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Abstract: The new analysis of a simplified plane model of single-layered graphene is presented in
this work as a potential material for reinforcement in ultralight and durable composites. However,
owing to the clear literature discrepancies regarding the mechanical properties of graphene, it is
extremely difficult to conduct any numerical analysis to design parts of machines and devices made of
composites. Therefore, it is necessary to first systemize the analytical and finite element method (FEM)
calculations, which will synergize mathematical models, used in the analysis of mechanical properties
of graphene sheets, with the very nature of the chemical bond. For this reason, the considered model
is a hexagonal mesh simulating the bonds between carbon atoms in graphene. The determination of
mechanical properties of graphene was solved using the superposition method and finite element
method. The calculation of the graphene tension was performed for two main directions of the
graphene arrangement: armchair and zigzag. The computed results were verified and referred to
articles and papers in the accessible literature. It was stated that in unloaded flake of graphene, the
equilibrium of forces exists; however, owing to changes of inter-atom distance, the inner forces occur,
which are responsible for the appearance of strains.

Keywords: graphene nanostructure; material properties; finite element method; analytical study

1. Introduction

The observed trend in “thinning” the parts of machines and devices as well as structural elements,
especially in the aviation or armament industry (unmanned aerial, ground, or underwater vehicles),
forces the development of new materials with particular emphasis on composites. Currently, in the
world, a lot of attention is devoted to the potential use of graphene as a reinforcement matrix of
polymer or polymer–carbon composites. It is assumed that the presence of dispersed graphene flakes
will change the mechanics of system cracking. In the case of propagation of cracks and the potential
impact of the fracture front with the encountered graphene structure, the energy will be dispersed
according to the direction of spatial arrangement of the given graphene flake. This phenomenon
can significantly improve the fracture toughness of the entire system, especially when operating in
cryogenic conditions, for example, an unmanned aerial vehicle. However, the main problem of the
design of composite elements reinforced with graphene is the enormous literature chaos associated with
the mechanical parameters of the material, resulting mainly from the fact of projecting the graphene
structure onto a lattice model, without taking into account the nature of the chemical bond. This fact
undoubtedly makes it impossible to carry out a detailed finite element method (FEM) analysis enabling
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the design of the morphology and geometry of structural elements. For this reason, we first set up
the systematization of mechanical parameters of graphene as an isolated material from the matrix of
the composite.

The two-dimensional nature and carbon hybridization give graphene a unique set of properties,
which are electrical [1–3], optical [4–6], and mechanical [7–20], practically unattainable for other
engineering materials. While the optical and electrical research of graphene layers has been mostly
perfected, defining the mechanical properties of the material leads to many technical issues, resulting
from the nano-scale nature of graphene layers, which makes it impossible to conduct typical tests for the
elongation. Any attempt to use nanotest or Atomic Force Microscope (AFM) [21–23] to characterize the
mechanical properties is also disputable, owing to difficulties with sample mounting, which, in practice,
is very difficult and complex. Such a process can also uncontrollably generate structural defects,
which makes it very sensitive to mechanical damages [24]. In addition, graphene virtually cannot
exist without a carrier in the form of a substrate, which also directly affects the final measurement
result. An important factor is also the presence of physical interactions with CO, NO, NO2, and water
vapor from the atmosphere with a graphene surface, which is not without significance and requires the
stabilization of atmospheric composition on a level of ppm [25].

For this reason, a number of scientific centers have attempted to theoretically determine the
mechanical properties of graphene [26]. These analyses, owing to the necessity of taking into account
the multicriterial model, from both a physical and chemical point of view, are not devoid of defects,
which, in the scientific literature, results in a multitude of incomparable results. Meo and Rossi [27]
investigated the molecular mechanics of single-walled carbon nanotubes to predict the ultimate
strength. Liu et al. [28] analyzed atomic bond breakage using a meshless atomic-scale method. With
regard to the literature, many works were devoted to modeling of carbon nanotubes, which can be
found in the literature [9,16,21,29–45]. One of them [33] can be here mentioned, where authors dealt
with the mechanical properties of single-walled carbon nanotubes (SWCNTs) modeled as Euler beams.
On the basis of the elastic deformation energy and mechanical equilibrium of single graphite sheet,
they investigated Young’s modulus and Poisson’s ratio of such nanotubes.

The authors of [46,47] also investigated the fracture of nanotubes and a progressive fracture
of nanotubes was developed in the work of [48]. From this point of view, the work deals with the
simplified plate model of a graphene structure. In many analyses and investigations given in the
literature, basic mechanical properties of graphene (Young’s modulus and Poisson’s ratio) were treated
as the base for calculations. Both Young’s modulus and Poisson’s ratio in the elastic range are material
constants; however, looking through literature, it is unknown how one should assume the values of
those parameters for calculations of composite composed of matrixes and flaxes of graphene. As it is
well known, graphene, with respect to its mechanical properties, among others, is being researched
more and more in applications in the space vehicle and aviation industry, for example, as a structural
composite material. However, first of all, it is necessary to systematize the data on the mechanical
properties of graphene, which are clearly lacking in the literature. Among the articles concerning
graphene, different mechanical properties are given: Young’s modulus Y = 1.2 TPa, 4.70 TPa, 6.6 TPa,
31.7 TPa, or even 86.5 TPa [41]. One should note that Young’s modulus of graphene flaxes treated
as orthotropic material (assuming the homogenization) in almost all papers amounts to Y � 1.0 ÷
1.2 TPa, whereas Young’s modulus of graphene bars YGr is characterized by different values. Likely,
the values of Poisson’s ratio are different and range, according to the literature, from 0.16 to 0.6. The
results in some papers can also be incorrect, for example, in the work of [33], Poisson’s ratio equals
0.2, but following those equations, Poisson’s ratio equals νGr � 0.49 ÷ 0.6. For the above reason,
the author decide to developed an analytical model based on the theory of elasticity, assuming the
incompressibility conditions that are used in continuity mechanics. The proposed model was validated
by numerical calculation (finite element method software).
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2. Assumptions for Modeling the Graphene Structure

In the present work, the analysis of the plane element of graphene consists of one layer of carbon
atoms embedded in polymer matrix. The basic model was hexagonal mesh combining detailed atoms
of graphene, which simultaneously are structural nodes (Figure 1). Similar to the classic method of
strength analysis, bonds of graphene were stretched (continuous object was compared with the tension
of the hexagonal mesh), which allowed the determination of Young’s modulus EGr and Poisson’s ratio ν
for the graphene bar. The model is based on the ideal, chemically pristine structure of graphene, being a
single layer of carbon atoms without any structural or chemical defects. We decided that any modelling
based on a structure consisting of two or more graphene layers is not justified, as the presence of van
der Waals interactions between them dramatically changes the properties of the material.

The analysis of the graphene tension was carried out for two basic directions (if the edge is cut-out
along bonds between carbon atoms, one receives the “armchair” edge, otherwise the cutting-out in the
perpendicular direction has the edge called “zigzag” [49]).Materials 2019, 12, x FOR PEER REVIEW 4 of 15 
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Figure 1. (a) Hexagonal mesh of graphene. The elementary cell includes two atoms of carbon; (b) Model
of graphene given in the works of [5,50], among others.

The model used for calculation was elaborated on the basis of the graphene structure given in
other papers [27,29,32,50], among others (Figure 2). Young’s modulus of microstructure was assumed
as Y = 1.15 TPa =11.5 nN/Å2 (as in the works of [22,23,32,36,38]). The dimensions of the hexagonal
mesh of graphene are presented in Figure 3; that is, l = 1.42 Å, a = 2.46 Å [50]. It was assumed that
the thickness of the graphene sheet is the same as the diameters of carbon atom; however, different
diameters were also taken into account. For comparison, the computations were conducted for three
thicknesses of the graphene sheet (h = 0.44 Å; 0.75 Å; 0.89 Å and d = 0.44 Å; 0.75 Å; 0.89 Å, respectively).
In the present work, it was assumed that the hexagonal structure can be divided into repeatable,
“Y”-shaped elements interacting with each other through reactions (Figure 2a). For the simplified
model, forces and strains were determined through tensions of the considered model. The basic
literature states that graphene is a two-dimensional rhomb-shaped carbon mesh with a two-atom basis
(Figure 1a).
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Young’s modulus determined on the basis of data from the literature [16,19,21,25,27,32] for the
continuous structure of graphene, Y= 1.15 TPa [16], but Young’s modulus for the polymer matrix
amounts to Em = 3.5 GPa. Thus, with respect to large difference in stiffnesses, the stresses carried
by the matrix, this parameter can be omitted (ratio of Young’s moduli of matrix to graphene is
Em/Y = 0.003). The tension stresses of elementary distance with dimensions a, h and 3/4l amount
to σx = ε

(1)
y ∗Y = 1.15 GPa, but the total force F = Fx acting in the repeatable element of structure is

determined by the following:
Fx = ε

(1)
x ·Y·a·h. (1)
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with the assumptions of average Young’s modulus of the considered part of graphene Yave = Y, one
can calculate the force Fx affecting repeatable elements of the structure. For example, for strain ε(1)Y =

0.001, the Y = 1.15 TPa, a = 2.46 Å, and h = 0.75 Å force is as follows:

Fx = ε
(1)
x ·Y·a·h = 2.122·10−2nN. (2)

3. Basic Model of Graphene Cell (Calculations of Strains)

To simplify, substituting continuous elementary segments of graphene by the bar system, it was
assumed that the schematic model includes interactions between atoms in the graphene owing to
tensions and bending (Figure 4). The shown segment of graphene in the Y-shape can be treated as a
macroelement of the graphene structure.Materials 2019, 12, x FOR PEER REVIEW 6 of 15 
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The elongations of system owing to tension are as follows:

∆L =
Fx·l

2EGr·A
; ∆N =

Fx·l/2
4EGr·A

; ∆L +
∆N
2

=
9F·l

16EGr·A
. (3)

The elongations of system owing to bending can be written as follows:

fb =
Fx·
√

3
4

( l
2 )

3

3·EGr·J
= Fx

√
3

4 ·
l3

24EGr·J
; fs = ψ(1 + ν) Fx

√
3

4 ·
l

EGr·A
;

fc = fb + fs =
Fx
√

3
4

(
l3

24EGr·J
+ψ(1 + ν) l

EGr·A

)
,

(4)
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where A and J represent the cross-section area and moment of inertia of the graphene bar, respectively.
The magnitude ψ denotes the coefficient regarding the influence the shear stresses during strains of the
graphene bars (ψ = 1.2). Taking into account both effects, total elongation can be written as follows:

∆lc = ∆L +
1
2

∆N +

√
3

2
fc =

9F·l
16E·A

+
3F
8

(
l3

24E·J
+ψ(1 + ν)

l
E·A

)
. (5)

The strain in the x-direction of the segment caused by bending and tension is expressed as follows:

ε
(1)
x =

4
3l

(
∆L +

1
2

∆N +

√
3

2
fc

)
. (6)

By transforming the strain in the x-direction, one obtains the following:

ε
(1)
x =

Fx

4EGr

(
l2

12J
+

3 + 2ψ(1 + ν)

A

)
. (7)

The elongation of the segment of the graphene structure at the length of Ls = 3
4 l is as follows:

∆lc = ε
(1)
x ·Ls =

Fx

4EGr

(
l2

12J
+

3 + 2ψ(1 + ν)

A

)
·Ls. (8)

The strain of the alternative segment of the graphene structure with dimensions a, h and length L
is as follows:

ε
(2)
x =

Fx

Y·a·h
. (9)

With the assumption of the bar structure of graphene and substitution of the repeatable element
of structure by rectangular shape, one can compare both strains ε(1)Y = ε

(2)
Y . It was assumed that the

strains of repeatable of the graphene structure are the same as the continuous structure of graphene
with dimensions a, h and length Ls. Young’s modulus was taken from the literature [22,32,38] as
EGr = Y = 1.15 TPa = 11.5 nN/Å2. Hence, substituting Young’s modulus of graphene is determined as
follows:

EGr =
Y·a·h

4

(
l2

12·J
+

3 + 2ψ(1 + ν)

A

)
. (10)

In this same way as above, the strain in the perpendicular direction was obtained:

ε
(1)
y =

Fx

4EGr

(
l2

12·J
+

2ψ(1 + ν) − 1
A

)
. (11)

On the basis of Equations (7) and (11), the substitute Poisson’s ratio of hexagonal structure of
graphene can be calculated as follows:

ν
(1)
Gr =

ε
(1)
x

ε
(1)
y

. (12)

By transforming Equation (11), the force of repeatable element of structure for given strain can be
calculated as follows:

Fx =
4ε(1)x ·EGr

l2
12J +

2ψ(1+ν)+3
A

. (13)



Materials 2019, 12, 3918 7 of 14

4. Numerical Model of Graphene Band

The numerical model of graphene was discussed in many works [28,30,32,47], among others.
For the aim of the verification of the assumed macroelement of graphene structure shown in Figure 4,
numerical calculation using the finite element method (ANSYS v.18.2 software—Figure 3) was executed.

The mesh of the graphene structure was created by a two-node element beam. The dimensions of
numerical model were Lx = 14.91 Å, Ly = 14.76 Å, and different diameters of bar (see results in Table 1).
Numerical models of the segment of the graphene band subjected to tension in the x-direction and
y-direction were displayed in Figure 5a (armchair) and Figure 5b (zigzag), respectively.

Table 1. Results of calculations. FEM, finite element method.

Number of
Calculation

Variant

Direction of
Tension l (Å) a (Å) h (Å) d (Å)

Y
(Tpa) ν (-) EGr (TPa)

(Equation (10))

νGr (-)
(Equation (12))
(Equation (17))

νGr (-)
FEM

1 x 1.42 2.46 0.44 0.44 1.15 0.3 40.95 0.800 0.812
2 x 1.42 2.46 0.75 0.75 1.15 0.3 13.09 0.663 0.666
3 x 1.42 2.46 0.89 0.89 1.15 0.3 9.630 0.580 0.620
4 x 1.42 2.46 1.00 1.00 1.15 0.3 7.932 0.546 0.59
5 x 1.42 2.46 1.42 1.42 1.15 0.3 4.727 0.463 0.515
6 x 1.42 2.46 2.00 2.00 1.15 0.3 3.058 0.411 0.471
7 x 1.42 2.46 2.42 2.42 1.15 0.3 2.448 0.392 0.453
8 y 1.42 2.46 0.44 0.44 1.15 0.3 40.94 0.800 0.791
9 y 1.42 2.46 0.75 0.75 1.15 0.3 13.08 0.633 0.618

10 y 1.42 2.46 0.89 0.89 1.15 0.3 9.620 0.580 0.564
11 y 1.42 2.46 1.00 1.00 1.15 0.3 7.930 0.546 0.527
12 y 1.42 2.46 1.42 1.42 1.15 0.3 4.726 0.463 0.445
13 y 1.42 2.46 2.00 2.00 1.15 0.3 3.057 0.411 0.394
14 y 1.42 2.46 2.42 2.42 1.15 0.3 2.448 0.392 0.373
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5. The Strain in y-Direction

Treating the segment of graphene as the basic element for the analysis of forces and strains of the
structure, calculations of strains for tension in the y-direction were conducted. In this case, the band
of graphene has the “zigzag”-type edge. Owing to the fact that graphene is an anisotropic structure,
analogous analysis of strains, as done previously, but in the y-direction, was carried out. The scheme
of acting forces on the repeatable element of the graphene structure is displayed in Figure 6a.
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The strain for load in the y-direction, perpendicular to the x-axis, is presented in Figure 7b. The
lines associating atoms passing through the line are called zigzags (Figure 6b). Initially, the simplified
estimations were performed, provided that forces in horizontal elements are forces between atoms.
Thus, their influence on strains in the perpendicular direction, with respect to the direction of load, can
be defined on the basis of the strain of the graphene band. The elongation of the cut-out structure at

the length of Ly = l
√

3
2 amounts to ∆ly = εy·Ly. However, the strain of the substitute segment with

dimensions b, h and Ly is described as follows:

ε
(3)
y =

Fy

Y·b·h
. (14)
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With assumption of bar structure of the graphene and substitution of the repeatable element of
the structure by cubic element, strains of both models were compared, where b = 3

4 l. The strain owing
to load in the y-direction is given as follows:

ε
(4)
y =

Fy

2
√

3·EGr

(
l2

12·J
+

3 + 2ψ(1 + ν)

A

)
. (15)



Materials 2019, 12, 3918 9 of 14

Further, the strain in the perpendicular direction regarding loading is formulated as follows:

ε
(4)
x =

Fy

2
√

3·EGr

(
l2

12·J
+

2ψ(1 + ν) − 1
A

)
. (16)

Considering tensile element by forces Fy and comparing longitudinal and lateral strains, the
substitute Poisson’s ratio is determined as follows:

ν
(2)
Gr = −

ε
(4)
x

ε
(4)
y

. (17)

Young’s modulus in the case of tension in the y-direction was calculated using the
following equation:

ε
(4)
x =

Fy

2
√

3·EGr

(
l2

12J
+

2ψ(1 + ν) − 1
A

)
, (18)

EGr =
3l·h·Y

2
√

3

(
l2

24J
+

3 + 2ψ(1 + ν)

2A

)
. (19)

If Young’s modulus for the bar of graphene is known, the modulus for the sheet of graphene can
be calculated as follows:

Y =

√
3·EGr
h

(
l2

16J
+

9 + 6ψ(1 + ν)

2A
l
)
. (20)

By omitting coefficient ψ, identical results as in the work of [33] can be obtained. Coefficient ψ
takes into account the influence of shear stress on the value of beam deflection, which represents a
model of the chemical bond between carbon atoms [51].

6. Results

On the basis of the above relations (Equation (10); Equation (12), lines 1–7; and Equation (17),
lines 8–14), Young’s modulus of the graphene bar EGr and substitute Poisson’s ratio for the hexagonal
structure of graphene were computed. Those values are set out in Table 1. The first seven lines in
the table refer to the x-direction of tension (“armchair”), whereas the next seven lines relate to the
y-direction of tension (“zigzag”).

For the purpose of comparison, calculations for seven thicknesses of the graphene sheet (Table 1)
were executed. On the basis of the above relations (Equation (10) and (12)), Young’s modulus of the
graphene bar EGr and substitute Poisson’s ratio of the hexagonal structure were estimated. These
values are included in Table 1. It should be mentioned that, in another paper [18], Poisson’s ratio
of graphene was given as 0.06, 0.19, and 0.22–0.55. In the present paper, for all determined cases
(FEM), Poisson’s ratio ranges from 0.373 (“zigzag”) to 0.812 (“armchair”), but these values are still
significantly greater than 0.2. Thus, it should be verified which factors have an influence on the strain
in the perpendicular direction to tension. It is a question of whether forces between atoms blocking
excessive narrowing incompatible with real lateral shortening of graphene should be considered.
This phenomenon cannot be caused owing to the presence of a matrix, because the ratio of Young’s
moduli of both materials amounts to 0.003. For example, the diameter of the graphene bar and
thickness of the sheet equals 0.75Å, and Young’s modulus EGr of elementary segment consisting of the
graphene bar amounts to 13.09 TPa. However, the Poisson’s ratio determined according to the above
relation (Equation (12) and (17)) is equal to 0.63 and does not correspond to the real value obtained
empirically (νexp = 0.19–0.22). Moreover, this value is greater than 0.5 (limit value assumed usually for
a solid). Therefore, it is interesting if the assumed scheme of the graphene band with omitting forces
between atoms responds to the real graphene. It can be assumed that, for the decrease of strain in the
perpendicular direction, inner forces in the atom structure are responsible. Poisson’s ratios obtained in
an analytical and numerical way for some mechanical properties are comparable (cf: Table 1, line 2).
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Maps of displacements of the graphene mesh are displayed in Figure 7a (x-direction) and Figure 7b
(y-direction).

7. Strains in Both Directions

As stated in the previous subsection, obtaining Poisson’s ratio on the level of 0.2, in both a
numerical and an analytical way, is impossible. Hence, apparently, the interaction between graphene
atoms should be taken into account, which in practise can be very difficult. Using superposition of
forces’ action in both directions (Figure 8), the ratio of forces for Poisson’s ratio can be found.
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On the basis of the superposition rule, the value of Poisson’s ratio attributable to both tension
forces Fy and Fx simultaneously equals the following:

νxy = −
εy

εx
= −

ε
(1)
y + ε

(4)
y

ε
(1)
x + ε

(4)
x

. (21)

After taking into consideration previously derived relations (Equations (7), (11), (15), (18)), the
Poisson’s ratio dependent upon tension forces can be written as follows:

νxy = −

−
Fx

2E(1)
Gr

(
l2

12J +
2ψ(1+ν)−1

A

)
+

Fy
√

3·E(2)
Gr

(
l2

12J +
2ψ(1+ν)+3

A

)
Fx

2E(1)
Gr

(
l2

12J +
2ψ(1+ν)+3

A

)
−

Fy
√

3·E(2)
Gr

(
l2

12J +
2ψ(1+ν)−1

A

) . (22)

Introducing the ratio of forces as follows:

kxy =
Fy

Fx
, (23)

and by transforming Equation (22), the ratio kxy can be determined as follows:

kxy =

√
3E(2)

Gr

2E(1)
Gr

(
l2

12J +
2ψ(1+ν)−1

A

)
− νxy

(
l2

12J +
2ψ(1+ν)+3

A

)
(

l2
12J +

2ψ(1+ν)+3
A

)
− νxy

(
l2

12J +
2ψ(1+ν)−1

A

) . (24)
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For example, to obtain Poisson’s ratio equal to 0.215 in the range of proportionality, and taking the
data of graphene, kxy should equal 0.433 (notice the ratio of forces as well). Hence, it can be concluded
that it is necessary to consider the interaction between the graphene atoms, introducing additional
bars in the mathematical model of graphene, which is the aim of further work of the authors.

8. Summary

In the present work, the new simplified model of the plane graphene structure was investigated.
In it, numerous analyses and studies included in the literature of basic mechanical properties (Young’s
modulus and Poisson’s ratio) of graphene were presented. The basic model that was used was a
hexagonal mesh associated with detailed atoms of graphene, which were simultaneously nodes. The
issue was solved on the basis of the superposition method. As in the classic method of the strength
analysis, the easy tension of the graphene band (continuous medium was compared with the tension of
the hexagonal mesh) was considered to determine the mechanical properties of bars of the mesh. The
study of tension was performed for two basic directions (for the “armchair” and “zigzag” direction). It
turned out that, for the analytical and numerical calculations, the relations between Young’s moduli of
continuous graphene structure and hexagonal structure relate to homogenization principals established
in the theory of orthotropic medium. However, the value of Poisson’s ratio of hexagonal mesh does
not correspond to values of 0.06, 0.19, and 0.22–0.55, approved in the literature [18]. Also, in the
work of [18], it was stated that Poisson’s ratio of graphene can be greater and close to 1.0; therefore,
the value of 0.6 is not the special case. Nevertheless, the presented model for calculation should be
modified to respond to the real graphene structure. In the unloaded flax of the graphene structure,
equilibrium between atoms exists. During tension, owing to changes in the distance between atoms,
the forces of atoms’ interaction take different values and have an influence on the strain of graphene.
In the case of nanotubes, the graphene mesh constitutes the closed circumference, which essentially
disturbs the determination of the forces between atoms. However, in the case of the tensed band on
the edges, non-zero forces act. The load by those forces on the edges of the bands of graphene enables
the simplified analysis of strain of graphene structure. The values of those forces can be approximately
determined for stretched segment along the zigzag edge. The issue concerning mathematical analysis
of interaction between graphene atoms requires deeper research and will be a subject of further work
of authors, especially with regard to graphene as a reinforcement of composite materials, in the case in
which it will also be necessary to consider physicochemical interactions at the boundary of polymer
matrix and a reinforcement in the form of graphene.
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Nomenclature

a Dimension between atoms bond
l Length of graphene bar
d Diameter of graphene bar
h Thickness of single graphene sheet for one layer
Ls Length of segment
Fx Tension force for armchair edge (x-direction)
Fy Tension force for zigzag edge (y-direction)
α Angle between graphene bar
∆N Increment of elongation of segment caused by tension
∆l Increment of elongation of bar
fc Total elongation caused by bending
Y Young’s modulus of segment of graphene sheet
EGr Young’s modulus of graphene bar
J Moment of inertia of graphene bar
A Cross-section area
∆lt Total increment of elongation due to bending and tension
Ls Length of graphene segment
ν Poisson’s ratio for graphene bar

ν
(1)
Gr

Poisson’s ratio for graphene cut-out for x-direction

ν
(2)
Gr

Poisson’s ratio for graphene cut-out for y-direction

ε
(1)
x Strain of segment in x-direction caused by tension and bending in x-direction

ε
(1)
y Strain of segment in y-direction caused by tension and bending in x-direction

ε
(2)
x Strain in x-direction of alternative segment in x-direction

ε
(4)
y Strain of segment in y-direction caused by tension and bending in y-direction

ε
(4)
x Strain of segment in x-direction caused by tension and bending in y-direction

ε
(3)
y Strain in y-direction of alternative segment in y-direction
νxy Poisson’s ratio of graphene calculated for two perpendicular forces
kxy Ratio of forces
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