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Abstract

Iron deficiency is a major heart failure co-morbidity present in about 50% of patients with stable heart failure irrespective of
the left ventricular function. Along with compromise of daily activities, it also increases patient morbidity and mortality, which
is independent of anaemia. Several trials have established parenteral iron supplementation as an important complimentary
therapy to improve patient well-being and physical performance. Intravenous iron preparations, in the first-line ferric
carboxymaltose, demonstrated in previous clinical trials superior clinical effect in comparison with oral iron preparations,
improving New York Heart Association functional class, 6 min walk test distance, peak oxygen consumption, and quality of life
in patients with chronic heart failure. Beneficial effect of iron deficiency treatment on morbidity and mortality of heart failure
patients is waiting for conformation in ongoing trials. Although the current guidelines for treatment of chronic and acute heart
failure acknowledge importance of iron deficiency correction and recommend intravenous iron supplementation for its treat-
ment, iron deficiency remains frequently undertreated and insufficiently diagnosed in setting of the chronic heart failure. This
paper highlights the current state of the art in the pathophysiology of iron deficiency, associations with heart failure trajectory
and outcome, and an overview of current guideline-suggested treatment options.
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Epidemiology

Iron deficiency (ID) is one of the most common nutritional
deficiencies worldwide, affecting approximately one-third of
the general population.1 Reaching a prevalence of 30–50%
in patients with stable chronic heart failure (HF), ID is recog-
nized as major cause of anaemia in these patients, regardless
of sex, race, and left ventricular ejection function.2–4 At the
same time, more than 40% of the patients with chronic HF
without anaemia or abnormalities in haematological indices
exhibit laboratory abnormalities of depleted iron stores.5

Furthermore, ID in acute decompensated HF can be detected
in up to 80% of evaluated patients, which further underlines
the importance of research efforts towards understanding of
aetiology of ID in HF.6–8

Heart failure, as a chronic disabling syndrome, represents a
leading cause of frequent hospitalizations and high health
costs worldwide.9 A myriad of co-morbidities complicate
the natural course of HF and exhibit deleterious impact on
disease progression. Intuitively, these co-morbidities also
constitute targets for potential intervention to improve
quality of life and patient outcome. As such, ID gained
substantial importance as a part of comprehensive medical
treatment of HF in past years. Remarkably, ID seems to have
greater clinical repercussions on HF trajectory than anaemia
per se, and the causal associations with worsened exercise
capacity, oxygen consumption, hospitalization, and mortality
are stronger for ID compared with anaemia in HF
patients.10,11
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Pathophysiology of iron deficiency
Iron is an essential trace element, involved in plethora of
crucial biochemical pathways and important for tissue
metabolism.12,13 In the human body, iron exists in the ferrous
intracellular form (Fe2+) and in the ferric form (Fe3+), which is
mainly extracellular and circulating.14,15 The most prominent
role of iron is in oxygen homeostasis, including oxygen trans-
port and storage, oxidative metabolism in skeletal and
cardiac muscle, mitochondrial function and metabolism of
proteins, lipids, and ribonucleic acids.16–18 As a cofactor for
enzymes or an element of proteins with distinct cellular func-
tions, iron is key factor in the maintenance of cellular energy
and metabolism of extra-haematopoietic tissues.19

The main consequence of ID in HF is impaired erythropoie-
sis, while erythroblasts and reticulocytes are major iron
consumers in human body.20,21 Generally, cells with a high mi-
togenic potential (neoplastic and immune) are particularly
sensitive to reduced iron supplies or dysregulated iron
utilization.22 Cardiac myocytes as tissue with high energy
demand are especially sensitive to limited iron utilization
and decreased iron supplies, which has potential impact on
HF pathophysiology.23

Skeletal muscle functioning is also affected by ID, mainly
in the context of impaired energetic metabolism through
switch from oxidative metabolism to glycolysis, as well as
through alterations in both carbohydrate and fat catabolic
processing.24 ID leads to ultra-structural alterations in skele-
tal muscle, as well. Histological examination of skeletal mus-
cle in patients with HF reveals changes in fibre composition
with an increased contribution of fast glycolytic fibres.25 At
the cellular level, decreased total number/volume of mito-
chondria, diminished mitochondrial volume density, and
reduction of mitochondrial cristae surface density represent
hallmark of rearrangement of myocyte energy centres
induced through ID, where intravenous iron substitution
restores muscle energetic and mitochondrial function.26 In
men with HF with reduced ejection fraction, low ferritin
reflecting depleted iron stores is associated with inspiratory
muscle weakness.27

Average iron intake is 10–20 mg/day.28 The iron homeosta-
sis is exclusively regulated through iron absorption by the
apical surface of enterocytes in the duodenum and the upper
jejunum, because no means of iron excretion exists. Nor-
mally, only ~15% of dietary iron is absorbed.29 Dietary iron
is found in two distinct different molecular forms, inorganic
(non-haem) and organic (haem). Inorganic dietary iron is
absorbed via the divalent metal transporter 1 on the surface
of enterocytes, where in next step membrane ferrireductases
reduce ferric to ferrous iron. On the other hand, for hem iron,
there is specific haem carrier protein, associated with induc-
ible hemoxigenase 1, which reduces iron before entering
the cytosol. Intracellular iron is secreted to the circulation
using ferroportin 1 after membrane enzyme hephaestin

oxidizes iron to ferric form, which is in the circulation
transported bond to transferrin.30,31

There are in general two different iron transport pathways
with inherent regulatory mechanisms. First embrace trans-
port from site of absorption to different tissues (systemic iron
metabolism), and second intracellular iron transport, is re-
sponsible for transport between organelles within the cell.32

Systemic iron metabolism is predominantly regulated by
hormone hepcidin and ferroportin, the only iron export
protein known in mammals.33 Hepcidin, a small peptide
hormone synthesized mainly by hepatocytes, interacts with
ferroportin on target cells in negative feedback fashion, caus-
ing (i) reduced expression of proteins involved in transmem-
brane iron import to enterocytes and (ii) internalization of
ferroportin.34 Hence, hepcidin blocks intestinal absorption
of iron and diverts iron from the circulation, trapping it in
enterocytes, hepatocytes, and macrophages.33 Decreased
intestinal iron absorption together with its accumulation in
the reticuloendothelial stores reduces the availability of iron
to target tissues (Figure 1). Major stimuli decreasing hepcidin
expression in the liver and its release into the circulation are
depleted iron stores, hypoxia, and ineffective erythropoiesis,
whereas inflammation produces the opposite effect.35

Conversely, Ganz et al. showed that even a mild transient
increase in the serum iron is sufficient to dramatically rise
hepcidin level, blocking iron absorption and release in extra-
cellular compartment and circulation.36

Because HF is characterized through high circulatory levels
of inflammatory cytokines, it was initially postulated that,
similar to chronic inflammatory states, HF patients have ele-
vated levels of serum hepcidin.37,38 However, recent studies
in chronic as well as acute HF showed that hepcidin levels
are actually decreased in HF.39,40 Accordingly, initial premise
that ID in HF is induced through limited circulatory iron avail-
ability due to metabolic mechanisms triggered by chronic
inflammation is replaced with hypothesis that actually
depleted iron stores are responsible for ID in HF.33

Classification and diagnosis of iron
deficiency in heart failure

For clinical and didactical purposes, two different types of ID
are distinguished: absolute and functional (Figure 1).41

Absolute ID is characterized through depleted iron stores,
although iron transport, regulatory mechanisms, and erythro-
poiesis are undisturbed.42 Contrary, functional ID represents
a mismatch between iron demand and tissue supply, mostly
due to iron utilization and iron maldistribution.43

Although mechanisms underlying the development of ID in
HF have not been rigorously investigated, generally ID arises
as a consequence of impaired iron absorption, augmented
gastrointestinal loss, and reduced availability of utilizable iron
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from the reticuloendothelial system.44 In setting of HF,
disease-specific pathophysiological consequences (intestinal
oedema, insufficient dietary intake, drug interactions due
polypharmacy, and polymorbidity) further perpetuate deple-
tion of iron storages.45,46

In order to optimize the detection and classification of ID,
as well as to ensure optimal and timely management of care-
fully selected candidates for iron replenishment, develop-
ment of diagnostic algorithms advanced significantly over
the last 10 years (Figure 2).47 Albeit considered as a gold
standard, due to its invasiveness and potential harmful side
effects, a bone marrow biopsy for evaluating iron stores is
replaced in clinical practice by the measurement of several
blood biomarkers.48

As such, ferritin is one of the most commonly used labora-
tory measures of iron status worldwide.49 There is a linear
relationship between serum ferritin and ferritin expression
in iron storage tissues, what enables usage of serum ferritin
as surrogate marker of stored iron quantity and means that
low circulating ferritin reflects depleted body iron stores.50

However, serum ferritin levels are subjected to increase in
chronic and inflammatory diseases, such as HF and chronic
kidney disease. It is way cut-off values for the diagnosis of
ID in HF are arbitrarily set at a higher level (e.g. 100 mg/L).51

It is worth mentioning that previous studies did not establish

strong correlation between bone marrow iron and blood
parameters of ID in HF. Nanas et al. found in 27 from 37 eval-
uated patients, hospitalized for decompensated HF, signs of
ID in bone marrow biopsy despite normal levels of ferritin
and erythropoietin in the serum.52

Transferrin saturation (TSAT), representing the per cent of
transferrin that has iron bound to it, is used as a marker of
the availability of circulating iron to supply metabolizing
cells.43 Definition of ID solely based on TSAT < 20% in 42 pa-
tients with HF and a reduced left ventricular ejection fraction
(LVEF ≤ 45%) undergoing median sternotomy for coronary
artery bypass grafting showed compared with iron quantifica-
tion in bone marrow aspirate a sensitivity of 94% and a
specificity of 84%.53 In HF, absolute ID is typically diagnosed
with cut-off ferritin values <100 mg/L and, distinguished
from functional ID, diagnosed with normal serum ferritin
(100–300 mg/L) and low TSAT (<20%).48

Newly, soluble transferrin receptor (sTfR) and hepcidin
were proposed as novel serum markers for ID in HF. The sTfR
indicates reduced intracellular iron availability for metabolic
needs and is a reliable diagnostic tool for confirmation of ID
anaemia.54 Importantly, the effect of chronic inflammation
on circulating sTfR is minor, making sTfR a promising candi-
date for ID detection in chronic inflammatory states.55

Jankowska et al. postulated a novel definition of ID based on

Figure 1 Basic physiological principles involved in iron absorption, transport and storage, as well aspathophysiological cascades responsible for abso-
lute and functional iron deficiency. Fe, iron; Fr, ferroportin; GIT, gastrointestinal; RES, reticuloendothelial system; Tf, transferrin.
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the combined measurement of low circulation hepcidin
(<14.5 ng/mL, the fifth percentile in healthy peers) and high
circulation sTfR (≥1.59 mg/L, the 95th percentile in healthy
peers). In multivariable analysis, this definition was strongly
predictive of all-cause mortality at 12 months.39 Nevertheless,
due to difficult and non-standardized assessment of its circu-
lating levels, hepcidin is currently used exclusively in research
settings and mandates additional effort in overcoming specific
methodological difficulties prior to its implementation in
clinical routine.

Of note, mean corpuscular haemoglobin and mean corpus-
cular haemoglobin concentration have been found to be
unreliable markers of ID status. Therefore, measuring these
levels is not recommended for assessment of ID in patients
with HF.56 At the same time, serum transferrin alone does
not represent iron storage or functional ID and should not
be used in diagnostic work-up in HF patients.

Serum iron levels ≤13 μmol/L showed an excellent diag-
nostic accuracy of 91% for ID compared with bone marrow
biopsy.53 However, as iron serum levels exhibit circadian

Figure 2 Proposed algorithm for the management of iron deficiency in heart failure. Algorithm adapted from McDonagh et al.
47
Hb, haemoglobin; i.v.,

intravenous; NYHA, New York Heart Association Functional Classification; Pt, patient.
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variations, it cannot be used as reliable diagnostic tool for
assessment of ID.

Since the 1970s, the iron deficit in chronically ill patients
was calculated using Ganzoni’s formula [iron deficit = body
weight × 2.4 × (15 � haemoglobin in g/dL) + 500 mg], assum-
ing that ideal haemoglobin concentration amounts 15.0 g/dL
(or 13.0 g/dL by body weight <35 kg) and that additional
500 mg of iron is needed for replenishment of iron stores,
Ganzoni’s formula usually calculates iron deficit at 1000 mg
or higher and was used for determination of iron deficit in
the majority of randomized trials.57,58

Important place in diagnostic work-up of iron deficiency
should be given to exclusion of treatable and reversible
causes of iron depletion in HF patients. It is important to
mention that depleted iron stores could be also a sign of
undiagnosed malignancies, consequence of treatment with
anticoagulants, or recurrent gastrointestinal bleedings.59 It
is why even decent lowering of haemoglobin values with con-
comitant laboratory signs of iron deficiency should trigger
thorough medical evaluation of HF patients.

Oral iron therapy

Table 1 summarizes randomized clinical trials on ID in HF.
Because of wide availability and low costs, oral iron
replacement was considered as a promising strategy in ID
management. Unfortunately, poor adherence, plethora of
gastrointestinal side effects, and low intestinal absorption of
iron additionally challenged investigation of feasibility of oral
iron supplementation. Additionally, oral iron absorption test,
which should evaluate plausibility and applicability of oral
iron supplementation, identifying patients who are suitable
for oral iron administration, finds rarely its place in clinical
routine. Accordingly, so far, only two clinical randomized trials
using oral iron preparation were conducted in patients with
chronic HF.61,64,68–70

In IRON-HF study, suitable patients (LVEF < 40%, NYHA
Class II–IV, haemoglobin 9–12 g/dL, TSAT < 20%, and ferritin
<500 μg/L) were randomized in a double-blind fashion to
ferrous sulfate per os or intravenous therapy with iron su-
crose combined with placebo.50 The oral treatment arm of
the study encompassed only seven patients, where 10 pa-
tients were assigned to intravenous iron supplementation.
Three months after treatment, intravenous unlike oral iron
therapy led to higher peak oxygen consumption. Compared
with oral iron treatment group, intravenous supplementation
resulted in numerically higher TSAT and ferritin increase.
Although results and design of IRON-HF study were an impor-
tant step in research efforts towards better understanding of
ID, because of highly limited number of patients (in total 23
patients included in the study), conclusions derived from this
study should be interpreted with caution.

In the second trial (IRONOUT HF—Oral Iron Repletion
Effects On Oxygen Uptake in Heart Failure), patients
underwent treatment with oral iron polysaccharide, 150 mg
twice daily over 16 weeks, in a double-blind, randomized,
placebo-controlled fashion. The primary endpoint was a
change in peak oxygen uptake from baseline to 16 weeks.
Secondary endpoints included changes in 6 min walk
distance, N-terminal pro-brain natriuretic peptide
(NT-proBNP) levels, and health status measured through
Kansas City Cardiomyopathy Questionnaire. Oral iron therapy
did not significantly improve any of the study endpoints and
minimally influenced iron storages, implicating that route of
administration, more than the dose regimen or treatment
strategy, is essential for clinical benefit.65

In conclusion, available evidence does not justify oral iron
supplementation for ID in patients with chronic HF and due
to unnecessary polypharmacy and possible side effects should
be avoided.

Intravenous iron therapy

Over the past 20 years, we witnessed enormous development
of parenteral iron preparations.71,72 Currently, there are five
different formulations available in the USA and Europe, suit-
able for intravenous iron supplementation (Table 2). All
studies in patients with chronic HF have used either iron
sucrose or ferric carboxymaltose (Figure 3). Intravenous iron
proved to be safe in patients with HF and allows rapid correc-
tion of iron indices, particularly in instances in which intestinal
absorption is compromised. The usually described side effects
of intravenous iron therapy (such as hypotension, electrolyte
imbalance, skin reactions, and musculoskeletal side effects)
did not represent safety concern in published trials.62,73,74

FAIR-HF (Ferinject Assessment in patients with IRon defi-
ciency and chronic Heart Failure) was the first large
multicentre trial of treatment with ferric carboxymaltose in
patients with chronic HF. Patients with NYHA Class II and
LVEF ≤ 40% or NYHA Class III and LVEF ≤ 45 were randomized
in a 2:1 fashion to receive intravenous ferric carboxymaltose
or placebo. Iron deficit was defined as serum ferritin of
<100 mg/L or ferritin ranging from 100 to 300 mg/L, with
TSAT of <20%. The presence of anaemia was not relevant
for study inclusion, so that patients with haemoglobin concen-
tration varying from 9.5 to 13.5 g/dL were eligible for study
participation. Intravenous supplementation was conducted
in two phases: first, correction phase with weekly intravenous
administration of 200 mg of ferric carboxymaltose, followed
with maintenance phase and monthly administration of
200 mg intravenous iron formulation according to individually
calculated iron deficit. At follow-up after 24 months, patients
in the ferric carboxymaltose group reported improved
self-reported patient global assessment, NYHA functional
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class, 6 min walk distance, and quality of life as assessed by
the Kansas City Cardiomyopathy Questionnaire.63 Further-
more, the substudy of FAIR-HF trial showed that intravenous
ferric carboxymaltose was associated with early reductions
in calculated plasma volume status and weight, implying that
decongestion might be one mechanism via which iron reple-
tion aids chronic HF patients.75

Importance of iron treatment in setting of chronic HF with
reduced LVEF found further affirmation in results of
CONFIRM-HF trial. In comparison with FAIR-HF, in the
CONFIRM-HF trial, 6 min walk distance, as a more robust
and objective method in assessment of the clinical status of
HF patients, was used as primary endpoint over longer period
of follow-up from 52 weeks. Of note, the study protocol
offered simplified dosing regimen for ferric carboxymaltose
proposed by Evstatiev et al.76 based on weight and
haemoglobin levels, easily applicable in clinical routine com-
pared with the traditional used Ganzoni formula. Patients
with symptomatic HF (NYHA Class II or III, LVEF of ≤45%,
and elevated level of either NT-proBNP or BNP) were ran-
domized in 1:1 manner to receive between 500 and
2000 mg of ferric carboxymaltose or placebo within the first
6 months following treatment with ferric carboxymaltose by
persistent ID according to ferritin or TSAT at visits at 12, 24,
and 36 weeks. Intravenous iron therapy with ferric
carboxymaltose in patients with symptomatic HF and ID
resulted in sustainable improvement in 6 min walk distance
at follow-up after 24 months.65 One of the possible mecha-
nisms, by which iron substitution induces improvement of
cardiopulmonary exercise, could be its effect on cardiac
remodelling.77 Lacour et al. proved negative predictive value
of iron deficiency on reverse cardiac remodelling after CRT
therapy in patients with symptomatic HF and reduced LVEF.78

Furthermore, Núñez et al. found that replenishment of iron
myocardial amount in patients with chronic symptomatic HF
with reduced ejection fraction (NYHA II–III) is strongly corre-
lated with increase of LVEF at follow-up.79

Improvement of exercise capacity of HF patients under in-
travenous iron supplementation was additionally confirmed
through results of EFFECT-HF study. In this open-label
prospective study, a total of 174 patients were randomized
to intravenous ferric carboxymaltose or no intervention.
After 24 months, ferric carboxymaltose significantly increased
serum ferritin and TSAT. Additionally, treatment with
intravenous iron prevented decline in peak oxygen consump-
tion, which was observed in non-treated control
group (�0.16 ± 0.375 vs. �0.63 ± 0.375 mL/min/kg;
P = 0.23).66

Current body of knowledge points out that ID can be fre-
quently encountered in patients with acute decompensated
HF. In the substudy of BIOSTAT-CHF trial, which included pa-
tients either hospitalized for HF or presenting with worsening
HF in the outpatient setting (LVEF ≤ 40% or, alternatively, BNP
or NT-proBNP levels of >400 or >2000 ng/L, respectively), IDTa
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was identified in 61.6% of patients, with highest prevalence
in female (71.1% vs. 58.3%; P < 0.001). The presence of ID
was significantly associated with lower estimated protein in-
take, chronic kidney disease, lower haemoglobin, higher
C-reactive protein levels, lower serum albumin levels, and
P2Y12 inhibitor use (all P < 0.05), representing independent
predictors of worse outcome in multivariable Cox propor-
tional hazard regression analyses. These results imply that
the aetiology of ID in worsening HF is complex and multifac-
torial and seems to consist of a combination of reduced
iron uptake (malnutrition and fluid overload), impaired iron
storage (inflammation and chronic kidney disease), and iron
loss (anti-platelets).80

Upcoming results from AFFIRM-AHF trial (ClinicalTrials.gov
identifier: NCT02937454) will provide valuable insights
concerning disease-modifying potential of intravenous iron
replenishment in patients hospitalized primary due to acute
decompensated HF. In total, 1100 patients with NYHA II–III,
LVEF < 50%, and clinical signs of volume overload or lung
congestion have been enrolled in the study from April 2017
to 31 July 2019 and assigned to be treated with either
500–1500 mg of ferric carboxymaltose or placebo. The
primary outcome of Affirm-AHF trial presents the composite
of recurrent HF hospitalizations and cardiovascular mortality.
The main secondary outcomes include the composite of
recurrent cardiovascular hospitalizations and cardiovascular

Table 2 Most important clinical features and side effects of available intravenous iron preparations

Iron preparation Brand name
Maximal single

dose (mg)
Plasma

half-life (h) Side effects
Tested in

heart failure

Sodium ferric
gluconate

Ferrlicit® 125 1 Hypersensitivity, nausea, hypotension,
cramps, hypertension, dizziness,
and chest pain

No

Ferric
carboxymaltose

Ferinject®/
Injectafer®

15 mg/kg (max 1000
mg in one infusion)

16 Hypersensitivity, hypertension, nausea,
flushing, hypophosphatemia, and dizziness

Yes56–58

Iron sucrose Venofer® 200–300 6 Hypersensitivity, hypotension, iron overload,
diarrhoea, nausea, vomiting, headache,
dizziness, hypotension, pruritus, and
leg/back cramps

Yes50,54,55,65

Iron dextran Dexferrum® 20 mg/kg 60 Fatal and serious hypersensitivity–anaphylaxis,
diarrhoea, nausea, vomiting, headache,
and dizziness

No

Ferumoxytol FeraHeme® 510 15 Fatal and serious hypersensitivity–anaphylaxis,
diarrhoea, nausea, dizziness, hypotension,
and constipation

No

Figure 3 Overview of major publications and ongoing trials evaluating effects of treatment of iron deficiency in chronic heart failure. Ongoing trials are
marked with an arrow. i.v., intravenous; p.o., per os.
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mortality, recurrent HF hospitalizations, and safety-related
outcomes.81 Each individual patient will be followed over a
period of 52 weeks, so that first results are expected in 2021.

Heart failure with preserved ejection fraction (HFpEF) is in-
creasingly the predominant form of HF in the developed
world and tends to reach epidemic proportions.48 ID nega-
tively affects exercise tolerance and quality of life in HFpEF
patients.82,83 In stratified comparison of patients with
reduced, mid-range, and preserved LVEF in one prospective
database of HF patients, ID was highly prevalent in all patient
subgroups (64% in HFpEF cohort) and associated with
decreased peak oxygen consumption. Furthermore, in HFpEF
patients, baseline presence of ID led to worse clinical
outcome,10 although these results appear to be inconsistent
across published systematic reviews and meta-analyses.84

These findings are suggestive of an important role of ID in
HFpEF, indicating that it has a similar impact to that in HF
with reduced ejection fraction. However, in the absence of
randomized clinical trials of iron supplementation in HFpEF
setting, we should focus on upcoming trials such as
FAIR-HFpEF (ClinicalTrials.gov identifier: NCT03074591) and
PREFER-HF (ClinicalTrials.gov identifier: NCT03833336), in
order to fully comprehend the necessity and clinical effects
of iron replenishment in HFpEF patients.

At the moment, we encounter gaps in evidence concerning
effects of treatment of ID in HF concerning hard cardiovascu-
lar endpoints, such as mortality and hospitalization rates.
Based on this, the results of FAIR-HF2 trial (Intravenous Iron
in Patients with Systolic Heart Failure and Iron Deficiency to
Improve Morbidity and Mortality, ClinicalTrials.gov identifier:
NCT03036462) are eagerly awaited. This trial aims at 1:1
double-blind randomization of 1200 HF patients (NYHA II–III
and LVEF ≤ 45%) with ID to ferric carboxymaltose or placebo.
The primary endpoint includes a combined rate of recurrent
hospitalizations for HF and cardiovascular death. The end on
recruitment is planned for December 2021, while follow-up
will be event driven and should last for minimal 12 months.
Focusing on patients with more severe HF (NYHA III–IV and
LVEF 35%), HEART-FID trial (ClinicalTrials.gov identifier:
NCT03037931) aims at enrolling 3014 patients with ID. Effects
of treatment with ferric carboxymaltose (1:1 randomization
to placebo) will be tested on 12 month rate of death, hospital-
ization for worsening of HF, and 6 month change in 6 min walk
test performance (primary endpoint). Only patients on maxi-
mally tolerated guideline-recommended medical therapy of
HF at least 2 weeks prior to randomization are included.

Available meta-analyses and results from retrospective
studies give us reason to believe that ID correction in HF pa-
tients improves clinical course of HF and reduces cardiovascu-
lar mortality. A meta-analysis including patients with chronic
HF included in four randomized trials of ID treatment
(FER-CARS-01, FAIR-HF, EFFICACY-HF, and CONFIRM-HF) sug-
gested that treatment with intravenous ferric carboxymaltose
reduces rates of recurrent cardiovascular hospitalizations and

cardiovascular mortality [odds ratio (OR): 0.59, 95% (CI)
0.40–0.88; P = 0.009] as well as recurrent HF hospitalizations
and cardiovascular mortality (OR: 0.53, 95% CI 0.33–0.86;
P = 0.011).58 In another meta-analysis, Jankowska et al. found
that intravenous iron therapy reduced the risk of the
combined endpoint of all-cause death or cardiovascular hos-
pitalization [OR: 0.44, 95% CI 0.30–0.64, P < 0.0001], and the
combined endpoint of cardiovascular death or hospitalization
for worsening HF (OR 0.39, 95% CI 0.24–0.63, P = 0.0001) in
iron-deficient patients with systolic HF.67

Management of ID in HF with combined treatment modal-
ities did not prove to be clinically efficient and useful in HF pa-
tients. Silverberg et al. were among the first to treat anaemic
HF patients with erythropoietin and intravenous ferric
sucrose. After 6 months, treated patients reported improve-
ments in mean haemoglobin concentration, LVEF, and NYHA
functional class.60 These results evoked high hopes and in-
duced several clinical trials focusing on anaemia correction
in HF. Unfortunately, long-acting erythropoietin derivative
alone did not show prognostic benefit in patients with HF. In
the RED-HF-Trial (Reduction of Events by Darbepoetin Alfa in
Heart Failure), anaemic patients with systolic HF treated with
darbepoetin alfa did not show improvement concerning the
primary endpoint in compared with non-treated counter-
parts. Even more, darbepoetin alfa administration led to in-
crease rate of thrombo-embolic events (13.5% vs. 10.0%,
respectively; P = 0.009) and an increased risk of ischaemic
stroke (4.5% vs. 2.8%, respectively; P = 0.03), proving to be po-
tentially harmful for treated patients.85

Conclusions

In the last two decades, emerging importance of ID in symp-
tomatic HF resulted in numerous very important clinical trials,
which were able to underline necessity for iron supplementa-
tion and verify its impact on patient’s quality of life.

In spite of certain inconsistency related to the cut-off
values for ID conformation across conducted clinical trials,
ferritin of <100 mg/L or ferritin 100–300 mg/L when TSAT
is <20% should be regarded as diagnostic for the presence
of ID in HF patients.

Randomized clinical trials demonstrated that in HF patients
with ID, intravenous iron repletion was well tolerated, safe,
and associated with improvement in functional status and
exercise capacity.

Although meta-analyses and results from retrospective
studies suggest beneficial effects of iron supplementation
concerning hospitalization and cardiovascular mortality,
definitive relationship of iron supplementation with mortality
and morbidity in HF patients needs further validation in
ongoing and future large-scale, randomized prospective
trials.
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