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Abstract
Changes in the mean and variance of gene expression with age have consequences for healthy aging and disease
development. Age-dependent changes in phenotypic variance have been associated with a decline in regulatory functions
leading to increase in disease risk. Here, we investigate age-related mean and variance changes in gene expression measured
by RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression from 855 adult female twins. We
see evidence of up to 60% of age effects on transcription levels shared across tissues, and 47% of those on splicing. Using gene
expression variance and discordance between genetically identical MZ twin pairs, we identify 137 genes with age-related
changes in variance and 42 genes with age-related discordance between co-twins; implying the latter are driven by environ-
mental effects. We identify four eQTLs whose effect on expression is age-dependent (FDR 5%). Combined, these results show
a complicated mix of environmental and genetically driven changes in expression with age. Using the twin structure in our
data, we show that additive genetic effects explain considerably more of the variance in gene expression than aging, but less
that other environmental factors, potentially explaining why reliable expression-derived biomarkers for healthy-aging have
proved elusive compared with those derived from methylation.

Introduction
Aging is a complex process, characterized by a progressive
decline in an organism’s biological function and change in phe-
notypic characteristics, which leads to an increased chance of
developing disease and ultimately the death of the organism

(1). Others have attempted to understand the aging process by
identifying common denominators of aging in different organ-
isms (2). Many of these hallmarks, such as genome instability,
epigenetic alterations, loss of proteostasis and telomere attri-
tion, are accompanied by changes in gene expression.
Identification of genes that are differentially expressed with age
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has proved useful in identifying pathways whose behavior is
modified by age, as well as identifying biomarkers of aging and
therapeutic targets (3–5). Expression studies into aging using
animal models have discovered that the expression of up to
75% of genes can be associated with aging (6). These modifica-
tions can occur by acting on the level of expression of genes, on
the splicing of the mRNA produced or on the genetic regulation
of gene expression (6,7). Human studies recently managed to
identify thousands of genes associated with age in multiple tis-
sues (3,8,9), but have not observed age effects with the same
scale and diversity as those seen in model organisms. Reasons
for this include a reduced power to see interactions due to the
uncontrolled human environment and inbred nature of model
organisms.

In this study, we investigate changes in gene expression with
age using RNA-seq measurements of fat, skin, whole blood and
derived lymphoblastoid cell lines (LCLs) expression from 855
monozygous (MZ) and dizygous (DZ) adult female twins
(Supplementary Material, Table S1). We take a comprehensive
approach that includes not only an analysis of the effect of age
on the mean of gene expression and alternative splicing, but
also analyses using gene expression variance and discordance
between genetically identical MZ twin pairs. We aim with this to
better understand the relationship between age-dependent
changes in phenotypic variance, a decline in regulatory func-
tions with age and the subsequent increase in disease risk
observed in epidemiological studies. The age-related changes in
variance of gene expression have been identified in animal mod-
els, but identification of specific genes changing variance with
age in humans has not been well studied (10–13). We show also
how environmental exposures on MZ siblings change expression
over time and how the aging process is a complicated interplay
between genetic variance and environmental factors. To explore
one possible environmental factor involved, we also studied
methylation changes with age in the same samples from fat tis-
sue and genotype-by-age interaction on gene expression.
Finally, in comparison with previous studies, we observe a
greater degree of sharing of age expression effects across tissues,
reflecting the large sample, benefits of the twin design and the
more accurate quantification provided by RNA-seq.

Results
Effects of aging on levels of gene expression

The analysis of changes in gene expression with age used RNA-
seq data from 855 healthy individuals drawn from the TwinsUK
cohort (Supplementary Material, Table S1) in four tissues:
i) photo protected skin, ii) subcutaneous fat, iii) whole blood and
iv) lymphoblastoid cell lines (LCLs). We consider a gene associ-
ated with age if at least one exon was associated with chrono-
logical age. We discovered that 36.6% of tested genes (5631 of
15 353) had at least one exon where expression was significantly
associated with age in at least one tissue (adjusted P val-
ue< 0.05, the multiple testing procedure used controls for both
the number of genes and the differing number of exons per
gene); (Fig. 1A, Supplementary Material, File S1, Supplementary
Material, Table S2). This number is roughly double that we pre-
viously reported (18.3%, 3019 genes) using exactly the same
skin, fat and LCLs samples but measuring expression using
microarrays (3) (Fig. 1A, Supplementary Material, Fig. S1). Our
results increase the current catalogue of genes which expres-
sion changes with age and the list of potential biomarkers of
aging.

Effects of aging on splicing

As well as changes in the average level of expression, age is also
known to cause changes in the mRNA splicing process. To iden-
tify changes in splicing with age, we produced quantifications
of this process using Altrans (14), which considers links
between reads. We found a total of 904 genes (6.3% of the 14,
261 genes with more than one exon expressed) with at least one
of their links spanning from two exons differentially expressed
with age (adjusted P values< 0.05, Supplementary Material,
Files S2 and S3). Differential splicing was only observed in fat
and skin; possibly because of the low power due to sample size
in blood and the LCL transformation process removing environ-
mental effects. We see fewer genes with differential splicing
compared with differential expression, but this could be
because of the increased difficulty in producing a reliable quan-
tification of the splicing process using current technologies. In
the future, quantifications based on long read sequencing will
allow accurate quantification of isoforms; revisiting splicing in
this context may dramatically alter our perspective.

Additive genetic effects explain a substantially
larger amount of variance in gene expression
than age in all tissues

To quantify the relative effect of age and additive genetic effects
on gene expression, we estimated the proportion of variance of
exon expression levels (removing technical confounders)
explained by age and additive genetic effects (heritability). In
exons associated with age, age explained only a small propor-
tion of the variation in gene expression, with median values
between 2.2% and 5.7% depending on tissue and with maximum
values ranging from 12% to 27% (Supplementary Material, File
S4). Globally, the effect of age on expression was greatest in
blood, then skin, fat, and finally LCLs had the least. In compari-
son, the proportion of variance explained by additive genetic
effects on the same set of age-affected exons was greater than
that explained by age in all tissues (median h2

skin¼ 0.12,
h2

fat¼ 0.22, h2
LCLs¼ 0.20, h2

blood¼ 0.23, Fig. 2, Supplementary
Material, Table S3 and Figs S2–S5). We also investigated herit-
ability separately in older and younger individuals but observed
no clear pattern (Supplementary Material, Table S4). These
results combined demonstrate that though the ageing process
impacts the expression of thousands of genes, in most cases
this impact is relatively small compared with the impact of
genetic variation on expression. This shows that while the con-
sequences of ageing are global and widespread, it has low
power for predicting expression. This suggests that a model of
biological ageing based on expression, as have been proposed
using methylation, may be difficult to produce.

Variance and differences in gene expression between
MZ twins are dependent on age

Age-dependent changes in the variance of gene expression
(rather than mean expression levels) has been reported in dif-
ferent model organisms (10–12), but previous studies in humans
have not been conclusive (13). Here, we looked for changes in
variance with age and identified 137 genes where expression
showed age-dependent variance in at least one tissue (adjusted
P value< 0.05, Fig. 1B, Supplementary Material, File S5). Since
changes in phenotypic variance have mainly been reported to
increase with age, we were surprised to observe that for the
majority of these genes we report a decrease in variance of
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expression with increasing age. The biological functions associ-
ated with the genes with age-associated differential variance in
skin included oxidation reduction, with affected genes such as
SOD2 (Fig. 1B), fatty acid metabolism with genes including
CPT1B, ELOVL3 and ELOVL5 or cell cycle control like CDKN1A
(p21) (Supplementary Material, Fig. S6). Our analysis shows

concrete examples of age-related changes in phenotypic var-
iance affecting expression in humans and identified changes in
variance with age as another process by which aging may be
linked to disease.

Changes in the phenotypic variance with age can be due to
different responses to environment, age-related damage

Figure 1. Effects of aging in gene expression: The effect of aging in gene expression is not limited to changes in mean expression values with age (A), but includes also

changes in levels of phenotypic variance (B, C), and splicing (D). The top row graphs show real data examples for the effects of aging in expression investigated. The

middle graphs show bar plots with the percentage of exons with positive (þ) or negative (�) age effects in each analysis. And finally, the bottom tables provide the

number of exons and genes with significant association for each of the effects presented. All the real examples are from skin, the tissue with larger age effect in expres-

sion overall analyses. (A) Effect of aging in mean gene expression, usually referred as differentially expression with age in exons. The example shows the residuals

(after removing technical covariates) of the expression of the ZBED3 gene decreasing with age. Skin is the tissues with a larger effect of age in expression and LCLs the

smaller. (B) The effect of aging in variance of gene expression is shown with the ELOVL3 gene and a significant decrease of variance in expression with age. From the

bar plot it is possible to appreciate that the majority of the significant exons had a decrease in variance with age. (C) Differences in expression between monozygous

(MZ) twins point out to environmental factors different among the siblings affecting gene expression, since MZ twins are genetically identical individuals with the

same age. The example shows the difference in expression between MZ twins in the gene CCHR1. (D) For the splicing analysis, only links (reads between two exons)

were considered. The example shows the structure of the gene APOE with its exons (boxes) and lines connecting the exons representing reads spanning between two

exons. The number of reads linking exons 3 and 4 (in purple) decreased in number with age, while reads linking exons 2 and 4 (blue) increased with age (Fig. 5 for

details). The model suggested that an isoform skipping the third exon (from the 5’) may be more abundant in older individuals compare to an isoform that includes the

third exon linked to the last exon.

Figure 2. Median proportion of variance explained by age (left) and genetics (right) in all tested genes (All genes), differentially expressed genes with age (diff.

expressed), genes changing variance with age (Variance) and genes discordant in MZ twins with age (Discordant). In general, the amount of variance explained by age

and heritability in genes significantly affected by age in different ways is larger than in the median of the whole genome. The exception applies to those groups of

genes with very little number of genes, like discordance genes in fat with 1 gene. The complete variance decomposition analysis is shown in Supplementary Material,

Table S4.
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accumulation leading to stochastic deregulation of gene expres-
sion or gene-age interactions where changes in relative genetic
effects can increase heterogeneity across the population at a
particular age (15). Since MZ twins are genetically identical (and
the same age), differences in expression levels within twin-
pairs must have an environmental cause, allowing us to learn
whether changes in variance with age were indeed influenced
by the environment experienced by the twins. Therefore, and
exploiting the twin design, we calculated the difference in
expression between MZ co-twins (Supplementary Material,
Table S1). Here, we identified 42 genes where difference (dis-
cordance) in expression between MZ co-twins changed with age
in at least one tissue (Fig. 1C, Supplementary Material, Fig. S7
and File S6). Of the 34 genes identified in skin, 14 also showed a
change in variance with age. This indicates that the observed
change for those genes was environmentally and not geneti-
cally driven (Supplementary Material, Fig. S8). However, for the
81 remaining genes, significant change in variance with age did
not produce age-related discordance, either because the chang-
ing environments were shared by MZ twins, or the variance
effect was due to GxE interactions. We conclude that changes in
phenotypic variation with age can be attributed to different
environmental exposures among the individuals and not only
to a general decline in regulatory functions and increase in
genome damage with age, as others have suggested (12).

Genetic and environmental changes affecting variance
in gene expression with age

We were able to identify genes with a significant change in var-
iance in gene expression due to environmental factors linked to
aging and similar in MZ twins. However, changes in variance of
expression can also be the results of changes in genetic regulation
(6,16,17). Such effects can be identified as genotype-by-age interac-
tions affecting expression (GxAge). However, it is well known that
the power to discover such interaction effects is much reduced
compared with standard main effects; for this reason, it is com-
mon to restrict the search space to those with known main effects,
either genetic or on aging, or by looking for variance/discordance
effects (15,18). We used the latter approach and tested cis-GxAge
regulatory interaction effects for the 12 830 exons which were
either 1) differentially expressed with age; 2) showed variance
changes with age or 3) discordant in expression between MZ co-
twins with age in fat or skin. After multiple testing corrections, we
identified one significant GxAge-eQTL, affecting the expression of
CD82 among the genes differentially expressed with age in fat
(Fig. 3). We also detected three GxAge-eQTLs among the genes that
were discordant between MZ co-twins for expression in skin,
affecting expression of CNKSR1, ACO1 and ACSS2 (Supplementary
Material, Fig. S9 and Files S7–S9). Despite the inherent challenges
in identifying interaction effects, we here identify four GxAge
effects on gene expression with a relatively modest sample size.

Given we identified genes with age-dependent changes in
variance of expression, but few changes in genetic regulation
which could explain them, we also explored environmentally
driven changes that may accumulate with age in different man-
ners among individuals and could explain some of the age-
related changes in expression. For this, we chose to explore the
effects of age in methylation, since methylation levels and dis-
cordance in methylation between MZ twins has been shown to
accumulate globally with age in promotor regions (19,20).
Following the same logic as with genetic effects, we looked for
interactions between methylation and age (methylation-by-age)

affecting gene expression that would explain the changes in
variance observed. For this, we used previously published meth-
ylation data collected from the same fat biopsies as our RNA-
seq data (21). We focused on genes for which we had observed
an association between variance in expression and age with a
significance threshold of P< 0.1 and investigated a total of 9
genes. We identified a Bonferonni significant methylation-by-
age interaction effect on expression of IRS1 at three methylation
probes, the most significant being at probe cg19451698
(P value¼ 6.6e-05, Fig. 3, Supplementary Material, File S10). This
significant interaction implies that the expression of the IRS1
gene decreases with age in individuals with cg19451698 hypo-
methylated. Such an effect was not present in individuals with
high levels of methylation in the same region. Our results indi-
cate that environmentally driven changes in genetic regulation
are a plausible explanation for age-dependent changes in var-
iance, although their genome-wide relevance may not be large.

Age effects in expression are shared across tissues

Finally, we wanted to evaluate how much of the age-related
effects on gene expression were shared across all the tissues

A

B

Figure 3. Interacting effects of aging on gene expression: The two plots show the

effects of genotypes (eQTL) and methylation on gene expression can be modu-

lated by age. (A) The graph shows a genotype-by-age expression quantitative

trait locus (GxAge-eQTL) in fat tissue affecting the expression of the CD82 gene.

The expression of the reported exon increased with age in homozygous individ-

uals for the CC alleles in rs10769002. Homozygous individuals for the alternative

allele (TT) showed a decreased in expression with age. (B) The graph shows a

methylation-by-age interaction affecting gene expression. The expression of the

IRS1 gene decreased with age in individuals with the methylation cg19451698

hypomethylated.
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tested, since previous studies performed in multiple tissues
identified a limited number of shared genes associated with age
across tissues (3,8,22). Here, of the 5631 genes (36.67%) affected
by age in at least one tissue, we were only able to identify five
genes significantly associated with age in all the three primary
tissues (Fig. 4, Supplementary Material, Fig. S10, Table S6). By
pair-wise comparisons between tissues we found that 274 was
the largest number of genes significantly associated between
two tissues (Fig. 4B). However, this degree of overlap of associ-
ated exons across tissues was significant (P value< 1e-216,
Fishers test) indicating the presence of a common signature of
aging across tissues. Furthermore, defining tissue-shared
effects based on strict thresholds will underestimate the true
sharing between tissues, particularly in blood, which had
reduced power to detect associations due to smaller sample
size. Enrichment analysis revealed that pairs of tissues shared
between 21% (skin and blood) and 60% (fat and skin) of age-
related effects in common (Fig. 4) (3). Our results indicate that
global biomarkers of aging with effects across multiple tissues
are prevalent, but also that there is a strong tissue-specific com-
ponent to ageing, even between highly related tissues such as
fat and skin. This is supported by the findings of multi-tissues
studies like GTEx pilot study, which identified 1000s of genes
using 9 tissues (22).

Discussion
In this study, we have explored a large multi-tissue expression
dataset to investigate the influence of aging on genetic regula-
tion. We find an increased number of genes differentially
expressed with age in line with the larger sample sizes in our
study. Furthermore, we have extensively explored the relation-
ship between changes in phenotypic variance with age, an
under-studied effect of aging reported in multiple studies and
in which global changes in phenotypic variance increase with
age (2). This increase in phenotypic variance has been mainly
considered a manifestation of a loss in regulatory capacities in
aging organisms, and it is often proposed as a link between
aging and diseases (10,11). However, our analysis mainly identi-
fied individual genes with a decreased variance, contradicting
the expectation of a stochastic increase of the phenotypic var-
iance with age due to reduced regulatory capabilities.

Three factors may induce changes in phenotypic mean or
variance: genetic variation, environmental variation or an inter-
action between the two. We were able to investigate these fac-
tors due to the unique characteristic of twin data, where genetic
and environmental components of variance can be explored.
We have successfully used this strategy previously to classify
genetic determinants of phenotypic variance in gene expression
(23) and GxE interactions affecting allelic specific expression
(24). Others have also explored the differences in gene expres-
sion between genetically identical twins (MZ) with age (25), but
the possible causes of these changes in variance have not been
fully explored before. Besides identifying genes with an changed
in variance with age, we observed that genes with expression
affected by age were highly heritable (Fig. 2, Supplementary
Material, File S4) suggesting, as previously reported, that age
modulates genetic regulation of expression. Genes and path-
ways associated with longevity and age-related changes are
often genetically regulated in older organisms with low levels of
stochasticity and higher levels of heritability (6,11,26).
Therefore, genes affected by age and highly heritable in older
individuals are longevity candidate genes than may increase

our understanding of the relationship between longevity and
healthy aging.

We attempted to identify genetic and environmental factors
involved in the changes of variance with age by testing for GxE
interactions. We were able to identify a significant GxAge-eQTL
in fat tissue acting on the gene CD82 (rs10769002). This gene is
associated with tumor progression as it codes for a metastasis
suppressor glycoprotein highly correlated with TP53 (p53) and
increase in its expression has been associated with overall bet-
ter survival to cancer (27). In our analysis, we observed that
individuals homozygous for the reference allele increased gene
expression with age compared with the alternative allele.
Therefore, it is possible that the alternate allele in rs10769002
may be a risk factor for some types of cancer in older individu-
als. Three other examples were identified in skin tissue for
genes also previously implicated in cancer and metabolism. Our
search for environmentally induced changes in gene expression
regulation with age identified IRS1 as a gene which expression
changes as a consequence of an age-methylation interaction.

A

C

B

Figure 4. Tissue shared and specific effects of aging in gene expression changes

with age. The top venn diagrams show (A) the number of exons (left) and (B)

number of genes (right) significantly associated with chronological age in fat,

skin and whole blood. Five exons were commonly associated to age in the three

tissues. LCLs were not included, as only 7 exons were significantly associated

with age. (C) The P values of significant exons associated with age in one tissue

were extracted from the analysis in the other tissues for enrichment analysis

(p1). The histograms show the P values for association between expression and

age in one tissue (left, green color) if the exons were significantly associated

exons in another tissue (top, orange color). As shown in the graphs, age-related

signals detected in fat shared an estimated 60.2% of the age effect signal skin tis-

sue and 45.6% with blood.
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The IRS1 gene has been associated with T2D, an age-related dis-
ease, and it has also been found to have T2D associated DMRs
nearby (28). In conclusion, we identify changes in phenotypic
variance with age that would be explained by GxE and changes
in regulation, suggesting that damage accumulation is not the
only explanation to the observed change in phenotypic variance
with age for whole organism traits phenotypes. Moreover, we
show that the study of phenotypic variance with age in gene
expression manifesting in the form of GxE interactions may
identify new candidate genes relevant for longevity and age-
related diseases.

Many of the genes highlighted throughout this work have
been previously associated with age-related diseases. The asso-
ciations between aging and disease and genetics and disease has
been extensively catalogued by epidemiological and GWAS stud-
ies, respectively (2,29), but the association between specific
genes with a disease in the context of the aging process remains
elusive. Our analyses have identified thousands of genes chang-
ing their expression due to genetic or environmental factors
with age, some of which may explain the influence of aging in
the onset and outcome of diseases. From the genes reported to
show age effects in expression, we chose to highlight two exam-
ples of genes linked to age-related disease to illustrate the multi-
ple changes that aging may induce in any given gene. The first
example is the APOE gene, a gene which expression has been
associated with Alzheimer and cardiovascular diseases and with
genetic variants at the TOMM40/APOE/APOC1 locus near the
gene also associated with longevity (30). Our analysis showed
that the expression of multiple exons and links of APOE change
with age in skin tissue, producing different isoforms that can
potentially induce changes in the activity of the gene (Fig. 5). Our
GxAge-eQTL analysis reported a nominally significant P value of
0.014. Given the strong association between expression and dis-
ease, such an effect could modulate age-related development
and progression of disease. The second example we chose to
highlight here involves the LMNA gene (Fig. 5), which is causal of
the Hutchinson-Gilford progeria syndrome. This syndrome is
characterized by accelerated aging features as a consequence of
the accumulation of a truncate progerin isoform of LMNA. The
progerin transcript increases with age in normal cells (31), with
its protein known to accumulate in human skin in an age-
dependent manner (32). We reported changes in expression of
exons (adjusted P values< 0.1) and links (adjusted P val-
ues< 0.05) between exons consistent with the production of dif-
ferent alternative isoforms in an age-dependent manner.
Furthermore, an eQTL affecting the expression of the gene is
active in skin, blood and LCLs tissues. The peak LCL eQTL
(rs915179) has been previously linked to exceptional longevity in
humans (33,34). These examples illustrate that studying the
global effects of the aging process may lead to the identification
of gene involved in age-related diseases.

In summary, by performing a large human transcriptomic
study of aging in multiple tissues, we found that the shared
effect of aging in humans across four tissues as well as the
number of affected genes is larger than previously reported. We
also report that the global effect of age in gene expression is
small (median variance explained by age is between 2.2 and
5.74%) compared with the genetic effects or other environmen-
tal effects. When compared with the global effect of genetic fac-
tors on gene expression, and the success of eQTLs studies on
finding genetic regulatory elements, the low age-related values
may explain the difficulties in identifying biomarkers of aging
with gene expression, and highlight the need of larger sample
sizes that account for genetic variation. Moreover, we have

shown that age alters gene expression in multiple complex
ways, including variance, mRNA maturation and genetic regula-
tion. Many of these affected genes have been linked to age-
related diseases, showing the need for future studies into the
relationship between age-related changes in gene expression
and its regulation, and age-related diseases. This is particularly
relevant for genome wide association studies (GWAS) where
eQTL are routinely used to identify target genes of genetic asso-
ciations without accounting for the effects of age.

Materials and Methods
Study design

Sample collection, and mRNA extraction have been described in
detail in (21). In sort, 856 Caucasian female individuals (336 MZ
and 520 DZ twins) from the TwinsUK Adult twin registry (35)
were recruited with a ranged age from 39 to 85 years (mean 59
years). Tissue and blood samples were extracted on the same
visit per pair of twins, matching in this way their age at collec-
tion. Samples were prepared for sequencing and processed as
described in (23) and (24). The number of monozygotic (MZ),
dizygotic (DZ) and unrelated individuals (individuals with no
relatives in the dataset) included in the final analysis per tissue
are described in Supplementary Material, Table S1.

Exons and links quantification

The 49-bp sequenced paired-end reads were mapped to the
GRCh37 reference genome [The International Human Genome
Sequencing Consortium, (36)] with BWA v0.5.9 (37). We use
genes defined as protein coding in the GENCODE v10 annotation
(38), removing genes with more than 10% zero read count in
each tissue. For the analysis presented in this paper, only exons
from protein-coding genes and LincRNAs from verified loci
(level 1) and manually annotated (level 2) were investigated. We
calculated the relative quantification of splicing events using
Altrans (14). Read counts assigned to links and exons were
scaled to 10 million reads.

Supplementary Material, Table S7 shows the total number of
exons and genes sequenced per tissue, as well as the total num-
ber of exons, genes used in the analysis here presented.

Genotying and imputation

Genotyping of the TwinsUK dataset (N¼�6000) was done with a
combination of Illumina arrays as described in (21,23,24).
Samples were imputed into the 1000 Genomes Phase 1 refer-
ence panel (data freeze, 10/11/2010) (39) using IMPUTE2 (40) and
filtered (MAF< 0.01, IMPUTE info value< 0.8).

Splicing junction quantifications

We calculated the relative quantification of splicing events
using Altrans (14). The method makes use of mate pairs
mapped to different exons to count “links” between two exons
based on the GENCODE v10 annotation for level 1 and 2 from
protein coding genes and lincRNA. Exons that overlap were
grouped into “exon groups” to identify unique portions of each
exon from an exon group. The unique portions were used to
assign reads to an exon. The quantitative metric produced by
Altrans is the fraction of one link’s coverage over the sum of
overages of all the links that the primary exon produced. The
values range from 0 to 1, representing the proportion of a give
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link among all the links produced by the primary exon. The
metric is calculated in 5’-to-3’ (forward) and 3’-to-5’ (reverse)
directions to capture splice acceptor and donor effects respec-
tively. Supplementary Material, Table S8 shows the total num-
ber of links identify per tissue, as well as the total number of
links per gene detected.

Age effects on mean exon expression and links

Rank normalized reads per exon or links were used to assess
the age effect on exon expression mean. A linear mixed model
was fitted to examine age effect on gene expression in R (41)
with the lmer function in the lme4 package (42). Confounding
factors in all models included fixed (primer insert size, GC con-
tent mean and, only for blood samples, batch) and random
effects (primer index, date of sequencing, family relationship
and zygosity). The P values to assess significance for age effect
were calculated from the Chi-square distribution with 1 degree
of freedom using likelihood ratio of nested models as the test
statistic. A set of 100 permutations were used to adjust for mul-
tiple testing. Expression values were permuted while maintain-
ing samples from twin pairs together. To correct for the number
of exons per genes, which would allow genes with more exons
to have more significant associations by chance than genes
with fewer exons, we calculated adjusted P values in 16 groups,
one per group of genes with similar number of exons. The
adjusted P values were calculated as the proportion of permuted
statistics more significant, divided by 100. Adjusted P val-
ues< 0.05 were considered significant. A gene was considered
as significantly affected by age in its expression if at least one
exon was significantly associated with it.

Tissue shared effects

For each pair of tissues comparison we extracted P values of
exons in one tissue (e.g. skin) from significantly age associated
exons in other tissue (e.g. fat). The P values distributions were
used to assess the enrichment of age associated exons in other

tissues. Analysis were performed in largeQvalue (43), an imple-
mentation of the R statistical software qvalue package (44), for
large datasets.

Age effect on variance of gene expression

Residuals removing technical covariates and family structure
were used to assess the association for variance and age per tis-
sue. Residuals were extracted from a linear mixed model fitted
with the lmer function in the lme4 package (42) using R.
Confounding factors in all models included fixed and random
effects as detailed above. The residuals were fit on a LOESS
function including age as response variable. Residuals from the
LOESS regression were squared root to give a measure of the
distance from the mean expression with age. A Spearman corre-
lation test between this ‘distance’ and the age was used to
assess evidence for an age effect on variance.

Age effect on discordance of gene expression

Residuals removing only technical covariates were used to
assess the change in discordance of gene expression with age
per tissue from complete MZ pairs of twins (Supplementary
Material, Table S1). Association with age was assessed by
regressing the maximum expression of each twin pair on the
expression of the sibling plus age to detect whether the rela-
tionship between maximum and minimum expression was
conditional on age. Multiple testing was assess using 100 per-
mutations and as described for the expression association.

Fat methylation analysis

Infinium HumanMethylation450 BeadChip (Illumina Inc, San
Diego, CA) was used to measure DNA methylation. Details of
experimental approaches have been previously described (45).
To correct the technical issues caused by the two Illumina probe
types, the beta mixture quantile dilation (BMIQ) method was
performed (46). The methylation data were also background

Figure 5. Age effect for APOE and LMNA. On the left, a scheme of the APOE gene and the multiple protein coding transcripts variants (yellow) and non-coding processed

transcripts (blue) produced by the gene. In the skin tissue, three exons and one link decreased their expression with age (green-coloured exon and link between exons);

and one link increase its expression (red-coloured link). On the right, a scheme of the LMNA gene and the age affects in the skin tissue. Two exons were affected in their

expression by age by increasing expression (red coloured exon, corrected P-val<0.1) and decrease expression with age (green-coloured exon). Furthermore, two links

were significantly associated with age in their expression (corrected P val< 0.05). Our results suggested an increase in the production of isoforms using alternative 5’.
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corrected. DNA methylation probes that mapped incorrectly or
to multiple locations in the reference sequence were removed.
Probes with>1% subjects with detection P values> 0.05 were
also removed. Subjects with more than 5% missing probes were
also removed. All probes with non-missing values were
included.

Effect sizes and heritability analysis

We calculated effect size of age in expression and methylation
from the normalized data and as a proportion of variance attrib-
uted to age over the total variance in exon expression. We also
calculated the variance attributed to additive genetic effects,
common environment and unique environment. Variance com-
ponents were calculated from a linear mixed model, as previ-
ously described in (21), and (47) using all available complete
twin pairs per tissue (Supplementary Material, Table S1). The
model was fitted as described above.

Genotype-by-age and methylation-by-age interactions

Expression residuals removing technical covariates and family
structure were used to assess the association of exons and
genetics variance interacting with age. To identify genotype-by-
age interactions affecting gene expression, we performed a lin-
ear regression of the residuals of each exon on the SNPs in a
1Mb window around the transcription start site for each gene,
using a linear model in R. Only SNPs with MAF� 0.05 were
tested. We used 10 permutations to assess the significance of
the interactions for exons with age-related effects, namely
mean expression changes, variance changes and discordant
effects. We used a similar strategy as used by (48) and based on
(49). A linear model with main effects but without an interaction
term was used to extract residuals for each exon-SNP associa-
tion test. The residuals were permuted (10 times) and used in a
linear association with a model for the interacting term
(GxAge). P values from this analysis were stored and used to
adjusted P values correcting for the number of exons per genes,
as described before.

Methylation-by-age interaction analysis used expression
and methylation residuals after removal of technical covariates
and accounting for family structure. A linear model was used to
test the association between expression and methylation levels
with age. Significant associations were considered those with a
P value< 1.0e-4 (Bonferroni correction).
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22. Melé, M., Ferreira, P.G., Reverter, F., DeLuca, D.S., Monlong, J.,
Sammeth, M., Young, T.R., Goldmann, J.M., Pervouchine,
D.D., Sullivan, T.J. et al. (2015) The human transcriptome
across tissues and individuals. Science, 348, 660–665.

23. Brown, A.A., Buil, A., Vi~nuela, A., Lappalainen, T., Zheng, H.-
F., Richards, J.B., Small, K.S., Spector, T.D., Dermitzakis, E.T.
and Durbin, R. (2014) Genetic interactions affecting human
gene expression identified by variance association mapping.
Elife,3, e01381.

24. Buil, A., Brown, A.A., Lappalainen, T., Vinuela, A., Davies,
M.N., Zheng, H.-F., Richards, J.B., Glass, D., Small, K.S.,

Durbin, R. et al. (2014) Gene-gene and gene-environment
interactions detected by transcriptome sequence analysis in
twins. Nat. Genet., 47, 88–91.

25. Brinkmeyer-Langford, C.L., Guan, J., Ji, G. and Cai, J.J. (2016)
Aging shapes the population-mean and -dispersion of
gene expression in human brains. Front. Aging Neurosci., 8,
183.

26. Brown, A., Ding, Z., Vi~nuela, A., Glass, D., Parts, L., Spector,
T., Winn, J. and Durbin, R. (2015) Pathway-based factor anal-
ysis of gene expression data produces highly heritable phe-
notypes that associate with age. G3 (Bthesda), 5, 839–847.

27. Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng,
W., Kim, D., Nair, V.S., Xu, Y., Khuong, A., Hoang, C.D. et al.
(2015) The prognostic landscape of genes and
infiltrating immune cells across human cancers. Nat. Med.,
21, 938–945.

28. Nilsson, E., Jansson, P.A., Perfilyev, A., Volkov, P., Pedersen,
M., Svensson, M.K., Poulsen, P., Ribel-Madsen, R., Pedersen,
N.L., Almgren, P. et al. (2014) Altered DNA methylation and
differential expression of genes influencing metabolism and
inflammation in adipose tissue from subjects with type 2
diabetes. Diabetes, 63, 2962–2976.

29. Jeck, W.R., Siebold, A.P. and Sharpless, N.E. (2012) Review: a
meta-analysis of GWAS and age-associated diseases. Aging
Cell, 11, 727–731.
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