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Recent discoveries have shed new light onto immunoglobulin M (IgM), an ancient
antibody class preserved throughout evolution in all vertebrates. First, IgM – long thought
to be a perfect pentamer – was shown to be asymmetric, resembling a quasi-hexamer
missing one monomer and containing a gap. Second, this gap allows IgM to serve
as carrier of a specific host protein, apoptosis inhibitor of macrophages (AIM), which
is released to promote removal of dead-cell debris, cancer cells, or pathogens. Third,
recombinant IgM delivered mucosally by passive immunization gave proof-of-concept
that this antibody class can prevent mucosal simian-human immunodeficiency virus
transmission in non-human primates. Finally, IgM’s role in adaptive immunity goes
beyond being only a first defender to respond to pathogen invasion, as long-lived IgM
plasma cells have been observed predominantly residing in the spleen. In fact, IgM
produced by such cells contained somatic hypermutations and was linked to protection
against lethal influenza virus challenge in murine models. Importantly, such long-lived
IgM plasma cells had been induced by immunization 1 year before challenge. Together,
new data on IgM function raise the possibility that vaccine strategies aimed at preventing
virus acquisition could include this ancient weapon.

Keywords: IgM structure, IgM function, recombinant monoclonal IgM, passive mucosal immunization with IgM,
prevention of mucosal virus transmission by IgM, vaccine-induced long-lived IgM plasma cells

INTRODUCTION

Immunoglobulin M (IgM) is the first responder to foreign invaders – including viral pathogens
that cause major pandemics. It is the only antibody class that exists in all vertebrate animals (1).
Its monomeric form is expressed on B cells as the B-cell antigen receptor. When secreted, IgM is
predominantly pentameric and contains the joining chain (J chain). In humans, IgM is present at a
relatively high concentration in serum (∼1.47 mg/ml) (2). The J chain allows IgM to be transported
across mucosal epithelia through binding with the polymeric immunoglobulin receptor (pIgR), an
interaction that leads to the formation of secretory IgM (3).

Because IgM is the first antibody response in viral infections, this Ig class has important value
for diagnosis. IgM’s pentameric structure prevents passage across the placenta. Consequently, viral
infections of the fetus or newborn are recognized by IgM responses against the background of
transplacentally transferred maternal IgG.

IgM’s multimeric structure is well suited to bind viral surface proteins. The high avidity may
also allow IgM to better tolerate mutations in viral targets – an important consideration for viral
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pathogens with high mutation rates. IgM is also a potent
complement activator. However, despite IgM’s unique
characteristics, its role in the prevention and treatment of
viral infections remains understudied. The goal of this review
is to give an overview of recent data regarding IgM structure,
function, and IgM’s role in acute and longer-lasting antiviral host
defenses against virus acquisition.

IgM STRUCTURE

Monomeric IgM consists of two heavy (µ) and two light (L)
chains, like monomers of all other antibody classes. The µ chain
constant region contains four domains (Cµ1-Cµ2-Cµ3-Cµ4)
and a C-terminal tailpiece (Figure 1A). The Cµ2 domain in the
µ chain replaces the hinge region found in the heavy chains
of IgG, IgD, and IgA that provides rotational flexibility of the
fragment antigen-binding (Fab) domains in these heavy chains
(4). However, the lack of a hinge region does not imply that IgM
molecules lack flexibility (5). Monomeric IgM is mostly expressed
as a surface-bound receptor on B cells, and it is essential for B-cell
development. When secreted, IgMs are predominantly polymers
in healthy individuals. However, monomeric IgM is frequently
secreted in patients with autoimmune diseases (6, 7).

Multiple IgM monomers assemble through interchain
disulfide bridge formation between cysteines in the Cµ2, Cµ3,
and the tailpiece to form polymeric IgM. In the plasma of
humans and mice, the pentameric form is the most abundant
IgM version. It contains five monomers and an additional small
protein, the joining (J) chain, which bridges the cysteine residues
within the tailpiece of two neighboring IgM monomers (8, 9).

The most widely accepted structure of the IgM pentamer
is a symmetrical pentagonal structure based upon negative-
stain electron microscopy (EM) (10, 11). In 2009, Czajkowsky
and Shao (4) proposed that pentameric IgM is a non-planar,
mushroom-shaped structure based upon cryo-atomic force
microscopy (cryo-AFM); in this model, the C-terminal regions
protrude. Most recently, Hiramoto et al. (12) suggested a novel,
asymmetric structure based upon single-particle EM images of
negatively stained IgM pentamers; in this model, pentameric IgM
resembles a quasi-hexamer that is missing one of the monomers –
akin to a tooth gap (Figure 1B). Interestingly, when monoclonal
IgM was generated by cotransfection of heavy and light chain
expression plasmids in the absence of an expression plasmid
for the J chain, the most abundantly produced IgM consisted
of symmetrical hexamers (Figure 1C) and a lower fraction of
symmetrical pentamers; “tooth-gap” IgM structures were notably
absent. These findings imply that the incorporation of the J
chain results in pentamers with gaps. The asymmetric structure
of pentameric IgM was confirmed recently by high-resolution
cryo-EM images (13). Taken together, recent structural analyses
revealed pentameric IgM to be a non-planar, mushroom-shaped,
asymmetric pentamer with protruding C-terminal regions, and a
J chain resulting in the formation of gapped structures. Antibody-
secreting cells can produce both pentameric and hexameric IgM.
The abundance of intracellular J chains is positively correlated
with the formation of pentamers; the more J chains are expressed

by the cell, the higher the ratio of pentameric to hexameric
IgM (9, 14).

Due to its multimeric structure, IgM has a high valency
compared to other immunoglobulins. This characteristic allows
IgM to compensate for low affinity to a degree and to bind target
antigens with high avidity. Multimeric IgM also binds antigens
with repeated epitopes efficiently and results in agglutination of
bacteria, red blood cells, and viruses (15, 16).

PENTAMERIC IgM CROSSES MUCOSAL
EPITHELIA

The presence of the J chain allows pentameric IgM to interact
with the pIgR expressed on the basolateral surface of epithelial
cells. This interaction leads to the formation of an IgM-pIgR
complex that is transported across the cell to the luminal side
where pIgR is proteolytically cleaved. A pIgR fragment, termed
secretory component (SC), remains bound to the pentameric IgM
giving rise to secretory IgM. Thus, the pIgR-mediated transport
across the epithelial layer grants IgM access to the mucosal lumen
(3). The interaction of secretory IgM with commensal bacteria in
mice and humans and its role in inducing tolerance have recently
been reviewed (17).

ASYMMETRIC PENTAMERIC IgM
SEQUESTERS A HOST PROTEIN

The gap caused by the J chain in the structure of pentameric
IgM can be filled by a specific host protein, apoptosis inhibitor
of macrophage (AIM, encoded by the cd5l gene), according
to EM images by Hiramoto et al. (12). AIM belongs to the
scavenger receptor cysteine-rich (SRCR) superfamily and is
mainly produced by tissue macrophages. Due to its relatively
small size (37 kD in humans), free AIM can be filtered easily
by the glomerulus. Binding to IgM not only protects AIM from
renal excretion but also inactivates AIM (18–20). Under various
disease conditions, especially acute kidney injury, AIM can be
released from its IgM carrier either locally or systematically to
inhibit apoptosis of thymocytes and other cell types (21), and
to facilitate the removal of excess fat, bacteria, cancer cells, or
dead-cell debris (22).

When AIM-containing IgM binds antigen and forms immune
complexes (ICs), AIM’s presence affects the interaction of the
resulting IgM-ICs with Fcα/µR expressed on the surface of
follicular dendritic cells (FDCs). As a result, internalization of
the IgM-ICs is slowed, thus prolonging their surface retention.
This facilitates antigen presentation to B cells and stimulates
secondary antibody responses (18).

MULTIMERIC IgM IS A POTENT
COMPLEMENT ACTIVATOR

After binding to a surface-exposed antigen, multimeric IgM shifts
its conformation to a staple-like arrangement (10). During the
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FIGURE 1 | Schematic structure of IgM. (A) Monomeric IgM is composed of two heavy (µ) and two light (λ/κ) chains. Each heavy or light chain contains one variable
region (VH or VL) and one constant region (Cµ1-4 and Cλ/κ). (B) Pentameric IgM contains five monomers and one J chain; disulfide bonds between each monomer
form the pentamer; the structure shown in (B) is based upon the recent EM image presented by Hiramoto et al. (12). There is a 50◦ gap where the J chain resides.
(C) The IgM hexamer contains six monomers and resembles a hexagon. The J chain is generally absent in hexamers.

conformational change, both IgM pentamers and hexamers adopt
hexagonal arrangements, thereby exposing their C1q-binding
sites. This leads to complement binding and activation of the
complement cascade (13), thereby lysing virions or virus-infected
cells, which accelerates cellular and humoral immune responses
(23). Sharp et al. (13) found that complexes formed by surface-
bound multimeric IgM and complement C1 are more structurally
homogenous and orderly than those consisting of surface-bound,
hexamerized IgG and C1. When compared to IgG, IgM is far
superior as complement activator; a single antigen-bound IgM
molecule can activate complement and lyse red blood cells, while
a thousand or more IgG molecules are required to achieve the
same (24, 25).

IgM REGULATES THE IMMUNE SYSTEM
THROUGH ITS INTERACTION WITH Fc
RECEPTORS

Other than pIgR, IgM can interact with two other Fc receptors,
Fcα/µR, and FcµR. Fcα/µR, an Fc receptor closely related to

pIgR, can interact with both IgA and IgM. Unlike pIgR, which
is expressed only on epithelia, Fcα/µR is expressed on both
hematopoietic and non-hematopoietic cells in the liver, kidney,
small and large intestines, testis, and placenta (26). In mice, it
is expressed on macrophages, FDCs, marginal zone (MZ) and
follicular B cells, but not on T cells, NK cells, or granulocytes (26,
27). In humans, Fcα/µR is expressed predominantly on germinal
center FDCs (28). IgM-coated microorganisms or IgM-antigen
ICs bind to Fcα/µR and are phagocytosed by B cells in vitro.
This process could facilitate the processing and presentation
of antigens to T-helper cells for the induction of immune
response against T-dependent antigens (27). However, Fcα/µR
also negatively regulates complement receptor-mediated antigen
retention by MZ B cells and suppresses immune responses against
T-independent (TI) antigens. Because various self-antigens are
TI antigens, natural IgMs suppress autoimmune responses by
forming ICs with these antigens. The resulting ICs are then
phagocytosed through interaction with the Fcα/µ R (29).

FcµR is an Fc receptor specific for IgM; other names for
FcµR include Fc fragment of IgM receptor (FCMR) and Toso/Fas
apoptotic inhibitory molecule 3 (FAIM3) (30). It is expressed by
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B cells, T cells, and NK cells in humans, but only by B cells in mice
(31–33). It has a high affinity to the Fc portion of multimeric IgM
(∼10 nM), but a lower affinity to monomeric IgM (31). When
IgM binds to a membrane component on the same cell surface
via its Fab, it binds more efficiently to FcµR (34). The function of
FcµR is still under investigation. Studies on FcµR-deficient mice
suggested that this receptor broadly regulates cellular activation
and controls autoantibody production (32, 35–37).

BOTH NATURAL AND ADAPTIVE IgMs
PROTECT AGAINST VIRAL INFECTIONS

There are two types of secreted IgM (sIgM), natural (innate) and
adaptive IgM; the latter is also termed “immune” or “induced”
IgM. Even without apparent antigenic stimulation, circulating
antibodies are present in human cord blood (38) and in the blood
of germ/antigen-free mice (39, 40). Such spontaneously produced
antibodies are called natural antibodies (41), and the IgM class
predominates (42) although IgG and IgA natural antibodies have
been described (43, 44). The repertoire of natural antibodies is
highly conserved (38, 40, 45, 46). In mice, natural IgM is mostly
produced by the long-lived, self-renewing CD5+ B1 subset of B
cells (47) in the spleen, bone marrow, and peritoneal cavity (48–
50). B1 cells generally harbor germline versions of the V gene
segments with limited somatic hypermutation (51–53). Natural
IgMs often display low affinity and polyreactivity. However,
natural IgM – despite its low affinity – plays a significant role in
the primary host defense.

Natural IgM is broadly reactive to not only protein but
also non-protein antigens, such as phosphorylcholine (54),
phosphatidylcholine (55), and glycans (56, 57). Due to its
polyreactivity, natural IgM can recognize foreign antigens
without ever having encountered them, making it the very first
line of defense against invaders. Indeed, sera from naïve mice
contained IgMs able to bind to vesicular stomatitis virus (VSV),
lymphocytic choriomeningitis virus (LCMV), and vaccinia virus
(58). The anti-VSV IgM antibodies were neutralizing and strain-
specific as shown by cross-absorption with another strain of VSV.
In mice lacking sIgM but able to produce all other Ig classes
(sIgM−/−), viruses disseminated much faster than in wild-type
(WT) mice during early-stage infection. Natural IgM trapped
virions in the spleen and reduced blood-borne viral trafficking
to non-lymphatic organs, such as the kidney. When serum
from naïve WT mice that contained predominantly natural IgM
was passively transferred to sIgM−/− mice, the recipients were
protected against lethal VSV challenge. Moreover, Ochsenbein
et al. (58) suggested that natural IgM influences not only early
virus dissemination but also delivers trapped virus particles to
secondary lymphatic organs, thereby accelerating and enhancing
adaptive immune responses – based upon the known, delayed
neutralizing IgG responses in sIgM−/− mice (58).

Natural IgM in the sera from naïve mice can also neutralize
and aggregate influenza virus in a complement-dependent
manner. The infusion of this natural IgM to RAG1−/− mice,
which lack both mature B cells and T cells, provided a modest
degree of protection against influenza virus challenge (59).

Naturally occurring anti-leukocyte IgMs isolated from both
normal and HIV-infected individuals that bind to CD4, CCR5,
and CXCR4 also have been reported by Lobo et al. to inhibit
HIV-1 infection in cultured human primary cells and cell lines
(60). The same anti-leukocyte IgMs were also tested for their anti-
HIV activity in a humanized severe combined immunodeficiency
(SCID) mouse model. These animals, reconstituted with human
peripheral blood lymphocytes (PBLs), were protected by
intraperitoneal (i.p.) injection of these natural IgMs from i.p. HIV
challenge (60) [review in (61)]. These data by Lobo et al. imply
that anti-cellular IgM that targets HIV receptors/coreceptors
as opposed to directly binding to viral proteins may have
beneficial effects.

In summary, natural IgM uses the following three mechanisms
to defend against viral infections: (i) neutralization by direct
binding to viral proteins or viral receptors expressed on potential
viral target cells, with or without complement; (ii) trapping of
virions by aggregation; and (iii) transporting viral antigens as ICs
to lymphoid tissues, thus promoting adaptive immune responses.
The latter most likely occur through complement activation or Fc
receptor interaction.

In contrast to natural IgM, adaptive IgM is the first antibody
class produced by the body in response to an invading
pathogen and is mostly produced by B2 cells in the spleen
and lymph nodes. Adaptive and natural IgMs are structurally
and functionally similar despite the different producer B
cells; the only difference is that natural IgM possesses more
flexible antigen-binding sites that provide broader reactivity to
various antigens (62–64). Although adaptive IgM is generally
not thought to play a significant role in long-term humoral
immunity, the recent discovery of long-lived IgM plasma cells
(65, 66) suggests that adaptive IgM may be an overlooked
contributor in humoral immune defenses against viral infections.
Somatic hypermutations have been found in cells producing
adaptive IgM (65).

The role of natural and/or adaptive IgM against virus
challenges was examined by several groups. Interestingly, IgM
produced by both B1 and B2 cells was required to provide full
protection against influenza virus challenge in mice (67); natural
IgM was only partially protective in this study. Diamond et al.
(68) examined the role of IgM against West Nile virus (WNV)
in mice, especially viral dissemination into the central nervous
system (CNS). WNV mortality rates were compared between WT
and sIgM−/− mice that, as mentioned above, do not produce
sIgM but can secrete other immunoglobulin classes/isotypes. All
of the WT mice survived, in contrast to only 25% of the sIgM−/−

mice (68). When WT mice were exposed to WNV for 4 days,
neutralizing IgM (adaptive IgM) but no WNV-specific IgG was
detected. Serum was collected from these mice with early-stage
WNV infection, heat-inactivated, and passively transferred to
sIgM−/− mice. Nine out of ten of the latter survived subsequent
lethal WNV challenge. In contrast, passive administration of
sera from naïve mice did not provide any protection, suggesting
that adaptive IgM, but not natural IgM was responsible for
the protection against WNV infection. Protective adaptive IgM
responses have also been found against polyomavirus (69), VSV
(70), rabies virus (71), and influenza virus (72–74).
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Recently, Shen et al. (74) isolated a neutralizing monoclonal
antibody against influenza virus, termed C7G6, from immunized
mice by hybridoma technology. The authors then constructed
IgM and IgG1 versions of C7G6. Interestingly, the C7G6-
IgM provided more potent and broader neutralization against
influenza B strains compared to the IgG1 counterpart in vitro
and better protection against different strains of influenza virus
in mice and ferrets (74). Together, these findings suggest that
adaptive IgM might be able to play a significant role in the
immune defense against viral infections in general.

ADAPTIVE IgM CONTRIBUTES TO
LONG-TERM PROTECTION AGAINST
PATHOGENS

According to conventional views, adaptive IgM is produced only
during acute infection, is short-lived, and is not associated with
hypermutation/affinity maturation. However, Racine et al. (66,
75) demonstrated that infection with the intracellular bacterial
pathogen, Ehrlichia muris, induced a robust, antigen-specific IgM
plasmablast response. These IgM-secreting cells were detectable
as late as 1 year after infection, were long-lived, and resided
in spleen and bone marrow. Furthermore, all mice deficient of
activation-induced cytidine deaminase (AID), which can only
produce IgM but none of the other Ig classes due to impaired
ability to undergo class-switching and somatic hypermutation,
survived E. muris challenge. In contrast, 80% of mice lacking all
secreted Ig classes succumbed to the challenge, suggesting that
IgM alone can protect against E. muris infection. To determine
the duration of IgM-mediated protection, the authors exposed
AID-deficient mice to a different, more pathogenic bacterial
strain, Ixodes ovatus ehrlichia (IOE). The re-exposure occurred
250 days after the initial E. muris infection, from which all mice
had recovered; the majority of them survived IOE rechallenge,
while none of the naïve mice did. These data suggest the E. muris-
induced, IgM-mediated immunity was long-lasting. To exclude
the possibility that the long-lasting IgM responses required
bacterial persistence, the authors treated the E. muris infection
with an antibiotic. After this, titers of E. muris-specific serum
IgM were significantly reduced, whereas the IgM-secreting cell
population persisted at only slightly lower numbers. These IgM-
secreting cells still protected 75% of the mice against lethal
IOE challenge 77 days after the initial E. muris infection. In
contrast, none of the naïve mice survived, regardless of prior
antibiotic treatment. In this mouse model, E. muris infection
functioned akin to a live attenuated vaccine that induced antigen-
specific IgM responses that cross-protected against lethal IOE
rechallenge. Of note, these E. muris-induced IgM responses
persisted for months and did not require the chronic presence
of E. muris.

More recently, Bohannon et al. (65) showed that immunizing
mice with inactivated influenza virus induced long-lived, antigen-
specific IgM-secreting plasma cells that persisted in the spleen for
2 years. The same type of cells was also observed in mice exposed
to live influenza virus or LCMV. These long-lived IgM plasma
cells could develop independently of germinal centers (GCs)

and were somatically mutated in an AID-dependent manner.
Interestingly, after adoptive transfer to naïve recipient mice, these
plasma cells were relatively long-lived and had an estimated half-
life of 86 days, which did not differ significantly from that of IgG
plasma cells in this study (t1/2 = 145 days; p = 0.82) (65).

Next, Bohannon et al. (65) immunized WT C57/BL/6 mice
once with inactivated influenza virus and treated them with
a cytotoxic antibody targeting the CD40 ligand (CD40L) on
days 6, 8, and 10 after vaccination to deplete T-helper cells.
The anti-CD40L antibody treatment was designed to disrupt
GC formation, to prevent Ig class switching, and thus to block
the development of long-lived IgG plasma cells (76). Indeed,
the influenza virus-specific, long-lived IgG plasma cells were
ablated (65), and antiviral neutralizing antibodies in sera taken
150 days post-immunization were predominantly IgM. One year
after immunization, these immunized, anti-CD40L antibody-
treated mice were challenged intranasally with a lethal dose of
influenza virus. While all unimmunized controls succumbed to
the infection, 80% of immunized and antibody-treated mice
survived, thus suggesting that the long-lived IgM plasma cells
and adaptive IgM provided sufficient protection in the absence
of long-lived IgG plasma cells and IgG antibodies. Of note,
the authors did not measure IgA-related antiviral responses;
thus, the contribution of the latter in the protection against
influenza was not excluded, although the anti-CD40L antibody
treatment likely also prevented class switching to IgA. It also
would be interesting to see whether adoptively transferring virus-
specific, long-lived IgM plasma cells to naïve mice would protect
against influenza virus challenge. Such an adoptive transfer would
eliminate confounding variables, thereby providing proof that
IgM responses alone suffice.

Taken together, the data summarized in this section suggest
that adaptive IgM contributes to the humoral memory and
long-term protection against pathogen infections. The findings
also imply that vaccination could potentially induce long-term
protective IgM responses.

ADAPTIVE IgM RESPONSES DURING
HUMAN IMMUNODEFICIENCY VIRUS
(HIV) INFECTION

Adaptive IgM is the first virus-specific antibody class to emerge
after HIV infection – like in any infection. In 1987, Cooper et al.
(77) reported that serum anti-HIV IgM was detectable within an
average of 5 days after the onset of acute illness, peaked at 24 days,
and became undetectable at 81 days. IgG antibodies first appeared
later at 11 days, peaked at 133 days, and remained measurable in
all subjects (77).

A more detailed analysis of the time course of initial antibody
responses to acute HIV infection was conducted by Tomaras
et al. (78); the first detectable antibodies usually were present as
IgM-virion ICs, appearing as early as 5 days (median, 8 days)
after the day plasma viral RNA became measurable (T0), which
was approximately 10 days after virus transmission. The first free
plasma anti-HIV antibodies were anti-gp41 IgM detected in 41%
of subjects at a median of 13 days (range, 5 to 18 days) after
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T0. These responses decreased over 20 to 40 days, while IgG
responses rose over the same period (78).

Of note, the inclusion of anti-HIV IgM detection in the third-
generation test kits (IgG/IgM sensitive) shortened the window
period, i.e., the time before HIV infection can be diagnosed
serologically. Testing for HIV-specific IgM could give positive
readouts at a median of 23 days after infection compared to
31 days by tests measuring only IgG (79).

RECOMBINANT ANTI-HIV IgM
PROTECTS MUCOSAL SIMIAN-HUMAN
IMMUNODEFICIENCY VIRUS (SHIV)
TRANSMISSION

Unlike anti-HIV IgG or IgA, anti-HIV IgM has remained
relatively understudied other than developing it as a diagnostic
tool. Recently, we sought to investigate the potential of anti-
HIV envelope IgM in preventing virus acquisition in a non-
human primate model. We chose passive immunization as
our tool because it restricts protection solely to the passively
administered antibody and thus establishes a cause-and-effect
relationship between the antibody and protection. We first
constructed a recombinant human monoclonal anti-HIV IgM
using the variable genes of the high-affinity neutralizing antibody,
33C6-IgG1, which targets the conserved V3 loop crown of
HIV gp120 (80). The resulting 33C6-IgM contained the J
chain and recognized the same epitope as the original IgG1;
essentially, we created the opportunity to directly compare
isogenic IgM and IgG1 mAb versions. By surface plasmon
resonance, 33C6-IgM bound to HIV gp120 with a faster on-
rate and a slower off-rate, resulting in a 52-folder higher affinity
compared to 33C6-IgG1. In vitro, 33C6-IgM neutralized and
captured challenge virus particles significantly better than its
IgG1 counterpart.

Next, we assessed the potential of the isogenic 33C6
IgM/IgG1 mAb pair to prevent acquisition of a chimeric simian-
immunodeficiency virus (SHIV) that carries HIV-1 env. After
intrarectal (i.r.) passive immunization, 33C6-IgM prevented
viremia in four out of six rhesus monkeys challenged i.r. with
a single high-dose of SHIV, while all control animals were
highly viremic. The degree of protection was similar after i.r.
passive immunization with the IgG1 version of the same mAb.
We propose that efficient trapping of infectious virions in the
mucosal lumen – i.e., immune exclusion – combined with direct
virus neutralization, represent the mechanisms of protection by
IgM (81). To our knowledge, this is the first demonstration
that a recombinant antiviral IgM can prevent mucosal virus
transmission in a relevant animal model. Our data also provide
the first proof-of-concept that the IgM class of anti-HIV envelope
antibodies is protective in vivo.

Subsequently, Devito et al. (82) isolated natural IgM-
producing B cells from HIV-negative donors; B-cell clones
that recognized the HIV gp120 V3 region were selected and
immortalized to produce natural IgM mAbs. In a Transwell
plate-based assay, some of these natural IgM mAbs inhibited

transcytosis of infectious HIV – suggesting that natural IgM may
be able to stop HIV from crossing epithelial cell membranes.
These in vitro data lend support to the protective mechanisms
we proposed in our passive immunization study in the rhesus
macaque/SHIV model.

ADAPTIVE IgM RESPONSES DURING
SEVERE ACUTE RESPIRATORY
SYNDROME CORONAVIRUS 2
(SARS-CoV-2) INFECTION AND
CORONAVIRUS-19 DISEASE (COVID-19)

SARS-CoV-2, the cause of the newest pandemic, continues to
spread exponentially in many countries. More than 16 million
people have been infected worldwide (83), and many have
succumbed to COVID-19. Guo et al. (84) reported that IgM,
IgA, and IgG antibodies against SARS-CoV-2 appeared as early
as 1 day after symptom onset in some individuals. Both IgM
ad IgA antibodies were detectable at a median of 5 days post
symptom onset, while IgG antibodies were detectable at a
median of 14 days. However, Long et al. (85) reported that
both antiviral IgM and IgG were detectable at a median of
13 days following the onset of symptoms. IgM and IgG became
detectable at the same time in some patients, whereas in others
either IgM or IgG were detectable first. Both antiviral IgM
and IgG titers plateaued within 6 days after seroconversion.
Serological tests could help diagnose suspected COVID-19 cases
with negative PCR results. Inclusion of antiviral IgM responses
could increase assay sensitivity. Currently, intense research
efforts are focused on defining protective anti-SARS-CoV-2
antibody responses.

CONCLUSION

The IgM field is undergoing a major but quiet revolution. There
is more to this ancient antibody class than what textbooks have
described. To begin with – the structure of sIgM in mice and
humans, long thought to be a perfect pentamer – actually has
been described as an asymmetric molecule that resembles a quasi-
hexamer missing one monomer, thereby creating a “tooth gap.”
This new structural feature allows gapped pentameric IgM to
serve as host protein carrier. To date, this interaction seems to
be specific and restricted to host protein AIM, which is released
as needed to promote the removal of dead-cell debris, cancer
cells, or pathogens.

Second, IgM has unique features against viral infections, such
as high avidity. Some viruses tend to exhibit high mutation
rates, leading to the generation of quasispecies and neutralization
escape mutants. Neutralizing IgG antibodies may lose their
affinity to viral targets as a consequence. However, IgM’s high
avidity could compensate for the loss of affinity caused by
imperfect matching to mutated target epitopes, as shown for
influenza virus (74). As such, antiviral IgMs are expected to
neutralize a broader range of viral strains compared to their
IgG counterparts.
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Finally, there is more to IgM’s role in adaptive immunity
than being a first responder only. According to commonly held
views, IgM has been thought to participate solely in the initial,
acute response to viral infections without playing any role in
long-term adaptive immunity. However, recent findings in mice
demonstrated that antigen-specific, long-lived IgM plasma cells
do exist – preferentially in the spleen as shown by adoptive
transfer from immunized mice. The half-life of such antigen-
specific IgM plasma cells was not much shorter than that of long-
lived IgG plasma cells. Most interestingly, long-lived IgM plasma
cells contained somatic hypermutations ascribed to AID action.
These cells were linked to protection against lethal influenza virus
challenge 1 year after immunization in mice, in the absence of
GCs and antigen-specific IgG plasma cells.

Of note, recent data summarized in this review imply that
induction of protective, long-term IgM responses may be possible
by active immunization. Vaccines that include long-term antiviral
IgM responses may possess advantages over traditional IgG
responses against fast-mutating viruses, such as HIV and other
RNA viruses known to replicate via error-prone viral RNA-
dependent polymerases or to frequently recombine with different
viral strains. However, generating such long-term antiviral IgM

responses through vaccination needs further study. For use in
passive immunization against viral pathogens, IgM may have
great potential.
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