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OBJECTIVE—Recent data demonstrated that glucose sensing
in different tissues is initiated by an intracellular redox signaling
pathway in physiological conditions. However, the relevance of
such a mechanism in metabolic disease is not known. The aim
of the present study was to determine whether brain glucose
hypersensitivity present in obese Zücker rats is related to an
alteration in redox signaling.

RESEARCH DESIGN AND METHODS—Brain glucose sens-
ing alteration was investigated in vivo through the evaluation of
electrical activity in arcuate nucleus, changes in reactive oxygen
species levels, and hypothalamic glucose-induced insulin secre-
tion. In basal conditions, modifications of redox state and
mitochondrial functions were assessed through oxidized gluta-
thione, glutathione peroxidase, manganese superoxide dis-
mutase, aconitase activities, and mitochondrial respiration.

RESULTS—Hypothalamic hypersensitivity to glucose was char-
acterized by enhanced electrical activity of the arcuate nucleus
and increased insulin secretion at a low glucose concentration,
which does not produce such an effect in normal rats. It was
associated with 1) increased reactive oxygen species levels in
response to this low glucose load, 2) constitutive oxidized
environment coupled with lower antioxidant enzyme activity at
both the cellular and mitochondrial level, and 3) overexpression
of several mitochondrial subunits of the respiratory chain
coupled with a global dysfunction in mitochondrial activity.
Moreover, pharmacological restoration of the glutathione hy-
pothalamic redox state by reduced glutathione infusion in the
third ventricle fully reversed the cerebral hypersensitivity to
glucose.

CONCLUSIONS—The data demonstrated that obese Zücker
rats’ impaired hypothalamic regulation in terms of glucose sens-
ing is linked to an abnormal redox signaling, which originates
from mitochondria dysfunction. Diabetes 58:2189–2197, 2009

I
t is well established that the brain has a critical role
in regulating the energy needs of the body (1). Both
carbohydrate and lipid stores are monitored by the
brain using metabolic, hormonal, and neural signals

from the periphery (2,3). These signals enter the brain and
trigger neuroendocrine and autonomic responses that
maintain energy homeostasis (4,5). Among the metabolic
signals, glucose has long been identified and the physio-
logical relevance of hypothalamic glucoresponsive neu-
rons has been directly demonstrated (6). The molecular
mechanisms underlying the glucose responsiveness of
neurons in the hypothalamus exhibit �-cell analogy involv-
ing GLUT2, glucokinase, and KATP channels (7–10). Re-
cently, a novel signaling pathway involving mitochondrial
reactive oxygen species (mROS) was identified (11–13).
Both pancreatic and hypothalamic studies pointed to
mROS as a necessary signal to initiate the response to
“glucose sensing” (e.g., insulin secretion). These studies
suggest that a finely controlled mROS production depend-
ing on mitochondrial activity might be considered as a
master physiological messenger in metabolite-sensitive
cells.

Obesity is a major health problem in Western societies
coupled with a high risk of developing insulin resistance.
Rodent experimental models of obesity display impaired
metabolic and hormonal brain sensing (14). Recent work
demonstrated that the alteration of the hypothalamic
glucose-sensing mechanism was sufficient to induce dra-
matic effects on energy balance correlated to mitochon-
drial abnormalities (6,15). Zücker rats exhibit a strong
presence of obesity and an insulin resistance with dra-
matic autonomic disturbances, that is, modification of the
sympathovagal balance (16,17). This model is also charac-
terized by cerebral hypersensitivity to glucose, which
initiates an abnormal vagus-induced insulin secretion
(18,19). In this study, we set out to determine the role of
redox signaling in hypothalamic hypersensitivity to glu-
cose in this model of obesity. In addition, hypothalamic
electrical activity has been characterized and shown to be
correlated to aberrant mROS levels, redox state, and
mitochondrial activity. Finally, restoration of the redox
state fully reversed the cerebral hypersensitivity to
glucose.

RESEARCH DESIGN AND METHODS

Genetically obese (fa/fa) and lean (Fa/?) male Zücker rats (7 weeks old;
Charles River) were housed in a controlled environment (12-h light/dark cycle,
lights on at 7:00 A.M., 22°C) and fed ad libitum (Harlan, Gannat, France).
Surgeries and experiments were performed under pentobarbital anesthesia
(50 mg/kg, Centravet, Dinan, France) except where noted. All procedures
involving rats were in accordance with the European Communities Council
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Directive (86/609/EEC) and reviewed by a local committee. All experiments
were carried out after a period of 3 h fasting beginning at time of lights on.
Intracarotid injection of glucose toward the brain. A catheter was
inserted into the carotid artery and pushed on 5 mm in the cranial direction.
A bolus of 3 or 9 mg/kg glucose in 100 �l of adapted saline concentration was
injected toward the brain in 30 s. Saline and glucose in saline solutions were
equiosmolar (300 mOsm).
Neuronal activity recordings. Multiunit recordings within arcuate were
made using a monopolar platinum electrode (Phymep, Paris, France) as
previously described (20). Rats were placed in a stereotaxic apparatus (David
Kopf), and arcuate nucleus was targeted according to coordinates obtained
from Paxinos stereotaxic atlas: �3.1 mm posterior to bregma, �8.7 mm under
the brain surface, and 0.4 mm from the midline. Action potentials were
displayed and saved on a computer after initial amplification through a
low-noise amplifier (BIO amplifier, AD Instrument, Rabalot, France). Data
were digitized with a PowerLab/4sp digitizer. Signals were amplified 105 and
filtered at low and high frequency cutoffs of 100 and 1,000 Hz and monitored
with the Chart 4 computer program. Baseline unit activity was recorded for 10
min before infusion of a compound. Multiunit recordings were made in
response to a 100 �l intracarotid ipsilateral injection of either saline or
glucose.
Osmotic pump implantation. Cannula (Plastics one, Phymep) was targeted
to the third ventricle (2.6 mm posterior to the bregma and 10.0 mm below the
dura). Four days later, only rats with dipsogenic effects (angiotensin II, 60
pmol, 3 �l; Sigma-Aldrich, St. Quentin Fallavier, France) were used for
intracerebroventricular infusions. Four days later, the osmotic minipump (1
�l/h, 3 days, model 1003D; Alzet, Charles River, St. Germain sur l’Arbresle,
France) filled either with PBS-HEPES (5 mmol/l) or with glutathione (1 mol/l)
(21) (Sigma-Aldrich) was implanted under isoflurane gas anesthesia. Experi-
ments were performed 3 days later (Fig. 1).
Mitochondrial extraction. Animals were killed by cervical dislocation.
Brains were removed and immediately immersed in ice-cold PBS-HEPES (5
mmol/l). Dissected tissues were immersed for 15 min in a buffer A (10 mmol/l
HEPES, 10 mmol/l KCl, 240 mmol/l sucrose, protease inhibitor cocktail tablet
[complete Mini; Roche, Meylan, France]) and homogenized with a dounce
homogenizer (7.5 �l/10 mg tissues of buffer A). The homogenate was resus-
pended in 125 �l/10 mg tissues of buffer A and centrifuged (1,000 � g, 10 min,
4°C). The supernatant was centrifuged (12,000 � g, 10 min, 4°C). The
remaining mitochondrial pellet was resuspended either in 8.2 �l/10 mg tissues
of buffer B (10 mmol/l HEPES, 420 mmol/l NaCl, 0.5 mmol/l Dithiothreitol, and
protease inhibitor cocktail tablet) for Western blot analysis or in 16.5 �l/10 mg
tissues of Mitomed R05 solution (0.5 mmol/l EGTA, 60 mmol/l K-Lactobionate,
20 mmol/l Taurine, 10 mmol/l KH2PO4, 3 mmol/l MgCl2, 110 mmol/l sucrose, 1
g/l free fatty acid BSA, 20 mmol/l HEPES, and pH � 7.1) for O2 consumption
measurement.
Immunoblotting analysis of respiratory chain complexes. Mitochondrial
proteins (10 �g) were separated on SDS-PAGE 15% for OXPHOS immunola-
beling, using a cocktail of antibodies that recognizes respiratory chain
complexes. After transfer onto a Hybond membrane (Amersham, GE Health-
care, Ramonville, France), blocking was performed for 1 h at room tempera-
ture in 5% nonfat milk prepared in Tris-buffered saline with tween 0.2%.
Membranes were probed with 1/500 of mouse anti-OXPHOS (Mitosciences,
Euromedex, Souffelweyersheim, France) overnight at 4°C. Specific bands of
OXPHOS were detected using a goat anti-mouse peroxidase-conjugated
secondary antibody (Amersham) revealed with a chemioluminescence kit
(Amersham) and exposed to autoradiographic films. Immunolabeled bands
were quantified from densitometry analysis.
O2 consumption measurement on mitochondria. Oxygen consumption
was measured using a respirometer (Oxygraph-2k; Oroboros Instruments,
Innsbruck, Austria) as previously described (22). Measurements were taken
with stirring (750 rpm) in 2 ml of Mitomed R05 at 30°C. The medium was
equilibrated with air for 30 min, and mitochondria (200 �g) were transferred
into the respirometer’s glass chambers. Mitochondrial respiration was stimu-
lated by the successive addition of substrates 1, 5, and 20 mmol/l glutamate to

achieve the apparent state 2. Then, 0.1 mmol/l ADP was added to achieve the
apparent state 3 respirations. Next, 5 �mol/l carboxy-atractylate (CAtr) was
added to block ATP synthesis and achieve the apparent state 4 respiration.
Finally, 1 �mol/l potassium cyanide (KCN) was added to obtain the nonmito-
chondrial O2 consumption. Mitochondrial states 2, 3, and 4 were calculated by
subtracting the nonmitochondrial O2 consumption from apparent states. The
respiratory control ratio (RCR) was the state 3-to-state 4 ratio. Uncoupled
respiration was assessed using glutamate (20 mmol/l), CAtr (5 �mol/l), and
palmitate (300 �mol/l) stimulation. Carbonyl cyanide m-chlorophenylhydra-
zone (CCCP, 0.4 �mol/l), a chemical uncoupler, was used to measure the
maximal respiration. Oxygen consumption was calculated using DataGraph
software. Media were prepared according to the guide provided by Oroboros
Instruments. Technical sheets are available on the company Web site at
http://www.oroboros.at/.
ROS level measurement. One minute after glucose injection, rats were
decapitated, brains quickly removed, and hypothalami and thalami dissected
on ice-cooled glass plate. Brain areas were immediately frozen in nitrogen
liquid and stored at �80°C. ROS were assessed with the 2–7-dichlorofluores-
cein diacetate probe (23) (Invitrogen, Cergy Pontoise, France) and quantified
in a fluorescent plate reader at 535 nm under excitation at 490 nm using a
microplate reader (Victor Wallace, Perkin Elmer, Courtaboeuf, France).
Aconitase activity measurement. Maximum aconitase activity measure-
ment was performed using a protocol already described (24). The photo-
chrome was measured at 525 nm using the UVIKON Spectrophotometer 922.
Enzymatic and nonenzymatic antioxidant. Tissue pieces were homoge-
nized in a lysis saline solution (3 mmol/l EDTA, 150 mmol/l KCl, and pH � 7.4).
Homogenates (50 �l) mixed with 450 �l of 5% metaphosphoric acid were then
centrifuged (1,500 � g, 10 min, 4°C). Final supernatant was used for
glutathione and antioxidant enzyme assays. Glutathione assay was performed
by reverse-phase high-performance liquid chromatography (HPLC) as previ-
ously described (25). Total glutathione (GSx) was the sum of reduced
glutathione (GSH) and twofold oxidized glutathione (GSSG) concentrations
([GSx] � [2 � GSSG] � [GSH]). We then calculated the redox state of
glutathione as (GSSG/GSx) � 100. Superoxide dimutase (SOD) activity
(manganese superoxide dismutase [MnSOD] and Cu/Zn SOD) was assayed
using the inhibition of pyrogallol autoxidation (26). One enzymatic unit of
SOD activity was defined as the amount of enzyme that inhibited pyrogallol
autoxidation by 50%. Glutathione peroxidase (GPx) activity was measured
using t-butylhydroperoxide as substrate (27). One enzymatic unit of GPx
activity corresponds to the oxidation of 1 mmol of NADPH/min.
Mitochondrial quantification. Citrate synthase assay was measured accord-
ing to the procedure of Srere (28): one enzymatic unit of citrate synthase was
equal to the reduction of 1 mmol of 5–5�-dithiobis-2-nitrobenzoic acid per min.
Cytochrome oxidase activity. Fresh hypothalami were homogenized in cold
buffer (0.25 mol/l sucrose, 5 mmol/l TES, and pH � 7.2) and cyclooxygenase
activity measured as previously described (29).
Protein assay. Concentration of samples was determined using the DC
protein assay kit (Biorad, Marnes la Coquette, France) according to the
manufacturer’s instructions.
Plasma glucose and insulin concentrations. Plasma was isolated from the
blood collected at the rat-tail blood vessels. Glucose and insulin were
determined using a glucose analyzer (One Touch II) and an ultrasensitive
ELISA kit (Eurobio, Paris, France), respectively.
Statistical analysis. Results are presented as means � SE. Comparisons
between groups were carried out for each parameter using Prism 4.0 software
(GraphPad Software). A two-way ANOVA was applied first to detect interac-
tions between genotype and treatment. When genotype did not produce any
significant effect, one-way ANOVA was then applied; otherwise, groups were
analyzed independently using Student’s or Mann-Whitney U tests when
appropriate. After one-way ANOVA, multiple comparisons of means were
further computed with Newman-Keuls test. Both Bartlett’s and Shapiro Wilk’s
tests were also applied to check equality in variance and normality of
distribution, respectively. For some parameters, nonparametric Kruskal-
Wallis and Mann-Whitney U tests were used when appropriate, that is,
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FIG. 1. Schematic representation of experimental procedure for reduced glutathione infusion (GSH-EE, reduced glutathione ethyl ester).
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heterogeneity of variances. For single comparison, that is, lean versus obese,
nonpaired Student’s t test was applied. Significant difference was noted *, **,
or *** on the graphic representation when P value was 	0.05, 0.01, and 0.001,
respectively.

RESULTS

Seven-week-old obese Zücker rats were hyperinsulinemic
(142.70 � 2.68 vs. 26.05 � 3.26 �U/ml) but normoglycemic
(5.96 � 0.07 vs. 5.75 � 0.15 mmol/l) (Table 1).
Obese rats exhibit brain hypersensitivity to glucose.
We confirmed the cerebral hypersensitivity exhibited by
obese rats in response to glucose. Thus, 9 mg/kg glucose
injection into the carotid artery toward the brain caused a
rapid and transient increase of plasma insulin (50 �U/ml)
1 min after the carotid injection in lean and obese rats (Fig.
2A) (18,30). When a similar test was performed with a
lower dose of glucose (3 mg/kg), insulin secretion did not
occur in lean rats. By contrast, in obese Zücker rats, this
lower dose of glucose was sufficient to produce a rapid

and transient increase in plasma insulin concentration.
Amplitude and delay of this 3 mg/kg glucose-stimulated
insulin secretion were similar to those observed with a
glucose dose of 9 mg/kg in lean rats (P � 0.5737) (Fig. 2A).
These results demonstrate that obese animals exhibit
brain glucose hypersensitivity. This intracarotid glucose
injection did not raise systemic glucose levels at any time
during the test (Fig. 2B). Therefore, the insulin response is
only because of cerebral glucose sensing and cannot result
from peripheral effects.
Stimulation of multicellular hypothalamic electrical

activity at the low glucose dose in obese rats. We
previously showed that the activation of extracellular
hypothalamic activity in arcuate nucleus in response to
glucose was required to initiate insulin secretion in normal
rats (12). Here, we explored the effect of 3 mg/kg glucose
on extracellular arcuate nucleus electrical activity in both
phenotypes. Basal glycemia at the time of recording was
5.91 � 0.33, 6.05 � 0.22, 5.89 � 0.26, and 5.90 � 0.59
mmol/l for lean and obese NaCl-injected rats and lean and
obese 3 mg/kg glucose–injected rats, respectively. In lean
rats, 3 mg/kg glucose induced a slight increase in arcuate
electrical activity compared with saline injection (33%,
P 	 0.01). It also induced a significant increase in electri-
cal events in obese animals when compared with saline
injection (71%, P 	 0.001) (Fig. 3) that differ significantly
from the ones observed in lean rats injected with glucose
(P 	 0.01). Moreover, in contrast to obese rats, 3 mg/kg
glucose–induced electrical activity was not associated
with insulin secretion in lean rats.

TABLE 1
Characteristics of Zücker rats

Body (g)
Insulinemia

(�U/ml)
Glycemia

(mM)

Lean 221.50 � 5.64 26.05 � 3.26 5.75 � 0.15
Obese 258.17 � 7.23*** 142.70 � 2.68 5.96 � 0.07

Basal values of body weight, insulinemia, and glycemia are ex-
pressed as means � SE (7-week-old rats). Significant differences
according to the unpaired Student’s t test (n � 7) compared with
lean littermates. ***P 	 0.001.
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FIG. 2. Hypothalamic hypersensitivity to glucose in the obese Zücker rat. A: Insulin secretion in response to glucose. Plasma insulin in obese and
lean rats in response to saline (dotted line) or 3 mg/kg (G3, dash line) or 9 mg/kg (G9, black line) glucose injection toward the brain. Results are
expressed as means � SE (� from basal insulinemia at t � 0). Asterisk indicates significant differences according to independent statistical
analysis using Mann-Whitney U test at t � 1 min, n � 6–9 per genotype (*P < 0.05 and ***P < 0.001). B: No change in glycemia during the
glucose-sensing test. Glycemia in response to saline (dotted line) or 3 mg/kg (G3, dash line) or 9 mg/kg (G9, black line) glucose injection toward
the brain. Results are expressed as means � SE (� from basal glycemia at t � 0). No significant differences were detected using two-way ANOVA
analysis at t � 1 min (n � 6–9 per genotype).
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Obese rats exhibit hypothalamic ROS production in
response to the low glucose load. We measured ROS
levels after saline or glucose injection. For this purpose,
rats were injected through the carotid artery toward the
brain with either the low dose of glucose or saline and
killed 1 min after the injection (when insulin secretion
occurs). ROS levels were assessed in both hypothalamus
and thalamus. Interestingly, the basal constitutive ROS
level, that is, assessed after saline intracarotid injection,
was similar in both genotypes (Fig. 4). Glucose stimulation
did not induce a significant change in hypothalamic ROS
levels in lean rats. However, ROS levels were significantly
increased (37%, P 	 0.05) in obese rats injected with 3
mg/kg glucose when compared either with obese animals
injected with saline or with lean rats injected with the
same glucose load (P 	 0.05, Fig. 4). Thus, low glucose
stimulation mediates an increase in ROS levels only in
obese rats. No such increase in ROS levels was found in
thalamus, suggesting a regional specificity for this response
(Fig. S1A, available in an online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/
db09-0110/DC1).
Abnormal ROS signaling is correlated to an alter-
ation in the hypothalamic redox state. ROS level
results from the balance between ROS production and

detoxification. We measured enzymatic and nonenzymatic
antioxidants in basal conditions (i.e., without glucose
stimulation). The glutathione redox state, defined as
GSSG-to-GSx ratio, as it is the major antioxidant that
scavenges ROS, was oxidized twofold (P 	 0.001) more in
the hypothalamus of obese rats (Fig. 5A). Glutathione
peroxidase activity was found to be significantly lower in
the hypothalamus of obese rats (266.0 � 28.7 vs. 166.0 �
21.5; P 	 0.01 in lean vs. obese rats) (Fig. 5B). Glutathione
peroxidase activity did not vary in the thalamus (Fig. S1B).
The mitochondrial MnSOD activity was also decreased in
obese rats (0.0102 � 0.0009 vs. 0.0065 � 0.0008 enzymatic
unit per milligrams proteins; P 	 0.01 in lean vs. obese
rats) whereas extramitochondrial CuZnSOD was not sta-
tistically different between the two genotypes (Fig. 5C and
D). This strongly suggests a mitochondrial defect in anti-
oxidant enzyme activity in the hypothalamus of obese rats.
This is reinforced by the activity of aconitase, an enzyme
of the Krebs’s cycle sensitive to mROS and thus revealing
the intramitochondrial redox state (31). This activity was
significantly decreased (�39%; P 	 0.001) in the hypothal-
amus of obese Zücker rats (Fig. 5E). Altogether, these
results demonstrate that the hypothalamic redox state is
lower in obese rats than in lean rats, regardless of the
intracellular compartment studied.
Hypothalamic mitochondria exhibit increased activ-
ity in response to substrates. We explored the cyto-
chrome c oxidase activity (cyclooxygenase [COX],
complex IV), which reflects the oxidative potential of the
mitochondrial respiratory chain. COX activity was signifi-
cantly increased (51%; P 	 0.01) in the hypothalamus of
obese Zücker rats (Fig. 6A). To get further insight into the
hypothalamic mitochondrial function, oxygen consump-
tion by the electron transport chain was explored on
isolated mitochondria (Fig. 6B). We performed titrations
with glutamate (1, 5, and 20 mmol/l) to determine substrate-
driven respiration. We highlighted a greater increase in the
O2 flux in response to glutamate in obese rats compared
with lean ones. This increase was significant for each dose
of glutamate (O2 flux in lean vs. obese rats: 1 mmol/l,
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FIG. 4. Hypothalamic ROS production of obese rats in response to the
low glucose load. ROS production in the hypothalamus in response to
saline (NaCl) or to 3 mg/kg glucose (G3) injection toward the brain
measured in lean (white bar) and in obese (Ob) rats (black bar). ROS
level assessed in hypothalamic area by oxidation of dichlorofluorescein
diacetate probe 1 min after intracarotid injection. Data are expressed
as means � SE (percentage of the ROS fluorescence observed in obese
rats injected with saline). Asterisk indicates significant differences
according to the post hoc Newman-Keuls test (n � 8–11 per genotype)
(*P < 0.05).
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2.54 � 1.03 vs. 6.34 � 0.56 pmol/[s � mg], P 	 0.05; 5
mmol/l, 4.70 � 1.54 vs. 11.63 � 2.30 pmol/[s � mg], P 	
0.05; and 20 mmol/l, 7.81 � 1.38 vs. 20.23 � 5.57 pmol/[s �
mg], P 	 0.05), revealing a hypersensitivity to this sub-
strate at the level of the respiratory chain. State 3
(substrates/ADP-driven) respiration was assessed with
saturating ADP concentration. The O2 flux 13.25 � 2.43
pmol/(s � mg) versus 28.67 � 5.69 pmol/(s � mg) in lean
and obese rats, respectively, was increased in obese rats
(P 	 0.05). CAtr, an ATP-ADP exchange inhibitor, was
then added to obtain the ADP-independent resting state 4,
whereas respiration is only driven by substrates. State 4
was significantly enhanced in obese rats. Finally, the RCR
(RCR � state 3/state 4) in lean rats (1.50 � 0.52) was not
significantly different from obese rats (1.50 � 0.19). The
total respiratory capacity induced by CCCP was signifi-
cantly increased in obese rats (36.43 � 1.00 pmol/
[s � mg]) compared with lean ones (28.80 � 2.44 pmol/
[s � mg]), P 	 0.05 (Fig. 6C). Next, we examined
uncoupling respiration. Stimulation of uncoupling proteins
with 300 �mol/l palmitate (Palm) did not reveal differences
between lean (25.39 � 2.17 pmol/[s � mg]) and obese
(27.83 � 3.86 pmol/[s � mg]) rats (Fig. 6D). This result
reveals no difference in uncoupling respiration. In conclu-
sion, these results indicate an increase in hypothalamic
mitochondria activity at the complex I and IV, as revealed
with glutamate assay and COX activity measurement. The
increase in total respiratory capacity further supports

these data. No difference was found regarding these pa-
rameters in the thalamus (Fig. S1C–E).

Expression of the five complexes of the respiratory
chain was examined. Both nuclear (30 kDa subunit of
complex II, core protein 2 subunit of complex III, and the

 subunit of complex V) and mitochondrial (ND6 subunit
of complex I and subunit 1 of complex IV) complexes
encoded were quantified at the protein level by Western
blotting (Fig. 6E). The expression of complexes I, II, III,
and IV (COX) was increased in hypothalamic mitochon-
dria from obese rats (177, 153, 128, and 159%). Complex V
expression (105%) was unchanged (Fig. 6F). These results
indicate an increased quantity of most complexes of the
electron transport chain in the mitochondria of obese rats.

These differences were not caused by a change in
mitochondrial number because citrate synthase activity
was identical in both genotypes (Fig. 6G).
Restoration of hypothalamic redox state normalizes
the response to glucose load in obese rats. We decided
to normalize the glutathione redox state in obese rats to
test whether this could explain impaired ROS production
stimulated by the low glucose load (3 mg/kg). Therefore,
reduced glutathione (GSH) was intracerebroventricularly
infused over 3 days using an osmotic minipump. Well-
being of the animals (weight gain and food intake) was
preserved during the infusion (Fig. S2A and B). HPLC
analysis revealed that the GSH chronic intracerebroven-
tricular infusion was efficient to restore GSH redox state
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FIG. 5. Increased ROS production is linked to abnormal hypothalamic redox state. A: Obese rats display an abnormal hypothalamic glutathione
redox state. GSH and GSSG levels measured by HPLC in hypothalamic homogenates of lean (white bar) and obese rats (black bar). The redox
state of glutathione was calculated as the (GSSG/GSx) � 100. Asterisk indicates a significant difference according to the unpaired Student’s t test
(n � 6 per genotype) (***P < 0.001). B: Obese rats present a decrease in glutathione peroxidase activity. GPx activity measured in the
hypothalamus of lean (white bar) and obese (black bar) rats (enzymatic units [e.u.]). Asterisk indicates a significant difference according to the
unpaired Student’s t test (n � 6 per genotype) (**P < 0.01). C: Obese rats present no difference in extramitochondrial Cu/Zn SOD activity. SOD
activity measured in the hypothalamus of lean (white bar) and obese (black bar) rats (enzymatic units). No differences according to the unpaired
Student’s t test (n � 6 per genotype) were present. D: Obese rats present a decrease in mitochondrial MnSOD activity. Mitochondrial MnSOD
activity measured in the hypothalamus of lean (white bar) and obese (black bar) rats (enzymatic units). Asterisk indicates a significant difference
according to the unpaired Student’s t test (n � 6 per genotype) (*P < 0.05). E: Obese rats show a decreased activity of the ROS-sensitive
mitochondrial aconitase. Maximal aconitase activity measured in the hypothalamus of lean (white bar) and obese (black bar) rats (enzymatic
units). Asterisk indicates a significant difference according to the unpaired Student’s t test (n � 6 per genotype) (***P < 0.001).
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within the hypothalami of obese rats (Fig. 7A). In contrast,
it did not reverse mitochondrial function as measured on
glutamate titration by oxygraphy (Fig. 7B). ROS levels and
pancreatic insulin secretion were measured after the in-
tracarotid 3 mg/kg glucose injection in glutathione-infused
obese rats. Obese glutathione-infused rats did not have
any more exacerbated ROS levels in response to the low
glucose load and exhibited ROS levels similar to those of
normal rats (Fig. 7C). Regarding the insulin response, it
showed a full restoration of their sensitivity to glucose

because their insulin peak was completely abolished in
response to 3 mg/kg glucose. This result indicates a master
role of mROS levels in response to glucose, at least for
the nervous control of insulin secretion (Fig. 7D).

DISCUSSION

It has recently been demonstrated that glucose sensing
was triggered by an intracellular redox signaling pathway
in physiological conditions in the pancreas as well as in

C
O

X 
(c

om
pl

ex
 IV

) 
ac

tiv
ity

 (%
) **

A
200

150

100

50

0

CVCIII CIVCIICI

200

150

100

50

0

F

Ex
pr

es
si

on
 le

ve
ls

 fr
om

 
de

ns
ito

m
et

ry
 a

na
ly

si
s 

 (%
)

***
** ***

E

CV

CIII

CIV

CII

CI

1 2 3 1 2 3

Lean Obese

Lean
Obese

1
ADP CAtr

40

30

20

10

0

O
2

Fl
ux

/m
as

s 
[p

m
ol

/(s
*m

g)
]

B

*
*

*
*

*

Glutamate (mM)
5 20

C
itr

at
e 

sy
nt

ha
se

 a
ct

iv
ity

 
(1

03
. e

.u
. /

 m
g 

pr
ot

ei
ns

) 8
7
6
5
4
3
2
1
0

G

Palm

40

30

20

10

0

O
2

Fl
ux

/m
as

s 
[p

m
ol

/(s
*m

g)
]

D

CCCP

40

30

20

10

0

O
2

Fl
ux

/m
as

s 
[p

m
ol

/(s
*m

g)
]

C *

***

FIG. 6. Functional study of hypothalamic mitochondria. A: Obese rats exhibit an increased oxidative potential of the respiratory chain. Maximal
cytochrome c oxidase activity in hypothalamic homogenates in basal conditions was significantly increased in obese rats. Data are expressed as
means � SE corresponding to the percentage of COX activity in lean rats. Asterisk indicates significant difference according to the unpaired
Student’s t test (n � 9–10 per genotype) (**P < 0.01). B: Obese rats’ mitochondria display a hypersensitivity to glutamate. Pharmacological
settings for oxygraphic analysis on isolated hypothalamic mitochondria: glutamate titration (1, 5, and 20 mmol/l) to achieve the nonphosphory-
lating respiration; saturating ADP concentration to achieve state 3 respiration; full inhibition of ATP-synthase by CAtr gives state 4 respiration.
Single comparisons were performed using the unpaired Student’s t test to compare lean vs. obese rats. Asterisk indicates significant difference
(*P < 0.05). C: Obese rats’ mitochondria exhibit an enhanced maximal respiration capacity. Maximal respiration induced by CCCP (0.4 �mol/l).
Asterisk indicates significant difference according to the Mann-Whitney U test (n � 6–8 per genotype) (*P < 0.05). D: Obese rats’ mitochondria
exhibit no uncoupling respiration. Uncoupling protein activation induced by palmitate (Palm) (300 �mol/l). No differences according to the
unpaired Student’s t test (n � 6 per genotype) were present. E and F: Overexpression of respiratory chain complexes I to IV in the hypothalamic
mitochondria of obese rats. Western blot performed on isolated hypothalamic mitochondria. Immunoblots were quantified by densitometry
analysis. Asterisk indicates significant differences according to the Mann-Whitney U test (n � 6–8 per genotype) (**P < 0.01 and ***P < 0.001).
G: No difference in mitochondrial content. Mitochondrial content assessed by citrate synthase activity in the hypothalamus of lean (white bar)
and obese (black bar) rats (enzymatic units [e.u.]). No differences according to the unpaired Student’s t test (n � 6 per genotype) were present.

HYPOTHALAMIC REDOX SIGNALING IN OBESITY

2194 DIABETES, VOL. 58, OCTOBER 2009 diabetes.diabetesjournals.org



the hypothalamus (11,12). However, the relevance of such
a mechanism in metabolic disease is not known. We
hypothesized that an alteration in redox signaling in the
brain could participate in metabolic diseases. To test this
hypothesis, we explored redox signaling in the Zücker rat.
These rats are obese, insulin-resistant, and dyslipidemic
but normoglycemic. One original feature of this model is
its hypothalamic hypersensitivity to glucose (18). We
specifically aimed to understand whether this hypersensi-
tivity to glucose present in obese Zücker rats could be
related to an alteration in redox signaling. For the first
time, we revealed that this hypersensitivity was associ-
ated, within the hypothalamus, with 1) an increased ROS
level in response to the low glucose load, 2) a constitutive
oxidized environment at both the cellular and mitochon-
drial level, and 3) an overexpression of several mitochon-
drial subunits of the respiratory chain, coupled with a
global dysfunction in the mitochondrial activity. Moreover,
pharmacological restoration of the hypothalamic redox
state fully reversed the altered cerebral hypersensitivity to
glucose. Altogether, these data suggest that this impaired

metabolic regulation in the obese Zücker rat is linked to an
abnormal redox signaling that originates from mitochon-
drial dysfunction.

In normal animals, hypothalamic glucose sensing pro-
motes an increase in hypothalamic electrical activity and
rapid and transient vagal-mediated insulin secretion
(12,19). Moreover, we previously demonstrated that a key
step in these events requires redox signaling because they
were abolished when mROS were quenched (12). The
hypersensitivity to glucose of obese Zücker rats has been
demonstrated as an abnormal insulin response occurring
after a low glucose load (3 vs. 9 mg/kg) that is inefficient in
lean littermates (18). We confirmed this data regarding the
peripheral insulin release and reinforced the notion of
cerebral hypersensitivity to glucose in obese rats as as-
sessed by the hypothalamic glucose-stimulated electrical
activity. Indeed, we brought to light an increased level in
the whole multicellular electrical activity in the arcuate
nucleus of obese rats in response to 3 mg/kg glucose.
Contrary to lean rats, this enhanced glucose-stimulated
electrical activity was associated with the insulin response
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in obese rats. This suggests that the electrical activity of
the arcuate nucleus in response to 3 mg/kg glucose was
high enough to promote insulin secretion in obese rats.
Electrical activity was recorded under pentobarbital anes-
thesia that has depressive effects on nervous activity (32),
thus suggesting a much greater effect on vigil rats. The
multicellular recordings do not allow a distinction be-
tween direct versus presynaptic effects. However, numer-
ous arcuate glucose-sensitive neurons have the ability to
directly detect a change in glucose concentration (33).
This cerebral hypersensitivity to glucose may explain the
elevated parasympathetic tone that consequently contrib-
utes to the development of hyperinsulinemia in the obese
Zücker rat (17,34).

In obese rats, there was a significant increase in ROS
levels within the hypothalamus under low glucose stimu-
lation at the time when plasma insulin increases. ROS
concentration results from the balance between produc-
tion and scavenging. The latter depends on the intracellu-
lar redox state (35,36). Glutathione redox (oxidized-to-
total form ratio) constitutes an accurate indicator of the
cellular redox state because glutathione is in large amount
in cells (1–5 mmol/l) and considered as the major ROS
detoxifying system (37). It has a pivotal and synergetic
role with many other antioxidants by reducing pro-oxidant
forms (36). In the hypothalamus of obese rats, glutathione
was oxidized twofold more in basal conditions. Decreased
GPx activity in the hypothalamus from obese rats further
confirmed that basal redox state was deeply modified in
this area. To gain insight into the oxidative environment in
the mitochondria, we evaluated MnSOD and aconitase
activity. MnSOD and aconitase, an enzyme involved in the
Krebs cycle and sensitive to ROS, are exclusively located
in the mitochondria (31). Their activities were decreased
in the hypothalamus of the obese Zücker rat. In contrast,
Cu/ZnSOD located in the cytosol did not vary. Altogether,
these data reveal a constitutive oxidative environment in
the hypothalamus of obese Zücker rats regardless of the
intracellular compartment (cytosol or mitochondria).
These results are in line with numerous studies showing a
drop in the antioxidant defenses such as reduced glutathi-
one, 
-tocopherol, and catalase in several tissues of obese
Zücker rats (38,39). Finally, the more oxidized cellular
environment within the hypothalamus of obese rats could
partly explain why an increased ROS level in response to
the low glucose load is not buffered as in lean rats.

ROS are produced by electron leakage during mitochon-
drial metabolism, and the rate of their formation is en-
hanced as the mitochondrial metabolism increases (40–
42). We explored the mitochondrial function in the
hypothalamus of Zücker rats. First, the oxidative ability of
the respiratory chain as determined by the cytochrome c
oxidase activity, the total respiratory function as assessed
with saturating substrate, and the chemical uncoupling
were all significantly increased in the hypothalamus of
obese rats. Second, the apparent affinity of the mitochon-
drial respiration for substrate was higher in obese rats as
assessed by glutamate titration. Third, altered expression
of mitochondrial complexes (I to IV) was increased in
obese rats. These results are consistent with previous
studies showing an increased oxidative capacity in the
muscle of such rats, associated with an increasing number
of functional units in the mitochondrial respiratory chain
(43,44). No change in mitochondrial number was observed
in the hypothalamus of obese rats as revealed by citrate
synthase activity assay. Furthermore, it may be stressed

that all these alterations are specific to the hypothalamus
because no change was observed in the thalamus. Taken
together with the absence of complex V modifications, the
alterations seen between complexes I to IV may result in
an enhancement in respiratory chain constraints (45). As
an improved mitochondrial metabolism promotes ROS
production under stimulation, this could represent the
molecular basis of the abnormal increased ROS levels
within the hypothalamus of obese rats in response to a low
glucose load, in concert with the higher oxidized environ-
ment. One can speculate that the excessive mitochondrial
ROS production might be a primary and causal link with
the overoxidation of the redox state.

Recent observations from our laboratory and others
(12,15,46) argue that ROS are part of hypothalamic activity
control for the regulation of energy homeostasis. To date,
ROS have been proposed as messengers in brain glucose
and lipid sensing (12,46). For example, fasting abolished
increased ROS in brain lipid sensing by increasing hypo-
thalamic mitochondrial uncoupling (46); ghrelin signals
are ROS-dependently integrated in NPY/AgRP neurons
(15). Moreover, this latest study suggests that ROS signal-
ing takes place in the neuronal population, although other
cell types remain to be explored.

Here we show for the first time that dysfunction in
hypothalamic redox signaling could be the molecular basis
for impaired brain glucose sensing and might explain some
features of the metabolic defects in obese rats such as
hyperinsulinism. This has been strengthened by the exper-
iment using a pharmacological approach (GSH treatment)
that normalized the glutathione redox state. Indeed, such
normalization reversed the increased ROS level as well as
peripheral insulin secretion in response to a low glucose
load (3 mg/kg). These findings highlight the necessity for a
fine and balanced level of ROS dependent on the mito-
chondrial metabolism and the redox environment, which
is required to trigger the appropriate redox signaling in
response to glucose.

In summary, we demonstrated that the cerebral hyper-
sensitivity to glucose in obese rats results from both
impaired redox signaling and increased mitochondrial
respiratory chain activity that lead to excessive ROS
levels. One can postulate that these increased ROS levels
activate redox signaling involving ROS-sensitive voltage-
dependent channels (47,48). Changes in channel confor-
mation will then modulate electrical activity that in turn
triggers vagal-mediated insulin secretion. To determine
whether hypothalamic mitochondrial dysfunction is of
primary importance in the etiology of the hyperinsulinism
in obesity, long-term treatment aiming to normalize redox
state would provide interesting clues.
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(PNRD-0602).

No potential conflicts of interest relevant to this article
were reported.

We fully acknowledge Jésus Garcia for his help in
statistical analysis and the expertise of the Zootechnic
Platform of the IFR31 Institute, I2MR, especially Christine
Fourreau.

HYPOTHALAMIC REDOX SIGNALING IN OBESITY

2196 DIABETES, VOL. 58, OCTOBER 2009 diabetes.diabetesjournals.org



REFERENCES

1. Levin BE. Metabolic sensing neurons and the control of energy homeosta-
sis. Physiol Behav 2006;89:486–489

2. Sandoval D, Cota D, Seeley RJ. The integrative role of CNS fuel-sensing
mechanisms in energy balance and glucose regulation. Annu Rev Physiol
2008;70:513–535

3. Goldstone AP. The hypothalamus, hormones, and hunger: alterations in
human obesity and illness. Prog Brain Res 2006;153:57–73

4. Schwartz MW, Porte D, Jr. Diabetes, obesity, and the brain. Science
2005;307:375–379

5. Penicaud L, Leloup C, Fioramonti X, Lorsignol A, Benani A. Brain glucose
sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care 2006;9:458–
462

6. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna
CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB. Glucose
sensing by POMC neurons regulates glucose homeostasis and is impaired
in obesity. Nature 2007;449:228–232

7. Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor:
similarities to and differences from pancreatic �-cell mechanisms. Diabe-
tes 1999;48:1763–1772

8. Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiolog-
ical and molecular characteristics of rat hypothalamic ventromedial nu-
cleus glucosensing neurons. Diabetes 2004;53:549–559

9. Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P,
Penicaud L. Glucose transporter 2 (GLUT2): expression in specific brain
nuclei. Brain Res 1994;638:221–226

10. Leloup C, Orosco M, Serradas P, Nicolaidis S, Penicaud L. Specific
inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides
suppresses nervous control of insulin secretion. Brain Res Mol Brain Res
1998;57:275–280

11. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT,
Andersen ME, Corkey BE, Collins S. Reactive oxygen species as a signal in
glucose-stimulated insulin secretion. Diabetes 2007;56:1783–1791

12. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A,
Periquet A, Fernandez Y, Ktorza A, Casteilla L, Penicaud L. Mitochondrial
reactive oxygen species are required for hypothalamic glucose sensing.
Diabetes 2006;55:2084–2090

13. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L,
Colombani AL, Ktorza A, Casteilla L, Penicaud L. Mitochondrial reactive
oxygen species are obligatory signals for glucose-induced insulin secre-
tion. Diabetes 2009;58:673–681

14. Levin BE, Magnan C, Migrenne S, Chua SC, Jr, Dunn-Meynell AA. F-DIO
obesity-prone rat is insulin resistant before obesity onset. Am J Physiol
Regul Integr Comp Physiol 2005;289:R704–R711

15. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM,
Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB,
Horvath TL, Diano S. UCP2 mediates ghrelin’s action on NPY/AgRP
neurons by lowering free radicals. Nature 2008;454:846–851

16. York DA, Marchington D, Holt SJ, Allars J. Regulation of sympathetic
activity in lean and obese Zucker (fa/fa) rats. Am J Physiol 1985;249:E299–
E305

17. Penicaud L, Cousin B, Leloup C, Atef N, Casteilla L, Ktorza A. Changes in
autonomic nervous system activity and consecutive hyperinsulinaemia:
respective roles in the development of obesity in rodents. Diabete Metab
1996;22:15–24

18. Alquier T, Leloup C, Atef N, Fioramonti X, Lorsignol A, Penicaud L.
Cerebral insulin increases brain response to glucose. J Neuroendocrinol
2003;15:75–79

19. Atef N, Ktorza A, Penicaud L. CNS involvement in the glucose induced
increase of islet blood flow in obese Zucker rats. Int J Obes Relat Metab
Disord 1995;19:103–107

20. Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE,
Routh VH. Effects of oleic acid on distinct populations of neurons in the
hypothalamic arcuate nucleus are dependent on extracellular glucose
levels. J Neurophysiol 2006;95:1491–1498

21. Anderson MF, Nilsson M, Eriksson PS, Sims NR. Glutathione monoethyl
ester provides neuroprotection in a rat model of stroke. Neurosci Lett
2004;354:163–165

22. Benani A, Barquissau V, Carneiro L, Salin B, Colombani AL, Leloup C,
Casteilla L, Rigoulet M, Penicaud L. Method for functional study of
mitochondria in rat hypothalamus. J Neurosci Methods 2009;178:301–307

23. Szabados E, Fischer GM, Toth K, Csete B, Nemeti B, Trombitas K, Habon
T, Endrei D, Sumegi B. Role of reactive oxygen species and poly-ADP-
ribose polymerase in the development of AZT-induced cardiomyopathy in
rat. Free Radic Biol Med 1999;26:309–317

24. Zheng W, Ren S, Graziano JH. Manganese inhibits mitochondrial aconitase:
a mechanism of manganese neurotoxicity. Brain Res 1998;799:334–342

25. Galinier A, Carriere A, Fernandez Y, Caspar-Bauguil S, Periquet B, Periquet
A, Penicaud L, Casteilla L. Site specific changes of redox metabolism in
adipose tissue of obese Zucker rats. FEBS Lett 2006;580:6391–6398

26. Marklund S, Marklund G. Involvement of the superoxide anion radical in
the autoxidation of pyrogallol and a convenient assay for superoxide
dismutase. Eur J Biochem 1974;47:469–474

27. Gunzler WA, Kremers H, Flohe L. An improved coupled test procedure for
glutathione peroxidase (EC 1-11-1-9-) in blood. Z Klin Chem Klin Biochem
1974;12:444–448

28. Faloona GR, Srere PA. Escherichia coli citrate synthase. Purification and
the effect of potassium on some properties. Biochemistry 1969;8:4497–
4503

29. Prunet-Marcassus B, Moulin K, Carmona MC, Villarroya F, Penicaud L,
Casteilla L. Inverse distribution of uncoupling proteins expression and
oxidative capacity in mature adipocytes and stromal-vascular fractions of
rat white and brown adipose tissues. FEBS Lett 1999;464:184–188

30. Guillod-Maximin E, Lorsignol A, Alquier T, Penicaud L. Acute intracarotid
glucose injection towards the brain induces specific c-fos activation in
hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sens-
ing in rats. J Neuroendocrinol 2004;16:464–471

31. Tretter L, Adam-Vizi V. 
-ketoglutarate dehydrogenase: a target and
generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci
2005;360:2335–2345

32. Kitahara S, Yamashita M, Ikemoto Y. Effects of pentobarbital on purinergic
P2X receptors of rat dorsal root ganglion neurons. Can J Physiol Pharma-
col 2003;81:1085–1091

33. Fioramonti X, Lorsignol A, Taupignon A, Penicaud L. A new ATP-sensitive
K� channel-independent mechanism is involved in glucose-excited neu-
rons of mouse arcuate nucleus. Diabetes 2004;53:2767–2775

34. Rohner-Jeanrenaud F, Hochstrasser AC, Jeanrenaud B. Hyperinsulinemia
of preobese and obese fa/fa rats is partly vagus nerve mediated. Am J
Physiol 1983;244:E317–E322

35. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals
and antioxidants in normal physiological functions and human disease. Int
J Biochem Cell Biol 2007;39:44–84

36. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the
mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287–1312

37. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism
and its implications for health. J Nutr 2004;134:489–492

38. Soltys K, Dikdan G, Koneru B. Oxidative stress in fatty livers of obese
Zucker rats: rapid amelioration and improved tolerance to warm ischemia
with tocopherol. Hepatology 2001;34:13–18

39. Poirier B, Lannaud-Bournoville M, Conti M, Bazin R, Michel O, Bariety J,
Chevalier J, Myara I. Oxidative stress occurs in absence of hyperglycaemia
and inflammation in the onset of kidney lesions in normotensive obese
rats. Nephrol Dial Transplant 2000;15:467–476

40. Brownlee M. The pathobiology of diabetic complications: a unifying
mechanism. Diabetes 2005;54:1615–1625

41. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y,
Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M.
Normalizing mitochondrial superoxide production blocks three pathways
of hyperglycaemic damage. Nature 2000;404:787–790

42. Yamagishi SI, Edelstein D, Du XL, Brownlee M. Hyperglycemia potentiates
collagen-induced platelet activation through mitochondrial superoxide
overproduction. Diabetes 2001;50:1491–1494

43. Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, Cooney GJ.
Excess lipid availability increases mitochondrial fatty acid oxidative
capacity in muscle: evidence against a role for reduced fatty acid oxidation
in lipid-induced insulin resistance in rodents. Diabetes 2007;56:2085–2092

44. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B,
Vidal H, Rieusset J. Mitochondrial dysfunction results from oxidative
stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin
Invest 2008;118:789–800

45. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochon-
drial reactive oxygen species. Trends Pharmacol Sci 2006;27:639–645

46. Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A, Leloup C,
Casteilla L, Penicaud L. Role for mitochondrial reactive oxygen species in
brain lipid sensing: redox regulation of food intake. Diabetes 2007;56:152–
160

47. Hudasek K, Brown ST, Fearon IM. H2O2 regulates recombinant Ca2�

channel 
-1C subunits but does not mediate their sensitivity to acute
hypoxia. Biochem Biophys Res Commun 2004;318:135–141

48. Avshalumov MV, Chen BT, Koos T, Tepper JM, Rice ME. Endogenous
hydrogen peroxide regulates the excitability of midbrain dopamine neu-
rons via ATP-sensitive potassium channels. J Neurosci 2005;25:4222–4231

A.-L. COLOMBANI AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 58, OCTOBER 2009 2197


