounced in the so-called high
visibility region, where the fastest relaxation channel of the
electron from the left dot back to the middle dot is by first having
the electron tunnel out of the dots ((1,0)→(0,0)) and then a
different electron tunneling directly back into the middle dot
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Fig. 2 Principle of operation and read-out. a The two-state spectrum of a standard charge qubit Hamiltonian with tunnel coupling Δ, and without valley
states. b The three-state spectrum in the presence of a small valley splitting, δ (Not to scale). The same coloring is used in these spectra as in Fig. 3b and d.
c–f The steps of qubit operation: The detuning as a function of time is shown as a solid green line in relation to the three state spectrum (solid blue line
shows a realistic pulse profile). The blue shaded region of time is the portion of the pulse that makes up a given step. Also shown is the evolution of the
state during each step within the Bloch sphere of the left dot valley states. The paths have been colored in the same manner as the spectra. c In step 1, the
loading step, the detuning ramps up over a time, trise, from its initial value, ε0, through a level crossing at εx. The final state has Bloch coordinates θload and
ϕload. d In step 2, the accumulation step, the detuning stays at εmax (εp for pulses of sufficient duration) for a time tmax, during which time it accumulates a
dynamical phase Δϕ. e In step 3, the read-out step, the detuning returns to ε0. Two state evolutions with different tmax are shown, one labeled with a yellow
circle and the other with a blue square. f In Step 4, the measurement/re-initialization step, the system relaxes to |M〉, aided by temporarily transitioning to
charge configuration (0,0). g The simulated probability of the electron returning to state |M〉 at the end of read-out is plotted along with cos(Δϕ + 2ϕload)
as a function of tmax, showing that the total accumulated phase is encoded in the return probability. Also marked are the two values of tmax for the evolution
pathways displayed in f and g. The system marked with a yellow circle has accumulated an additional π radians of phase relative to the system marked with
a blue square
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((0,0)→(0,1)). In such a region, the total charge occupancy of
the dots temporarily changes, which enhances read-out sensitivity
as the QPC is more sensitive to the total number of electrons
in the dots than to their positions within the dots. A more
detailed discussion of this process is discussed in Supplementary
Note 2. After this relaxation process, the qubit has been
re-initialized to |M〉.

We point out that the techniques used in this work to probe
valley states bear a strong experimental and formal similarity to
the electronic beam-splitter methodology used to probe the (1,1)
S-(1,1)T_ of a double quantum dot15.

Detuning-dependent coherent oscillations. Figure 3a shows
the dependence of the coherent time domain oscillations on εp.
In Fig. 3b, the energy spectrum is plotted over a detuning
range that matches the one explored in Fig. 3a. Fig. 3c shows
a simulated lock-in signal produced by time-evolving the
Schrodinger equation under the influence of a square pulse with a
finite rise time as a function of εp and tp.

The fixed parameters in the Hamiltonian, Δ1, Δ2, and δ, are
determined by matching the observed frequency of time domain
oscillations to the numerically calculated value of ΔE12 as a
function of ε using a weighted least squares fit. In Fig. 3d,
the observed frequency is plotted vs. detuning along with the
calculated value of ΔE12.

An example of the decaying sinusoidal curve fit used to
extract the observed frequency is presented in Fig. 1d as the solid

green line. The fit was restricted to data where tp was greater than
500 ps, to allow the pulse to significantly exceed its rise time,
which is estimated to be about 100–200 ps. By making this
restriction, a change in the total pulse time, Δtp, leads directly to a
change in the time spent at the maximum detuning, Δtmax. The
additional pulse time should, therefore, contribute directly to
additional phase accumulation at detuning εp. The extracted
frequency can then be used to map out the detuning dependence
of ΔE12, as shown in Fig. 3d.

The extracted Hamiltonian parameters in general depend on
the lever arm, α, which, based on magnetospectroscopy of a
lithographically identical device in a similar configuration, we
estimate to be 3%. The only extracted parameter that is nearly
independent of α is δ, which is measured reliably to be ~5.6 GHz
across a variety of assumed α’s. This is because δ is the value that
the observed frequency approaches as the dot becomes highly
detuned (see the dotted line in Fig. 3d).

Through simulation, we find that the specific value of α
assumed and the corresponding values for Δ1 and Δ2 in the
Hamiltonian affect the details of evolution in a detuning region
(εp< εx) where dΔE12

dε

�� �� is large. In this region, susceptibility to
charge noise is too great to observe coherence, given the noise
level of our experimental setup. In the highly detuned region
(εp> εx) where ΔE12 approaches δ, dΔE12

dε

�� �� is small; hence, the
qubit is protected against charge-noise-induced decoherence.

The increased coherence times in a wide region of nearly
constant dispersion is a feature shared with recently reported
spin–charge hybrid qubits, which rely on the small correlation
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energy of singlet/triplet-like states. However, in hybrid qubits,
which tend to be guided by Hamiltonians where 2Δ1, 2Δ2< δ, the
frequency approaches a minimum close to the detuning line.
Instead, in our system, the qubit behavior does not appear
until deeply detuned into the left dot, and, even then, it never
exhibits the pronounced chevrons as the pulse approaches the
detuning line.

Phase coherence. From the decaying sinusoid fit of the QPC
signal, one can extract the decay time of the oscillations, which is
a lower bound on the coherence time T�

2 . As shown in Fig. 4b,
there is a peak in the observed coherence time at εp of a few
hundred μeV. For comparison, the measured dispersion is dis-
played in Fig. 4a. At smaller detuning levels, the coherence time
decreases rapidly. This is likely due to being in a region of rapidly
increasing dΔE12

dε

�� ��, which will enhance the decohering effect of
charge noise. Eventually oscillations disappear, likely due to not
having experienced the nonadiabatic portion of the pulse.

At higher detuning, the coherence time decreases gradually.
This is likely due to the increased tendency of the system to
transition to the nuisance (1,1) charge configuration as that state
is made more favorable relative to the (1,0) configuration in
which the qubit operates. At higher pulse amplitudes, the

potential barrier between the left dot and the electron reservoir
is lower, potentially exposing the electron to the effects of the
environment.

The maximum observed coherence time is about 1.5 ns. We
believe that it is limited by the system tunneling, as the pulse is
not applied parallel to the detuning direction. As will be discussed
in Supplementary Note 2, there is a evidence that the actual
decoherence time could be longer, if the pulse-induced tunneling
to the reservoir can be suppressed.

Discussion
It is important to point out that coherent oscillations with similar
frequencies were observed at two consecutive anticrossings.
Such a behavior was present not only at the quadruple point
connecting the (0,1,1) and (1,0,1) charge regions but also at that
connecting the (1,1,1) and (2,0,1) regions, as can be seen in
Supplementary Fig. 1a. The details of this behavior may be found
in Supplementary Note 1. The presence of the behavior at
multiple consecutive anticrossings provides clues as to the nature
of the excited state used in the qubit operation. For instance, the
states whose coherent manipulation is observed here are unlikely
to be spin-based, as the spectrum of energies associated with spin
degrees of freedom is highly dependent on electron number parity.

Furthermore, the possibility of the qubit space being composed
of orbital states is precluded by the magnitude of δ. As the
charging energy of our QD is about 2.5 meV, a QD radius of 40
nm is expected, which would correspond to the first excited
orbital state of 0.4 meV above the ground state. Such splitting is
an order of magnitude higher than δ. In addition, the energy
splitting observed for the (1,1)–(2,0) transition is very close to
that for the (0,1)–(1,0) transition (both are about 6 GHz). If these
were orbital excited states, they would change significantly, and
tend to decrease, as the electron number is increased. That the
splitting remains constant is consistent with the report that
valley–orbit coupling is unaffected by the occupation number16.
Also, the control of oscillations with an energy splitting well
below the thermal energy scale suggests that the valley states
being manipulated are good quantum numbers. We therefore
conclude that the qubit behavior reported here is the result of
coherent manipulation of the valley states of silicon.

The magnitude of the energy splitting between valley states in a
given silicon-based device is an important value, as it influences
whether the device will be suitable for many exchange-based
qubit architectures, which in general requires the presence of
Pauli spin blockade to perform spin-to-charge conversion. Valley
splittings that are too small can disrupt spin blockade by
providing an additional low-energy state for an electron to tunnel
into with the same spin configuration as that which would
otherwise be blockaded. Often the magnitude of the valley
splitting in a device is measured using magnetospectroscopy.
However, the magnitude of the valley splitting reported here in
both charge configurations is below the measurement threshold
for such techniques. The coherent measurements performed here
could serve as a valuable method of probing the magnitude of
certain smaller valley splittings.

Finally, as a host candidate for quantum information
processing, qubits operating in a region of detuning invariant
energy splitting, such as hybrid qubits and the valley qubit
reported here, offer a promising combination of fast operation
and resistance to noise.

Methods
Sample preparation. The sample fabrication is similar to that described in a recent
study17. Devices were fabricated on a SiGe substrate consisting of a 16 nm silicon
well, a 40 nm Si0.7Ge0.3 spacer, and a 2 nm Si cap. All devices were fabricated by
first patterning Ti/Au depletion gates on the substrate. Following this, 100 nm of
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Fig. 4 Dispersion and decoherence. a The dispersion extracted from the
transconductance data in Fig. 3a: The points are the frequencies extracted
by applying a decaying sinusoidal fit to each cut in εp. The background is the
magnitude of the power spectral density of those same cuts, calculated
using Welsh’s method. b The extracted values of the decay time from the
sinusoidal fit: This value is actually a lower bound on phase decoherence
time T�

2 . The decay time increases rapidly at first and then begins to
decrease. The longest value directly observed is 1.5 ns. The height of the
lines in both a and b indicates the 1.5-σ standard errors derived from the
numerically estimated covariance matrix
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Al2O3 was grown using atomic layer deposition to provide an insulating layer.
Finally, a 300 nm global top gate was patterned over the device area. Ohmic
contacts, depicted as squares in Fig. 1a, are connected to the source and drain of the
QPC and are used to bias the charge sensor as well as measure its current. The QPC
measures the average charge occupancy of the dots, which is dominated by the
occupation configuration during the measurement phase, which comprises upward
of 90% of the duty cycle. The QPC transconductance current is measured via a
lock-in measurement, where VL and VR are simultaneously varied in order to
obtain Gε.

Simulation. The evolution of the qubit was examined numerically by time evolving
the Schrodinger equation in the density matrix formalism18:

dρ
dt

¼ � i
�h
H; ρ½ �: ð4Þ

The expected charge state is given by the probability of being in the middle dot:
Tr(ρ|M〉〈M|). The simulation explicitly included neither dephasing nor charge
relaxation, and could therefore not make a full prediction of the average charge
configuration. Instead, the final charge state after 4 ns of operation time is used as a
proxy for the average QPC current. As this final time is well into the measurement
period for all operation times considered, and, as the charge relaxation time T1 is
believed to be relatively slow, this state is taken to be a representative of the pulse’s
effect on the average charge configuration observed by the QPC and therefore of
the average QPC signal.

Simulation of the transconductance signal was achieved by sampling the
simulated ε0 from ε0 + Asin(x), where the spacing in x was even between � π

2 andþ π
2. Then, the calculated average charge occupancy from these simulations was

numerically integrated against sin(x) to simulate the real part of the QPC signal.
The experimentally obtained transconductance, such as that displayed in Figs. 1
and 3, is the real part of a lock-in signal with a modulation frequency of 132 Hz.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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