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Background: Many countries have succeeded in curbing the initial outbreak of

COVID-19 by imposing strict public health control measures. However, little is known

about the effectiveness of such control measures in curbing the outbreak in developing

countries. In this study, we seek to assess the impact of various outbreak control

measures in Kuwait to gain more insight into the outbreak progression and the associated

healthcare burden.

Methods: We use a SEIR mathematical model to simulate the first wave of the

epidemic outbreak of COVID-19 in Kuwait with additional testing and hospitalization

compartments. We calibrate our model by using a NBD observational framework for

confirmed case and death counts. We simulate trajectories of model forecasts and

assess the effectiveness of public health interventions by using maximum likelihood to

estimate both the basic and effective reproduction numbers.

Results: Our results indicate that the early strict control measures had the effect of

delaying the intensity of the outbreak but were unsuccessful in reducing the effective

reproduction number below 1. Forecasted model trajectories suggest a need to expand

the healthcare system capacity to cope with the associated epidemic burden of

such ineffectiveness.

Conclusion: Strict public health interventions may not always lead to the same desired

outcomes, particularly when population and demographic factors are not accounted for

as in the case in some developing countries. Real-time dynamic modeling can provide

an early assessment of the impact of such control measures as well as a forecasting tool

to support outbreak surveillance and the associated healthcare expansion planning.
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WHAT IS ALREADY KNOWN ON THE
SUBJECT?

Evidence is accumulating about the positive impact of various
strict public health interventions on the transmission of COVID-
19 in the developed world. Currently, however, many developing
countries are still struggling to control and suppress the initial
wave of the outbreak. In particular, less attention is given to
assessing the impact of taking similar strict control measures.

WHAT DOES THIS STUDY ADD?

Our modeling study provides the first evidence showing how the
imposition of strict public health measures has not led to a sizable
reduction in COVID-19 transmission in Kuwait. It highlights
the importance of performing systematic epidemiological and
public health investigations of the population factors which may
limit the effectiveness of standard public health interventions in
developing countries. It also emphasizes the utility of adopting
dynamic modeling approaches for intervention assessment and
healthcare capacity re-adjustment at the earliest stages of
the outbreak.

INTRODUCTION

In early December 2019, a cluster of pneumonia cases of
unknown cause were reported in Wuhan, China (1). Later the
pathogen was identified and named, Severe Acute Respiratory
Syndrome Corona Virus 2 (SARS-CoV2), an enveloped single
strand RNA β-coronavirus with a genome of almost 30 thousand
bases (2). Since then the virus has been spreading rapidly
all over the globe forcing the World Health Organization
(WHO) to confirm the Corona Virus Disease 2019 (COVID-
19) as a Pandemic on March 11th, 2020. With the number
of cases reaching a staggering 230 million cases in more
than 200 countries and a death toll exceeding 4.8 million (3),
coordinated worldwide efforts are needed to prepare healthcare
systems to cope with this unprecedented challenge. While
some countries showed a degree of resilience and capacity
to deal with the progression of COVID-19, in others the
burden on healthcare systems was overwhelming leading to
catastrophic consequences.

Many developing countries are struggling to control the
COVID-19 outbreak, and little is known about the effectiveness
of public health measures taken by countries with smaller
populations and unique demographic profiles such as Kuwait.
Kuwait is a small wealthy country with a population of nearly
4.7 million people. On February 24th, Kuwait recorded the
first confirmed cases of COVID-19 in four passengers arriving
from Iran. Since then, the Ministry of Health have confirmed
more than 400 thousand COVID-19 cases and 2,439 deaths
(4). Kuwait has implemented early strict control measures
in attempt to contain the spread of SARS-CoV2 including:
closure of schools, universities, governmental offices and non-
essential businesses; full border lockdown, partial curfew and
geographic isolation of areas experiencing wide community

transmission (Figure 1). The situation in Kuwait was further
complicated by a remarkable repatriation operation to bring back
more than 50,000 Kuwaiti citizens from around the world by
May 7th, 2020. The government has implemented home and
institutional quarantine measures to limit virus transmission
from arrivals. Despite these early and stringent control measures,
community transmission remained observed as manifested by
the apparent acceleration of case and death numbers well-beyond
the anticipated period of slowdown. Hence it was unclear how the
outbreak would unfold during first wave as recent contact-tracing
measures highlighted the widening community transmission. In
addition, the polymerase chain reaction (PCR) testing seems to
be constrained by a global shortage of testing kits and reagents
posing a threat to smaller countries to get necessary testing tools
who now found themselves competing internationally with other
countries. In anticipation of the unfolding of such circumstance
it became necessary to forecast the potential burden it may incur
on local healthcare systems.

Forecasting the outbreak dynamics of COVID-19 cases in

Kuwait was crucial to estimating, well in advance, the potential
burden on the healthcare system. These epidemic outbreak

dynamics are typically investigated by employing mathematical

models of infectious disease transmission dynamics such as
the classic Susceptible-Infective-Recovered (SIR), Susceptible-

Exposed-Infective-Recovered (SEIR) (5–8) or susceptible,
exposed, infected, quarantined, and recovered (SEIQR)
epidemiological models (9). Such models play a pivotal role
in understanding the epidemic characteristics of an infectious
disease outbreak (8–10), as well as in assessing the impact of
various interventions on the spread of the disease (7, 11–14).
Indeed, various high-income countries have previously used
these models to help inform their epidemic containment
policies (7). Different generalized versions of these mathematical
models can provide more detailed mechanisms for the epidemic
dynamics (e.g., mode of transmission, quarantine dynamics,
testing scope, and hospitalization dynamics). A widely adopted
model for characterizing the epidemic outbreak SARS-CoV-2
is the SEIR model (6). However, under-reporting in daily
case numbers due to non-optimal testing poses a significant
challenge to understanding the trends associated with COVID-
19 progression by public health authorities (15). One way to
mitigate the impact of this structural limitation is by fitting a
dynamic transmission model to daily numbers of incident cases
of infections as well as reported deaths (16).

In this study, we model the progression of the COVID-
19 outbreak during first wave in Kuwait by developing a
generalization of the SEIR model that is informed by two
local mechanisms; a delay period during which suspected
COVID-19 individuals are tested, identified and hospitalized,
and different severity of illness (ranging from recovered
asymptomatic to needing critical care). We then calibrate
the model by applying a maximum likelihood framework
using incident cases of infections and reported deaths (17).
We use this framework to assess the effectiveness of public
health interventions and forecast the associated healthcare
burden in Kuwait.
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FIGURE 1 | Cumulative number of reported COVID-19 cases in Kuwait along with a timeline of events.

FIGURE 2 | Schematic diagram of the COVID-19 transmission model. Individuals (S) susceptible to the virus become infected by infectious individuals (I). They then

move through a latent period (E) before becoming infectious (I). Infectious individuals can either move through a detection period (C) or eventually recover without

symptoms. Confirmed infectious individuals move through an initial hospitalization period (H) after which they are admitted to either an isolation ward (W) or an

intensive care unit (U). Intensive care patients may recover and be sent to an isolation ward W or ultimately die (D). Isolated patients move through a recovery period

(R), where they are assumed to be immune to the disease, at least in the medium term.
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TABLE 1 | Model parameters.

Symbol Definition Default values Justification

N Total population of Kuwait 4,776,000 PACI, Kuwait

S0 Susceptible subpopulation 500,000 MOH, Kuwait

R0 Basic reproduction number 1.5–3.5 (19)

κ Factor for transmission reduction 0.5

σ−1 Latent period 2 days (20)

γ−1 Infectious period 3.2 days (20)

α−1 Onset-to-hospitalization period 2 days Unpublished data

ω−1
1 Initial hospitalization period 6 days Unpublished data

ω−1
2 Mean ICU duration until recovery 8.5 days Unpublished data

ω−1
3 Mean isolation ward duration 10 days Unpublished data

ω−1
4 Mean ICU duration until death 10.5 days Unpublished data

f Proportion of tested & reported daily cases 0.12 (21)

ε1 Proportion of patients admitted to ICU 0.075 Unpublished data

ε2 Proportion of ICU patients with death outcome 0.25 Unpublished data

CFR Case fatality ratio 1.4% (15)

Rate of testing and the proportion of cases being tested remain largely unknown at this stage but are expected to increase over time as health authorities increase their laboratory testing

capacity. The hospital care data were provided by colleagues from the Ministry of Health, Kuwait.

METHODS

Mathematical Model
We use a deterministic compartmental model for infectious
disease transmission with additional compartments to describe
the dynamic burden on the healthcare system (Figure 2). Our
model simulates SEIR, testing and hospitalization dynamics and
can be described by the following set of differential equations:

dS

dt
= −

β(t)SI

N
dE

dt
=

β(t)SI

N
− σE

dI

dt
= σE− γ I

dC

dt
= f γ I − αC

dH

dt
= αC − ω1H

dW

dt
= (1− ε1) ω1H + (1− ε2) ω2U − ω3W

dU

dt
= ε1ω1H − ǫ2ω4U − (1− ε2) ω2U

dR

dt
=

(

1− f
)

γ I + ω3W

dD

dt
= ε2ω4U

Upon infection, individuals who are susceptible to the virus
(S) become exposed but non-infectious carriers (E) and later
infectious (I). A fraction of infectious individuals may remain
undetected and ultimately enter into a recovered class (R), while
the remaining fraction end up being detected (C) by some form
of clinical testing or diagnosis. Detected individuals are sent to

hospitals (H) where they are admitted to either an isolation ward
(W) or an intensive care unit (U) based on the intensity of their
symptoms. Intensive care patients either die (D) or get sent to an
isolation ward to stay until full recovery (R) (Figure 2).

The progression through the different compartments in our
model is characterized by key time periods which describe
the dynamic transmission of infection, case detection, patient
care and hospitalization, and recovery or death: the average
durations of viral latency (1/σ), carrier infectiousness (1/γ),
onset-to-hospitalization (1/α), onset-to-death, hospitalization-
to-discharge, and ICU-stay. The fraction of individuals who end
up being detected (f ) is related to the case fatality rate. Since the
transmission rate β is affected by the implementation of control
measures, we take it as a function of time β(t) = β0κ(t), where
β0 is the transmission rate without control measures (baseline)
and κ(t) is a positive scaling factor by which interventions may
reduce the transmission rate. In other words, κ values smaller
than 1 characterize a more effective intervention in curbing
the epidemic. Here κ = 1 indicates an ineffective or absent
control measure, with values greater implying improper control
measures or non-compliance.

We remark here that the modeling was made possible despite
the lack of population health data such as country demographics
and associated person-person contact structure. Hence, we
assumed homogeneous mixing not accounting for age-structure
nor the risk associated with comorbidities. Nonetheless, these
can be easily incorporated into our model once detailed data
become available.

Data and Parameters
Numbers of confirmed infection and death cases were collected
from daily reports from the European Center for Disease
Control (18). All our data sources are outlined in Table 1.
The key time durations in our model were fixed to values
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obtained from published datasets as well as unpublished local
hospitalization data. The mean durations of latency, incubation
and infectiousness of SARS-CoV-2 ware based on the reported
cases from the COVID-19 outbreak in Singapore and Tianjin,
China (20).

We assume that a single case started the outbreak on February
24th, 2020, which coincides with the date of the first reported
case of COVID-19 in Kuwait. The total population of Kuwait
(N) is about 4,776,000. We note here that our model parameter
estimation is insensitive to the number of susceptible individuals
as long as the number of cases is small relative to N. We
take the initial unprotected susceptible population to be 500,000
which is the effective number of individuals who account for
the majority of local community transmission in Kuwait. This
estimate is consistent with the assumptions that (1) the majority
of the population has been protected by the stay-at-home
orders, (2) most community transmission cases are localized to
certain geographic areas, and (3) children younger than 18 years
old represent a very small percentage of the total number of
infected patients. However, we also model 1,500,000 susceptible
individuals and show the corresponding results.

To assess the impact of control interventions, we assume
κ(t) = 1 prior to the implementation of a partial lockdown on
March 22, 2020 (Figure 1). We then estimate κ and the baseline
transmission rate β0 by employing a maximum likelihood
framework (17). To derive the maximum likelihood estimates
(MLE) of our unknown parameters we assume the daily numbers
of incident infections are detected according to a negative
binomial distribution (NBD). We additionally assume the daily
number of incident deaths are drawn from a similar distribution.
Then optimization was carried out using the Nelder-Mead
method (22) on the combined minus log-likelihood function.

The uncertainty of parameters was represented by quantile-
based credible intervals (CI). We use the asymptotic normality
of MLE to account for such uncertainty through deriving
simulation-based 95% CIs for the model curves (23). Simulations
were run 10,000 times based on random draws of the unknown

model parameters from a normal distribution β , κ ∼ N
(

θ̂ , 6

)

.

Here θ̂ =

(

β̂0, κ̂

)

are maximum likelihood estimates and 6 is

the variance-covariance matrix associated with them. Given the

parameterization of our transmission model, these parameters
permit a model-based estimation of the basic and effective

reproduction numbers. In particular, in each simulation run
an R0 value is drawn from a range of values (Table 1) as an
initial point to kick start the parameter search algorithm. Our
transmission model was fitted to estimate key transmission
parameters. The maximum likelihood estimates of the baseline
and effective transmission rates, β0 and βe were used compute
the basic and effective reproduction numbers via these formulas

R0 =
β0

γ
,Re = κR0.

All simulations, parameter estimation and model calibration
were run in the R software (24).

RESULTS

Our estimated basic reproduction number is R0 = 1.43
(95% CI: 1.33–1.58). Interestingly, the MLE of the factor by
which control measures reduce transmission was estimated at
κ = 1 (95% CI: 0.9998–1). This corresponds to an effective
reproduction number Re = R0, which is consistent with
reports from the Center for Mathematical Modeling of Infectious
Diseases (25).

We remark here that our model-based estimates of the
reproduction numbers, which directly influence the prevalence of
the epidemic, depend on the values we adopt for the incubation
and infectious periods (Table 1). In particular, larger periods are
expected to lead to higher values for the reproduction numbers.
For example, we find Rt = R0 = 1.97 (95% CI: 1.85–2.12)
if we change the incubation and infectious periods to 5 and
6 days, respectively.

Our parameter estimations captured the variation around
the observed number of reported cases and deaths to project a
posterior distribution of the expected numbers. Our projected
trajectories and their 95% credible intervals were able to capture
the early slow increase in observed cases, hospitalization and
deaths (Figure 3).

Under the current testing rate, capacity and scope, the model
projects the daily numbers of reported cases to peak around 480
(95% CI: 300–680) by the second half of the month of May.
In terms of the burden on the healthcare system, our model
projects peak hospital admission of 8,000 patients (95% CI:
5,000–12,000) with ICUs projected to peak around 350 patients
(95% CI: 220–480). At these rates the model projects a peak
daily mortality around 8 deaths (95% CI: 5–12). We additionally
explored a scenario that simulates an expansion in the size of
the susceptible subpopulation by a factor of three (Figure 4). A
summary of the projected epidemic and healthcare burdens is
presented in Table 2.

DISCUSSION

We developed a mathematical modeling framework for real-time
tracking and forecasting of the epidemic outbreak of COVID19
in Kuwait and the associated burden on the healthcare system.
This quantitative framework is further employed to evaluate
how the control measures implemented in Kuwait may have
influenced the epidemic burden. Such tools can derive important
policymaking decisions. Insight from Kuwait can potentially
inform similar policies, programs and public health measures
taken by other developing countries.

Our results suggest that the early gradual and stringent control
measures in Kuwait had the effect of delaying and lowering the
intensity of the outbreak by protecting a large fraction of the
population. Despite the fact that the country has been under
lockdown since March 22nd, 2020, our model indicates that
the effective reproduction number (Re) remained unchanged. In
principle, such control measures are implemented to achieve a
sufficient reduction in the effective reproduction number during
an outbreak. This may be explained by the reported outbreaks
amongst migrant workers (26). Kuwait has a considerably
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heterogenous population with 60% comprised of non-nationals.
A large proportion of these workers cluster in certain areas and
live in cramped dormitories with poor and unsanitary housing
conditions (27). Strict social distancing measures may not be
implementable nor have the same effect on these subpopulations.
Hence, this could exacerbate the transmission of the infection
in the presence of lockdowns. It is therefore imperative, for
the epidemiological understanding of the disease distribution,
to perform demographic studies that aim to extract contact
structure matrices and establish how different control measures
may or may not affect heterogenous transmission rates (28). This
is not only applicable to the State of Kuwait, but also the Arabian
Gulf states, Singapore and other countries with somewhat similar
demographic profiles.

Additionally, our results indicate that the COVID-19 outbreak
in Kuwait is on course to accelerate further in the next few
weeks, which is consistent with the recent trends associated with
expanded testing and contact tracing. Indeed, our model analysis
of the projected epidemic trend indicates that hospitals may need

to prepare for admitting around 12,000 patients of which 500may
need critical care.

This work has a number of limitations. First, we did not

have detailed data on age structure, nor the risk associated
with comorbidities. Younger individuals have lower risk of
mortality and morbidity from COVID-19, while older people
with comorbidities will have significantly higher case fatality

ratio. If most of the recorded cases in Kuwait were young,

then this might have led us to overestimate the results. In
contrast, if the older or comorbid population was higher in
Kuwait, we would be underestimating the results. The direction
of the bias is critical when adopting this model. Secondly,
many parameters were derived from unpublished data obtained
from local hospitals in Kuwait. Although the parameters may
change as the data are growing, we do not anticipate significant
departure from the values presented in this work. Thirdly, we
did not have demographic information. Careful consideration
should be taken with regards to population heterogeneity,
especially migrant workers. Further investigation with geospatial

FIGURE 3 | Observed and forecasted trajectories assuming 500,000 unprotected susceptible individuals. Observed and projected daily numbers of (A) incident

infections, (B) death cases, (C) general hospital admissions, and (D) ICU admissions. Red rectangular ribbon highlights the projected time-window of the epidemic

peak. Red lines represent the reported data. Black dashed lines represent model projections based on MLE of unknown parameters with shaded ribbons representing

95% credible interval on new observations. We note here that the observed cases and their projections only represent a fraction of the actual and model prevalence.

This is based on our assumption of under-reporting and the presence of asymptomatic individuals in the population.
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FIGURE 4 | Tripling the size of the unprotected susceptible population. Peaks of forecasted trajectories are approximately tripled in size. The projected time-window

of the peak is delayed by 2-weeks and widened (3-week period). Observed and projected daily numbers of (A) incident infections, (B) death cases, (C) general

hospital admissions, and (D) ICU admissions. Red rectangular ribbon highlights the projected time-window of the epidemic peak. Red lines represent the reported

data. Black dashed lines represent model projections based on MLE of unknown parameters with shaded ribbons representing 95% credible interval on new

observations. We note here that the observed cases and their projections only represent a fraction of the actual and model prevalence. This is based on our

assumption of under-reporting and the presence of asymptomatic individuals in the population.

TABLE 2 | Projected epidemic and healthcare burdens.

Expected burden 500,000 Susceptibles 1,500,000 Susceptibles

Max reported cases 480 (300–680) 1,400 (800–2,000)

Max hospital occupancy 8,000 (5,000–12,000) 25,000 (15,000–35,000)

Max ICU occupancy 350 (220–480) 1,000 (600–1,400)

Max daily mortality 8 (5–12) 24 (15–33)

Peak time-window 15 May−3 June 1 June−20 June

Burden projections based on model simulations are presented. Uncertainty is represented

by 95% credible intervals.

mapping to understand epidemic clusters is warranted. Finally,
the complemented R code and real data from Kuwait should not
be uncritically applied without careful tailoring to specific study
settings and revisiting of the assumptions.

CONCLUSIONS

COVID-19 poses significant public health challenges to many
developing countries including Kuwait. We have shown that

stringent control measures can effectively delay and lower the
intensity of the outbreak. However, they might not be sufficient
to completely halt the transmission of the disease in the presence
of certain structural restrictions pertaining to population and
demographic factors. In turn, this highlights an urgent need for a
systematic reassessment of public health interventions to account
for demographic heterogeneities. Such an assessment needs to
be supported by modeling tools to monitor the impact on the
outbreak progression. In particular, our model can serve as a
public health tool for decision makers to guide in the control of
the current outbreak, even in the absence of critical population
health data. This replicable tool can also be used to anticipate
effective future measures should a second wave re-emerge in
Kuwait and other developing countries. In addition, it can serve
as a public health tool to track and control the current outbreak.
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