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INTRODUCTION

Time- to- event analysis is an important tool in the phar-
macometric toolbox to analyze event- type data and predict 
the probability of an event up until at a certain time pos-
sibly accounting for covariates and/or treatment metrics. 
Event- type data are one of the closest representations of 

clinical outcomes experienced by patients and therefore 
relevant and informative for the main objective of drug de-
velopment. An event is any defined and delimited occur-
rence or experience at a specific timepoint, for example, a 
seizure, relapse or exacerbation, or death. Time- to- event 
analysis not only considers the occurrence of an event but 
also its timing. Time- to- event analysis is therefore favored 
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Abstract
Parametric time- to- event analysis is an important pharmacometric method to 
predict the probability of an event up until a certain time as a function of covari-
ates and/or drug exposure. Modeling is performed at the level of the hazard func-
tion describing the instantaneous rate of an event occurring at that timepoint. We 
give an overview of the parametric time- to- event analysis starting with graphical 
exploration by Kaplan– Meier plotting for the event data including censoring and 
nonparametric hazard estimators such as the kernel- based visual hazard com-
parison for the underlying hazard. The most common hazard functions including 
the exponential, Gompertz, Weibull, log- normal, log- logistic, and circadian func-
tions are described in detail. A Shiny application was developed to graphically 
guide the modeler which of the most common hazard functions presents a simi-
lar shape compared to the data in order to guide which hazard functions to test 
in the parametric time- to- event analysis. For the chosen hazard function(s), the 
Shiny application can additionally be used to explore corresponding parameter 
values to inform on suitable initial estimates for parametric modeling as well as 
on possible covariate or treatment relationships to certain parameters. Moreover, 
it can be used for the dissemination of results as well as communication, training, 
and workshops on time- to- event analysis. By guiding the modeler on which func-
tions and what parameter values to test and compare as well as to assist in dis-
semination, the Shiny application developed here greatly supports the modeler in 
complicated parametric time- to- event modeling.
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over other analysis techniques such as logistic regression 
because of its incorporation of the event time as outcome. 
In addition, time- to- event analysis handles censoring of 
data appropriately.1,2 Censoring occurs when the event 
is not observed because it is outside of the observation 
time (left-  or right- censoring) or between two observa-
tions (interval censoring). In clinical trials, this can hap-
pen because of end of trial or follow- up, lost to follow- up, 
or withdrawal from the study. Individuals are commonly 
right- censored, that is, the event time is larger than the 
censor time. Left- censoring, when the event time is less 
than or equal to the censor time, is less common, whereas 
interval- censoring, when the event time is within a known 
time interval between two observations, occurs more 
often. It is important to be aware of competing risks for 
the event under analysis when considering censoring,3,4 
but this is outside of the scope of this tutorial.

Because of the special nature of the data, time- to- event 
analysis or survival analysis relies on two main functions. 
The two main functions in time- to- event analysis are the 
survival (S) function, quantifying an individual's probabil-
ity of reaching a timepoint without an event, and the haz-
ard (h) function, quantifying the instantaneous rate of the 
event happening at that timepoint. Although the survival 
function is bounded to [0,1], the hazard function's lower 
boundary is 0, but it has no upper boundary ([0,∞>). The 
survival function relates to the hazard function as shown 
in Equation  (1), exponentiating the negative cumulative 
hazard function.1

The product of the hazard function and the survival func-
tion yields the probability density function of the event 
times.

Analysis of event time data can be done empirically, semi-
parametrically, and parametrically. The simplest approach 
is empirical and descriptive in nature. The nonparamet-
ric Kaplan– Meier estimator is a common example.5 The 
impact of predictive covariates such as demographics or 
treatment group on the event time as outcome has to be as-
sessed by analysis of the corresponding subset of the data. 
Semiparametric analyses such as the Cox proportional haz-
ard model6 do not define the baseline hazard function and 
only define the event time in terms of covariates and cor-
responding estimated coefficient/parameter, from which a 
hazard ratio can be calculated. Although semiparametric 
time- to- event analysis does not require assuming a hazard 
function, other assumptions have to be made on, for exam-
ple, proportional hazards, proportional odds, or acceler-
ated failure time where the hazards, odds, or failure times 

are assumed to be related to each other by a constant fac-
tor such as the hazard ratio.7 In addition, semiparametric 
analyses are limited to the observed timepoints in the data 
and will have output that corresponds to those timepoints, 
such as the stepwise Kaplan– Meier curve. In contrast, a fully 
parametric approach defines the underlying baseline haz-
ard function in addition to the covariate coefficient and the 
baseline hazard function and can be used for simulations 
in contrast to semiparametric approaches. Therefore, it is 
a more complete method to characterize the survival and 
hazard functions. A comprehensive introduction to time- to- 
event or survival analysis can be found elsewhere1 as well as 
a tutorial to its application on pharmacometrics.8 To build 
on that tutorial, the scope of this work is describing the most 
commonly used hazard functions in parametric time- to- 
event pharmacometric analyses and supporting model de-
velopment using those hazard functions.

The hazard function characterizing the outcome distri-
bution is at the core of parametric time- to- event analysis. 
Especially when analytical solutions are not feasible, for 
example, with time- varying components, modeling takes 
place at the hazard function level. Also, coefficients quan-
tifying the effect of covariates and treatment are modeled 
at the hazard level. It is therefore convenient to graphi-
cally explore the observed data and model diagnostics at 
the hazard level. Recent methods have been proposed to 
characterize the shape of the hazard profile to assist in 
time- to- event model development. These nonparametric 
methods use estimators for the hazard based on histogram 
or smoothing functions.9– 12 The hazard- based visual pre-
dictive check (VPC) estimates the hazard over time based 
on the observed data nonparametrically using a binned 
hazard estimator or a kernel method with either local or 
global bandwidth.11 The nonparametric hazard estimates 
reflecting the observed data are subsequently overlaid 
with (parametric) simulations from the model to diag-
nose the model fit. The kernel- based visual hazard com-
parison (kbVHC) in contrast is a simulation- free method 
that uses the nonparametric kernel estimator of the haz-
ard to calculate a 95% confidence interval of the hazard 
over time based on the observed data.12 The parametric 
model- predicted hazard over time can subsequently be 
overlaid with the confidence interval reflecting the ob-
served data. Both methods have been proposed as model 
diagnostics; however, they can also be used to explore the 
(raw) data graphically as an important first step in phar-
macometric model development. Here, we use the kbVHC 
because its confidence interval reflects the variability in 
the observed data, but the hazard- based VPC can be used 
interchangeably.

Theoretically, any user- defined function can be used 
to describe the hazard, and hazard functions can range 
from a simple, one- parameter constant to multiparameter, 

(1)S(t) = e−∫
t
0
h(t)
dt

(2)f (t) = S(t) ⋅ h(t)
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nonmonotonic, or periodic functions. The choice of an ap-
propriate hazard function can be challenging. Also, more 
complex hazard functions can be sensitive to the initial 
estimates for the parameters provided to the estimation 
algorithm. In addition, as time- to- event analyses are very 
often collaborations with clinicians or other scientists 
with less experience in modeling, it would be helpful to 
visualize hazard functions to make the abstract concept 
more graspable. The objective of this tutorial is therefore 
to support time- to- event model building by developing 
a Shiny application to find the right hazard function(s), 
including their appropriate initial estimates, to explore 
parameter sensitivity to inform on, for example, covariate 
or treatment relationships, and to assist in dissemination.

TIME- TO - EVENT ANALYSIS 
WORKFLOW

The workflow of a typical time- to- event analysis is shown 
in Figure 1. Generally, the first step in data analysis is ex-
ploration of the data either graphically or numerically. 
One way to graphically explore the observed individual 
event times is by showing the follow- up time including 
occurring event(s) per subject over time (Figure 2a). In ad-
dition, the survival probability over time in the population 
including censoring can be explored by a Kaplan– Meier 
plot (Figure  2b). A more informative way to graphi-
cally explore the observed data regarding the underlying 
hazard is by using a nonparametric hazard estimation 
methods based on the histogram or smoothing functions 
mentioned previously (Figure  2c).11,12 Similar to, for ex-
ample, assessing one-  or two- compartmental behavior 
in pharmacokinetic modeling by log- linear graphics, the 
nonparametric hazard estimation informs the modeler 

of the shape of the hazard over time and which paramet-
ric functions to test. Thus, a graphical exploration of the 
hazard can be taken forward to the choice of the hazard 
functions to test which shape corresponds to the haz-
ard estimation most. In the case of Figure 2c, the hazard 
shows an increasing and subsequently decreasing pattern 
over time, so hazard functions capable of that dynamic, 
such as log- normal or log- logistic, should be selected to be 
included in model development. The most common haz-
ard functions are discussed in more detail in the “Hazard 
Functions for Parametric Time- To- Event Analysis” sec-
tion. To start model development for the selected hazard 
functions, the initial estimates for the hazard function pa-
rameters need to be chosen, which can be challenging for 
abstract and less- intuitive hazard functions. Here, a Shiny 
application was developed that can be used to that aim to 
explore which parameter values of, for example, the log- 
normal or log- logistic functions lead to a shape similar to 
that of the nonparametric hazard estimation (Figure 2c). 
Similarly, the sensitivity of the hazard over time to certain 
parameters can be explored. This can inform the modeler 
on the modeling strategy, which parameter, for example, 
might be best to start testing covariates or treatment ef-
fects on, especially with a nonparametric hazard estima-
tion of the corresponding subset of the data (e.g., male/
female, treatment/placebo). This is discussed in more 
detail in the “Exploration of Hazard Function Parameter 
Values” section. With the right hazard function(s) and 
corresponding initial estimates to test, model develop-
ment using designated nonlinear mixed- effects modeling 
software can be performed in a well- informed manner. 
Finally, the results of the analysis will be communicated 
and disseminated, for which the developed Shiny applica-
tion can be used as well (“Dissemination Using the Shiny 
Application” section).

F I G U R E  1  Time- to- event analysis 
workflow. White box represents the 
input data, green boxes represent actions 
that can be supported by the proposed 
Shiny application, and blue boxes 
represent actions by other algorithms 
(e.g., nonparametric hazard estimators, 
nonlinear mixed- effects modeling 
software)
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HAZARD FUNCTIONS FOR 
PARAMETRIC TIME- TO - EVENT 
ANALYSIS

The hazard functions are described in detail next and shown 
in Table 1 and Figure 3. The more complicated hazard func-
tions commonly contain a shape parameter (e.g., γ) modify-
ing the curve of the function and a scale parameter (e.g., λ).

Exponential model

The constant hazard function is the simplest hazard func-
tion with no change in the hazard over time (Table  1, 
Figure  3). The survival function is described by an ex-
ponential function of minus λ times time, and the prob-
ability density function of the events time, which equals 
the product of the hazard function and the survival func-
tion, shows an exponential distribution. Because of this, 
the constant hazard function is also referred to as the ex-
ponential model in time- to- event analysis. The constant 
hazard function is more restrictive than the semiparamet-
ric Cox proportional hazard function because it assumes 
a constant (baseline) hazard function, whereas the Cox 
model only assumes the proportionality of hazards when 

(undefined) hazard functions do not need to be constant 
as long as they are proportional. It has, for example, been 
applied to characterize the time to positivity in a tuber-
culosis liquid culture assay,13 time to acute idiopathic 
pulmonary fibrosis exacerbations,14 time to recrudescent 
visceral leishmaniasis infection,15 and overall survival of 
patients with acute myeloid leukemia.16

Gompertz model

The Gompertz model is a two- parameter proportional 
hazard function (Table 1, Figure 3).17 It is similar to the 
Cox proportional hazard model but has a defined base-
line hazard function with a shape parameter γ following 
the Gompertz distribution. When γ < 0, the hazard de-
creases over time, whereas y > 0 characterizes an increas-
ing hazard with time. The Gompertz model reduces to 
the exponential model for γ = 0. Its application in phar-
macometrics include the characterization of the time to 
recurrent venous thromboembolism, acute deep vein 
thrombosis, and pulmonary embolism18; the time to an-
algesic remedication after surgery,19– 21 which can be ex-
pected to decrease with time after surgery; and the time to 
recurrent Clostridium difficile infection.22

F I G U R E  2  Graphical exploration of a typical time- to- event data set. The data set was simulated with a log- logistic hazard function 
(λ = 0.002, γ = 1.1) over 365 days for 1000 individuals (IDs) with 10% random right- censoring. (a) Follow- up time (horizontal line), event 
(circle symbol), and censoring (plus symbol) for 100 IDs randomly drawn from the simulated data and ordered on event time; (b) Kaplan– 
Meier plot of the survival probability including censoring (plus symbol) based on the full simulated data set; and (c) kernel- based visual 
hazard comparison showing the nonparametric kernel- based hazard estimate (dashed line) and its 95% confidence interval (shaded area) 
based on the full simulated data set
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Weibull model

The Weibull model is a two- parameter model with flex-
ibility to characterize both increasing and decreasing haz-
ard over time, similar to the Gompertz model, but for the 
shape parameter >1 or <1, respectively.23,24 The Weibull 
model is a more recent addition to time- to- event analysis 
compared with the Gompertz model and shows more flex-
ibility in, for example, characterizing an increasing haz-
ard of which the slope decreases with time. If the shape 
parameter does not vary with covariates, both the accel-
erated failure time and proportional hazard assumptions 
hold, which is unique to this model.1,2 This makes the 
Weibull model attractive for intuitive interpretation by 
nonmodelers regarding the hazard ratio between popula-
tions and a treatment or covariate effect on the survival 
time.

The Weibull model is commonly found in pharmaco-
metric analyses in, for example, time to relapse in mul-
tiple sclerosis,25 time to epileptic seizure,26 time to onset 
of drug toxicity in preclinical experiments with both left-  
and right- censoring,27 and overall survival in patients 
with metastatic colorectal cancer,28 and therefore it is 
also used in more theoretical exercises.12,29,30 An alter-
native parameterization (see Table 1, Figure 3) has been 
observed in the tutorial by Holford8 and the handbook by 
Kleinbaum and Klein1 as well as in applications to time 

to adverse drug events,31 time to anemia,32 and mortality 
time in patients with amyotrophic lateral sclerosis.33 The 
two functions differ by the factor λ and are thus equal at 
λ = 1 (and λ = 0). They collapse for λalternative = λγ. For 
λ > 1, parameterization 1 > parameterization 2 for t > 0, 
whereas 0  <  λ  <  1 results in parameterization 1  < pa-
rameterization 2 for t > 0. The alternative parameteriza-
tion 2 seems to be more unstable and sensitive to initial 
estimates in our experience, running into numerical 
difficulties with the integration routine. With respect to 
reproducibility, it is recommended to include the exact 
formula of the hazard function in the methods in addi-
tion to its name.

Log- normal model

The log- normal distribution is an accelerated failure 
time model, but not a proportional odds or propotional 
hazard model (Table 1, Figure 3).1 The hazard increases 
to a maximum and then decreases over time (non-
monotically), resulting in a log- normal distribution of 
the event time.34 Although it is a two- parameter model  
(𝜇 and 𝜎 as the mean and standard deviation) similar 
to the Gompertz and Weibull models, its parameteriza-
tion is more complex, including the standard normal 
cumulative distribution function Φ.35 This complex 

Model Hazard function
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T A B L E  1  Hazard functions for the 
most commonly used models in time- to- 
event analysis
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parameterization makes an intuitive choice of initial 
estimate challenging. The log- normal model has, for 
example, been applied to time to undetectable levels of 
hepatitis C virus36 and overall survival and progression- 
free survival of patients with metastatic gastrointestinal 
stromal tumors.37

Log- logistic model

The log- logistic distribution allows the hazard to in-
crease for a shape parameter γ > 1, while it decreases 
over time for shape parameter γ ≤ 1 (Table 1, Figure 3). 
If the accelerated failure time assumption holds, the 
log- logistic distribution is a proportional odds model, 
that is, the odds ratio is constant over time.1 The event 
time approximates a log- logistic distribution.34 Similar 
to the Weibull model, the log- logistic model has an al-
ternative parameterization.1 An advantage of the log- 
logistic model over the log- normal model is that is can 

be solved analytically, which decreases run times.38 
However, finding initial estimates remains challenging. 
The log- logistic model has been applied in characteriz-
ing the time to pain response in preclinical experiments 
where it showed better performance compared with 
the Weibull model in run times and predictive perfor-
mance39 as well as in modeling dropout in a metastatic 
colorectal cancer clinical trial28 and progression- free 
survival in anaplastic lymphoma kinase- positive non- 
small cell lung cancer.40

Generalized gamma model

The generalized gamma model with three parameters 
(scale σ, shape λ, and location β) allows for even more 
flexibility than the previous models (Table 1).1 The flex-
ibility of the generalized gamma model allows its hazard 
function to take the most common distributions: increas-
ing over time, decreasing over time, decreasing then 

F I G U R E  3  Hazard over time 
for the exponential model (solid line: 
λ = 0.1; dotted line: λ = 0.05; dashed 
line: λ = 0.01), the Gompertz model 
(λ = 0.02, solid line: γ = −0.01; dotted 
line: γ = −0.001; dashed line: γ = 0.002), 
the Weibull model (λ = 0.02, solid line: 
γ = 0.4; dotted line: γ = 0.8; dashed line: 
γ = 1.2; alternative parameterization in 
gray), the log- normal model (μ = 5, solid 
line: σ = 1.5; dotted line: σ = 1; dashed 
line: σ = 0.75), the log- logistic model 
(λ = 0.02, solid line: γ = 0.9; dotted line: 
γ = 1.1; dashed line: γ = 1.3; alternative 
parameterization in gray), the generalized 
gamma model (solid line: μ = 1.1, Q = 1.5, 
σ = 1.2; dotted line: μ = 1.2, Q = 0.4, σ = 0.5;  
dashed line: μ = 0.9, Q = 1.2, σ = 1; 
dot-dashed line: μ = 0.3, Q = 0.5, σ = 1; 
Prentice parameterization), and the 
circadian model (λ = 0.02, period = 360, 
solid line: amplitude = 0.1, phase = 0; 
dotted line: amplitude = 0.2, phase = 180; 
dashed line: amplitude = 0.5, phase = 0)
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increasing over time (U shape or bathtub), and increas-
ing then decreasing over time (inverted U shape).41 The 
location parameter accelerates the function with time, 
whereas the scale and shape parameter determine if the 
distribution increases, decreases, or has an (inverted) U 
shape over time as demonstrated by Cox et al.41 The gen-
eralized gamma model can collapse into simpler models, 
such as the Weibull (for λ  =  1), log- normal (for λ  =  0), 
or exponential (for λ = σ = 1) model.2,41 The generalized 
gamma model was reparameterized by Prentice to facili-
tate modeling that is incorporated in statistical software 
including R.42,43 It has been applied to characterize the 
time to unassisted breathing or death in patients who are 
critically ill.44 It is, however, more commonly used as a 
tool to find the most appropriate time- to- event model by 
checking the Weibull or log- normal model assumptions 
than used as a final model itself2 because the generalized 
gamma model can reduce to the Weibull and log- normal 
models.1,41 One reason is its complexity, including the 
standardized cumulative gamma distribution function  
(Γ, mean and variance γ > 0).

Circadian or periodical model

A more mechanistic characterization of the instantane-
ous rate of an event over time can be captured by a cir-
cadian or more general periodic function, where the 
hazard changes with the period of the day, month, or 
year (Table 1, Figure 3).12 Especially for clinical trials that 
cover an extended period of time and can be influenced 
by seasonality, such models can become relevant. The cir-
cadian model consists of three additional parameters that 
cover the amplitude, period, and phase of the periodic re-
lationship in the hazard and can be used as multiplicative 
factor for any baseline hazard functions (shown in Table 1 
for the exponential model).

EXPLORATION OF HAZARD 
FUNCTION PARAMETER VALUES

Finding the right hazard functions to test is a first step 
in time- to- event model development (see Figure  1), but 
model algorithms require initial estimates. The more 
complex hazard functions are sensitive to the initial es-
timates the modeler starts with and can easily run into 
numerical issues. This was even observed for different pa-
rameterizations of, for example, the Weibull model. The 
descriptions of the aforementioned models give a first idea 
on the constraints of the parameter values given a certain 
shape (e.g., λ > 1 for an increasing hazard with time in 
the Weibull model), but not on the order of magnitude of 

the parameters. It is beneficial to modelers to familiarize 
themselves with the parameter space in relation to the 
exact shape of the hazard over time of the observed data. 
In addition, it is important to be aware of the sensitivity of 
the hazard over time to the different parameters. Exploring 
the parameter space can inform on which covariate rela-
tionships should be tested, especially when a graphical 
exploration based on a nonparametric hazard estimation 
was performed on subsets of the data for the covariate(s) 
of interest. The same holds for testing the treatment ef-
fect. If, for example, the peak of the hazard over time in 
Figure 2c occurs later in the treatment group compared 
with the placebo group, that effect might be captured best 
by modeling the treatment at the γ parameter, whereas if 
the peak decreases, it might be better captured on the λ 
parameter.

To explore the hazard function parameter values and 
their influence on the hazard over time, we have developed 
a Shiny application (available at https://pqp- uu.shiny apps.
io/Hazar dFunc tions InPar ametr icTTE/ and https://github.
com/rcvan wijk/Hazar dFunc tions InPar ametr icTTE; 
Figure  4 and Supplementary Material) using the Shiny 
package (Version 1.6.0)45 in R (Version 4.0.4) through the 
RStudio (Version 1.4.1106) interface. The application sim-
ulates the six most common hazard functions (exponen-
tial, Gompertz, Weibull, log- normal, log- logistic, circadian; 
Table 1) in a reactive manner, meaning it responds auto-
matically to changes the user makes in the input param-
eters. The impact of covariates/treatment on the hazard 
over time can be explored by an additional set of inputs. A 
covariate/treatment can affect the hazard function propor-
tionally. For each function, a dedicated coefficient input is 
available in the application. Under the proportional hazard 
assumption, a hazard ratio can be calculated by exponenti-
ating the coefficient.18 Alternatively, a covariate/treatment 
can affect the hazard function's individual parameters for 
which the application has a relative input per parameter. 
Both slider and numerical Shiny input widgets are built 
into the application for function parameters and covariate/
treatment effect as well as for the simulation time to give 
the user full control. For each function, a figure based on 
the reactive simulation is assigned to a reactive function 
that is rendered to display in the application and made 
available in tiff format through a download handler. The 
Shiny application was code reviewed and tested inde-
pendently by two researchers.

Figure 4 shows an overview of the Shiny application. 
Sliders or numerical input for the hazard function param-
eters (Figure  4a) and the covariate/treatment effect on 
those parameters (Figure 4b) can be used to simulate the 
hazard over time profile in the graphical panel (Figure 4c). 
With the nonparametric hazard estimation based on the 
observed events, the right functions showing a similar 

https://pqp-uu.shinyapps.io/HazardFunctionsInParametricTTE/
https://pqp-uu.shinyapps.io/HazardFunctionsInParametricTTE/
https://github.com/rcvanwijk/HazardFunctionsInParametricTTE
https://github.com/rcvanwijk/HazardFunctionsInParametricTTE
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shape can be readily selected. Based on Figure 2c, either 
the log- normal or log- logistic model would be best to de-
scribe the data. In addition, the input parameters can be 
updated to improve the shape toward the observed data. 
These values can then be used as initial estimates for the 
nonlinear mixed- effects modeling software. For the log- 
normal and log- logistic models, the parameter values 
were adjusted (Figure  4a) to approximate the nonpara-
metric hazard shape (compare Figure 4c with Figure 2c), 
and these values can now be used as initial estimates into 
the parametric time- to- event algorithm. Changing the 
parameters using the sliders will also illustrate the sen-
sitivity of the shape of the function to different parame-
ters. In addition, the covariate/treatment effect sliders can 
even be used to explore which parameter should be tested 
for covariate and/or treatment effects. Overall, a better 

understanding of the meaning and impact of the param-
eters will result from the exploration of the hazard func-
tions using the Shiny application developed here, which 
will improve the following model development steps.

DISSEMINATION USING THE 
SHINY APPLICATION

Time- to- event analysis in general and the hazard func-
tion specifically are abstract concepts that are difficult to 
intuitively understand by nonexperts. Dissemination of 
the time- to- event projects can be supported by informa-
tive graphics. One example is the Kaplan– Meier VPC, 
which overlays the time- to- event observations with a 
prediction interval based on a high number (e.g., 500 or 

F I G U R E  4  Shiny application with 
(a) slider panel for the hazard function 
parameters, (b) slider panel for covariate/
treatment effect on the hazard function 
parameters, and (c) the corresponding 
hazard over time profiles, here illustrated 
for log- logistic and log- normal functions
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1000) of simulated time- to- event data sets using the final 
model.19 The advantage of the Kaplan– Meier VPC is that 
it shows the model performance with a graphic com-
monly used and understood. However, the simulation- 
based technique is not without limitations, including a 
longer run time and less sensitivity to more complex haz-
ard functions.12 In principle it is better to communicate 
at the level where modeling decisions take place on, for 
example, treatment and covariate effects. When develop-
ing covariate models in pharmacokinetics, the covariate 
relationship to the pharmacokinetic parameter such as 
clearance is presented in addition to the concentration- 
time profile. The same holds for the hazard function, 
albeit complex. To aid with that complexity, the Shiny 
application developed here can be used. In presentations 
or workshops, the different hazard functions can be visu-
alized as well as the meaning and impact of the param-
eters on their shape. The Shiny application also includes 
the possibility to export the created figures that can be 
used in further communication. In addition to specific 
project dissemination, the Shiny application can be used 
in educational programs teaching time- to- event analysis.

DISCUSSION AND CONCLUSION

We have developed a Shiny application to find the right 
hazard function(s) to test in time- to- event modeling, ex-
plore the influence of the parameter values on the hazard 
over time to inform on initial estimates and possible co-
variate or treatment relationships to test, and support the 
dissemination of project results.

Time- to- event modeling is an important method in the 
toolbox of the pharmacometrician. It is an excellent tool 
to characterize not only the occurrence of a clinical (or 
preclinical) event but also its time as well as the impact 
of censored data. That quantitative relationship is essen-
tial for interpretation of treatment and covariate effects 
and translation to unknown phases in drug development, 
clinical situations, or populations. As time- to- event mod-
eling and quantification of treatment and covariate effects 
takes place at the hazard level, the hazard functions at the 
pharmacometrician's disposal must be well understood. 
Combining recently developed methods to graphically ex-
plore the time- to- event data by hazard estimators11,12 with 
knowledge of the theoretical hazard functions is essential 
for time- to- event model development. The Shiny applica-
tion developed here assists in that understanding.

The hazard function is an essential element in para-
metric time- to- event modeling, but other elements are 
important to address as well. Dropout that is nonrandom 
between, for example, the treatment and the control group, 
and therefore informative on the treatment effect, should 

be considered.46 The Shiny application developed here is 
limited to visualize informative dropout, which can be de-
tected more readily in, for example, Kaplan– Meier curves 
displaying dropout as right- censoring. Another element 
that complicates time- to- event modeling is time- varying 
elements such as covariates or treatment. Although the 
Shiny application developed here could visualize peri-
odic hazard functions through, for example, the circadian 
function, it was not designed to detect time- varying co-
variate relationships in parametric time- to- event analysis. 
A combination of tools is at the disposal of the pharmaco-
metrician to elucidate the more complex relationships in 
drug development to which we add this Shiny application.

In conclusion, we described in detail the most common 
hazard functions including mathematical and graphical 
representation and developed a Shiny application to sup-
port time- to- event modelers to start model development 
in a well- informed manner as well as offer graphics to aid 
in the dissemination of results.
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