Support)Mutabilis (Grant/Research Support)Nabriva Therapeutics AG (Grant/ Support)Naeja-RGM Pharmaceuticals Research (Grant/Research Support)Nosopharm SAS (Grant/Research Support)Novartis Pharmaceuticals Corp. (Grant/Research Support)NuCana Biomed (Grant/Research Support)Paratek Pharmaceuticals, Inc. (Grant/Research Support)Polyphor, Ltd. (Grant/Research Support)Prothena Corporation (Grant/Research Support)PTC Therapeutics (Grant/Research Support)Rempex Pharmaceuticals (Grant/Research Support)Roche TCRC (Grant/Research Support)Sagimet (Grant/Research Support)scPharmaceuticals Inc. (Grant/Research Support)Scynexis (Grant/ Therapeutics (Grant/Research Support)Spero Support)TauRx Therapeutics (Grant/Research Support)Tetraphase Pharmaceuticals (Grant/ Research Support)Theravance Biopharma Pharmaceutica (Grant/Research Support)USCAST (Grant/Research Support)VenatoRx (Grant/Research Support)Vical Incorporated (Grant/Research Support)Wockhardt Bio AG (Grant/ Research Support)Zavante Therapeutics (Grant/Research Support)Zogenix International (Grant/Research Support)

1114. Effectiveness and Safety of Beta-lactam Antibiotics with and without Therapeutic Drug Monitoring in Patients with Pseudomonas aeruginosa Pneumonia or Bloodstream Infection

Ashlan J. Kunz Coyne, Pharm.D. 1; Mohammad H. Al-Shaer, PharmD2; Anthony M. Casapao, PharmD, MPH3; Jason Ferreira, PharmD, BCPS, BCCCP, FCCM1; Carmen Isache, M.D.1; Christopher Jankowski, Pharm.D., BCPS1; 1UF Health Jacksonville, Jacksonville, Florida; ²University of Florida, Gainesville, FL; ³University of Florida College of Pharmacy, Jacksonville, Florida

Session: P-62. PK/PD Studies

Background. Pseudomonas aeruginosa (PSAR) is challenging to treat due to its multiple resistance mechanisms, limited anti-PSAR agents, and population pharmacokinetic (PK) variances. Beta-lactam antibiotics (BLA) are commonly used to treat PSAR infections and although they have a wide therapeutic index, suboptimal exposures may lead to treatment failure and antimicrobial resistance while high exposure may result in adverse effects. Certain patient populations may benefit from BLA therapeutic drug monitoring (TDM) due to their significant PK variability. The purpose of this study was to compare clinical outcomes in patients with PSAR pneumonia (PNA)

or bloodstream infection (BSI) receiving BLA with and without the guidance of TDM.

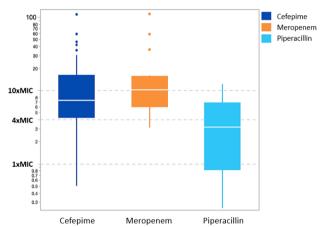
Methods. Retrospective, parallel cohort study conducted at UF Shands Gainesville and UF Health Jacksonville evaluating five years of patients with PSAR PNA or BSI. TDM group was defined for routine BLA TDM compared to nonroutine BLA TDM service (non-TDM). Patients were excluded if they died before a culture result, transferred in with a positive PSAR culture, were transplant recipients, cystic fibrosis or burn injury patients. The primary outcome was a composite of presumed clinical cure defined as the absence of the following: all-cause in-hospital mortality, escalation, and/or additional antimicrobial therapy for PSAR infection after 48 hours of treatment with primary susceptible regimen due to worsening clinical status or transfer to a higher level of care.

Results. Two-hundred patients were included (TDM n=95; non-TDM n=105). The overall primary composite outcome of presumed clinical cure occurred in 73% of patients (82% and 75% of the TDM and non-TDM cohorts, respectively; p=0.301). A post-hoc multivariate analysis was conducted to assess predictors of not attaining clinical cure.

	Cohort ^a			
Characteristics ^b	TDM (n=95)	Non-TDM (n=105)	p value	
Age (years)	61±11	61±11	0.683	
Male	56 (59)	73 (70)	0.005	
BMI (kg/m²)	26 (22-33)	25 (20-31)	0.175	
CL _{CR} (mL/min)	69 (36-111)	69 (43-105)	0.589	
NH/LTC Resident	7 (7)	15 (14)	0.118	
Immunosuppressed	9 (9)	4 (4)	0.105	
IVDU	13 (14)	20 (19)	0.308	
Charlson Comorbidity Index	4 (2-5)	5 (3-7)	0.081	
SOFA score	5 (2-8)	5 (2-8)	0.808	
APACHE II score	19 (14-26)	22 (17-28)	0.059	
Positive culture source				
Blood	49 (52)	36 (34)	0.013	
skin and soft tissue	11 (12)	15 (14)	0.057	
urine	17 (18)	11 (10)	0.688	
catheter-associated	5 (5)	5 (5)	0.534	
intra-abdominal	7 (7)	5 (5)	0.959	
other	4 (4)	7 (7)	0.191	
Respiratory	46 (48)	69 (66)	0.019	
Respiratory and blood	8 (8)	2 (2)	0.035	
Hospital acquired infection	41 (43)	49 (47)	0.618	
Antibiotic used for PSAR infection				
Cefepime	69 (73)	51 (49)	< 0.001	
Ceftazidime	0 (0)	1(1)	0.999	
Piperacillin-tazobactam	7 (7)	39 (38)	<0.001	
Meropenem	18 (19)	10 (10)	0.055	
Aztreonam	1(1)	0 (0)	0.475	
Ceftazidime-avibactam	0 (0)	1 (1)	0.999	
Prolonged infusion BLA*	26 (27)	103 (96)	<0.001	
Polymicrobial infections	32 (34)	47 (45)	0.109	
Gram-positive	7 (7)	13 (12)	0.561	
Gram-negative	23 (24)	31 (30)	0.579	
both	2 (2)	3 (3)	0.999	
Infectious Diseases Consult	66 (69)	29 (28)	< 0.001	

	Cohort®			
	BLA TDM	No BLA TDM		
Outcomes ^b	(n=95)	(n=105)	p value	
Composite presumed clinical cure	78 (82)	75 (79)	0.301	
All-cause mortality	12 (13)	21 (20)	0.185	
Antibiotic escalation/addition	4 (4)	6 (6)	0.724	
Escalation in level of care	3 (3)	0 (0)	0.497	
All-cause in-hospital mortality	14 (15)	23 (22)	0.198	
Hospital length of stay	21 (15-33)	21 (11-29)	0.337	
Intensive care unit length of stay	19 (11-28)	14 (8-23)	0.019	
Adverse event during BLA therapy				
Acute kidney injury	31 (30)	29 (28)	0.440	
Clostridioides difficile	3 (3)	6 (6)	0.497	
Neurotoxicity/encephalopathy	5 (5)	3 (3)	0.481	
Readmission rates				
30-day	25 (26)	21 (20)	0.289	
60-day	12 (13)	14 (13)	0.883	
90-day	17 (17)	9 (9)	0.050	

Data are presented as "number (%)" or "median (interquartile range)" as appropriate


Table 3. Predictors of not attaining presumed clinical cure

Candidate Variables ^{a,b}	p value	OR	Lower 95%	Upper 95%
Age ≥ 61 years	0.018	1.027	1.001	1.054
SOFA Score ≥ 7	0.008	2.962	1.357	6.469
ICU admission	0.040	3.006	1.008	8.968
RRT during BLA therapy	0.005	3.359	1.313	8.596
MIC ± 1 dilution from CLSI breakpoint	0.042	3.109	1.040	9.294

^{*}Candidate variables with univariate n < 0.2

Conclusion. While there was no difference in the primary composite outcome of presumed clinical cure, future studies can use these data to assess TDM patient selection and whether a bundled care approach of BLA regimens with known clinical benefit, early TDM-guided dose optimization, and continued clinical assessment improves outcomes in patients with PSAR PNA or BSI compared to use of each modality individually.

Figure 1. Boxplot of fC_{min}:MIC ratios for BLA administered

Disclosures. All Authors: No reported disclosures

1115. Evaluation of Gepotidacin (GSK2140944) Pharmacokinetics and Food Effect in Japanese Subjects

Mohammad Hossain, PhD1; Courtney Tiffany, BSc1; Aline Barth, MSC;PHD2; Aparna Raychaudhuri, Ph.D.2; Etienne F. Dumont, MD1; 1GlaxoSmithKline plc., Collegeville, PA, USA, Collegeville, Pennsylvania; ²GSK

Session: P-62. PK/PD Studies

Background. Gepotidacin, a novel, first-in-class triazaacenaphthylene antibiotic, inhibits bacterial replication and has in vitro and in vivo activity against key pathogens, including drug-resistant strains, associated with a range of infections. Gepotidacin is currently in Phase 3 clinical studies for the treatment of uncomplicated urinary tract infections and gonorrhea. This study (NCT02853435) was designed to assess gepotidacin pharmacokinetics (PK) in Japanese subjects (fasted and fed).

Methods. A tablet formulation of 750 mg gepotidacin free base was used in the study, which was conducted in two parts: Part 1, gepotidacin PK was assessed following 1500 and 3000 mg single oral doses in the fasted state; and Part 2, gepotidacin PK was assessed following 1500, 2250, and 3000 mg single oral doses in the fed state. Serial blood and urine samples were collected in both study parts.

Results. Part 1: The area under the plasma drug concentration-time curve from time 0 to infinity (AUC $_{[0-\infty]}$) and maximum observed concentration (C_{max}) were slightly higher in Japanese subjects than in Caucasian subjects at the same dose levels and with the same formulation. Following gepotidacin dosing in the fasted state, the 1500 mg dose was tolerated, while the 3000 mg dose was poorly tolerated with mild or moderate gastro-intestinal adverse effects (GI AEs) reported by most subjects shortly

^{*}Data are presented as "mean (standard deviation)", "number (%)" or "median (interquartile range)" as appropriate.

*So, standard deviation, Mb, body mass index. CLcs, creatinine clearance, HH/LTC, nursing home/long-term care; IVDU, intravenous dring use; SOFA, Sequential Organ Fallure Assessment; APACHE, Acute Physiologic Assessment and Chronic Health Evaluation; PSAR, Pseudomonus ceruginosa.

*BLA administration via infusions of 2.3 hours

^b RRT, renal replacement therapy; MIC, minimum inhibitory concentration; CLSI, Clinical and Laboratory Standards