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Background: Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the oral 
and maxillofacial regions. Patients with OSCC exhibit a poor response to conventional chemoradiotherapies, 
which are associated with severe side effects. Therefore, it is essential to identify an effective therapeutic 
method to treat patients with OSCC. An anti-tumor compound, Agkistrodon acutus venom component I 
(AAVC-I), purified from Agkistrodon acutus venom, has demonstrated anticancer activity both in vitro and in 
vivo. However, the mechanism of AAVC-I’s anticancer activity in cancer cells has yet to be established. This 
study aimed to investigate the mechanism of AAVC-I-induced apoptosis in HSC-3 OSCC cells and explore 
its regulatory effect on oxidative stress.
Methods: Survival rates of human OSCC cell HSC-3 were detected by Cell Counting Kit-8 (CCK-8). 
The reactive oxygen species (ROS) level was analyzed by flow cytometry and fluorescence microscopy. The 
mitochondrial membrane potential was analyzed by cytometry and fluorescent microplate reader. Apoptosis 
of HSC-3 cells was analyzed using flow cytometry. The oxidative stress level was evaluated using glutathione 
(GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits. In addition, the target proteins were 
analyzed by western blot.
Results: AAVC-I reduced HSC-3 cells’ survival rates in a dose-dependent manner with a 50% inhibiting 
concentration (IC50) of 8.86 μg/mL. It induced apoptosis of HSC-3 cells and the expression of cleaved 
caspase-3, cleaved caspase-9, and Cyt-c increased significantly, whereas the expression level of Bcl-2 
decreased in AAVC-I-treated HSC-3 cells. Thus, AAVC-I caused apoptosis of HSC-3 via the activation 
of the intrinsic apoptotic pathway. In addition, AAVC-I reduced the mitochondrial membrane potential in 
HSC-3, enhanced intracellular ROS, and increased intracellular oxidative stress levels in comparison to that 
of untreated control cells. Furthermore, AAVC-I increased the expression of Kelch-like ECH-associated 
protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) levels.
Conclusions: These findings demonstrate the inhibitory effects and associated mechanisms of AAVC-I 
on the HSC-3 OSCC cell line. This insight could be valuable for investigating AAVC-I as a potential 
therapeutic option for patients with OSCC.
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Introduction

Oral squamous cell carcinoma (OSCC) is the most common 
malignant tumor in the oral and maxillofacial regions, 
accounting for more than 300,000 new cases worldwide 
each year. The prognosis of the disease is poor, with a 5-year 
survival rate of only 50–60%, despite significant efforts 
to improve clinical outcomes for patients with OSCCs 
(1-3). Patients with early-stage oral cancer are treated 
with a comprehensive series of surgeries. Those with 
advanced localized cancer require preoperative induction 
chemotherapy, whereas patients who cannot tolerate 
surgery are treated with chemoradiotherapies. However, the 
use of chemoradiotherapies can cause a number of adverse 
effects, including liver and kidney damage, bone marrow 
suppression, and so on, thus deteriorating the quality 
of life of the patients (4). Therefore, there is an urgent 
need to identify effective treatment options for patients  
with OSCCs.

Snake venoms are complex mixtures of toxins, containing 
a variety of active ingredients such as proteins, peptides, 
enzymes, and other bioactive substances with diverse 
biological activities (5,6). For example, Agkistrodon acutus 

venom component I (AAVC-I), an anti-tumor compound, 
is purified from the crude venom of Agkistrodon acutus. 
AAVC-I can inhibit proliferation by inducing apoptosis in 
various tumor cells, including lung and laryngeal cancer 
(7-9). However, its mechanisms of action have yet to be 
identified.

Oxidative stress is the imbalance between the production 
and consumption of reactive oxygen species (ROS), which 
plays crucial roles in the pathogenesis and progression of 
various cancers (10). Kelch-like ECH-associated protein 1/
nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) 
signaling is the main regulatory pathway for cancer cells to 
resist ROS generation and protection against its harmful 
effects. Sustained activation of Nrf2 followed by Keap1 
inactivation leads cancer cells to growth, proliferation, 
angiogenesis, and resistance to chemo-radiotherapies (11-14).

Here, we first investigated the effects of AAVC-I on 
OSCC cells using the HSC-3 cell line as a model, and 
then examined the effects of AAVC-I on the Keap1/
Nrf2 signaling pathway. Then, this study explored the 
mechanism of AAVC-I -induced apoptosis in cells derived 
from OSCCs, which could be helpful in developing new 
chemotherapeutics for treating patients with OSCCs. We 
present this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-182/rc).

Methods

Isolation and purification of AAVC-I

The venom of Agkistrodon acutus was procured from the 
Qimen Snakebite Research Institute (Huangshan, China). 
The lyophilized venom from Agkistrodon acutus was 
dissolved in a 5 mM sodium phosphate buffer (pH 8.0) 
and then centrifuged at 10,000 g for 15 minutes at 4 ℃. 
The supernatant was loaded into a DE-52 ion exchange 
chromatography column and equilibrated with the same  
5 mM sodium phosphate buffer solution (pH 8.0). Gradient 
elution was performed using the same sodium phosphate 
buffer solution and 1 mol/L NaCl, with a flow rate set at  
1.5 mL/min. Following desalting and dehydration, the 
fraction (peak I) was collected (Figure 1).
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Cell culture and treatment

The Tongji Medical College of Huazhong University of 
Science and Technology provided the HSC-3 cells for the 
study. The cells were stored in the Central Laboratory of 
the First Affiliated Hospital of Wannan Medical College 
until use. They were grown on the 90% minimum essential 
medium (MEM) plus 10% fetal bovine serum (FBS) and 
1% double antibiotic (penicillin/streptomycin), and were 
cultured under 5% CO2, 37 ℃ constant temperature, and 
humidity conditions. When the cell growth reached the 
logarithmic phase, they were sub-cultured at a ratio of 1:4 
and were used for subsequent experiments.

First, treatment of AAVC-I at different concentrations 
(0, 0.25, 0.5, 1, 2, 4, 8, 12, 16 μg/mL) were set up for 
cytotoxicity experiments. Based on the results of the 
cytotoxicity experiments, the concentrations for subsequent 
experiments were selected.

Cytotoxicity test

HSC-3 cells were collected and seeded at a concentration 
of 5,000 cells per well in 96-well plates (n=5). After  
12 hours of initial seeding, the cells were treated with 
AAVC-I at different doses and incubated for an additional 
24 and 48 hours. After that, 10 μL of Cell Counting Kit-
8 (CCK-8) solution (Biosharp, Hefei, China) was added to 
the each well and incubated for 2 hours. Then, the 96-well 
plate was placed on a microplate reader (BioTek, Winooski, 

VT, USA) and measured the absorbance at 450 nm. Finally, 
the cell survival rates were calculated as follows: average 
optical density (OD) value of drug treatment group/average 
OD value of control group × 100%.

Detection of apoptosis and mitochondrial membrane 
potential

HSC-3 cells were collected and seeded at a density of 
2.0×105 cells per well in a 6-well plate. The cells were 
treated with different concentrations of AAVC-1 (0, 2, 4, 
and 8 μg/mL) after 12 hours of initial seeding. Apoptosis 
of cells following the treatment was analyzed using 
Annexin V-FITC kit (Servicebio, Wuhan, China) by a 
flow cytometry (Beckman Coulter, Brea, CA, USA). The 
mitochondrial membrane potential of treated and untreated 
cells was examined with a flow cytometry and a fluorescent 
microplate reader followed by staining the cells with 
mitochondrial membrane potential detection kit (JC-1) 
(Beyotime, Haimen, China) according to the manufacturers’ 
guidelines.

Western blot

After treatment of HSC-3 cells at various doses of AAVC-I 
for 12 hours, cells were collected and washed with 
phosphate-buffered saline (PBS) 3 times. Then, the cytosolic 
and nuclear proteins were collected according to the 
instructions of nuclear and cytoplasmic proteins extraction 

Figure 1 Results of using DEAE-cellulose column chromatography to separate the components of Agkistrodon acutus venom. Conc means 
the concentration of buffer solution; it will rise over time and eventually reach 1 mol/L. The red numbers on the horizontal axis represent 
the fraction numbers. UV, ultraviolet; mAu, milli-absorbance unit. 
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kits (Beyotime). The total proteins were collected using 
Western and IP Cell Lysis Buffer (Beyotime) containing 
1 mM protease inhibitor. A bicinchoninic acid (BCA) 
kit (Beyotime) was used to determine the concentration 
of protein. After that, 30 μg of protein was loaded into 
each well of 6%, 10%, and 15% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) to separate 
the proteins and then transferred to polyvinylidene fluoride 
(PVDF) membranes. The membranes were then incubated 
with Bax (Beyotime), Bcl2 (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA), caspase-3 (Wanleibio, Shenyang, China), 
cleaved caspase-3 (Wanleibio), caspase-9 (Wanleibio), 
cleaved caspase-9 (Wanleibio), Cyt-c (Servicebio), Keap1 
(Servicebio), Nrf2 (Servicebio), HO-1 (Servicebio), NQO1 
(Servicebio), β-actin (Servicebio), and Lamin-b (Wanleibio) 
antibodies overnight at 4 ℃. Afterwards, they were washed 
with PBS with Tween 20 (PBST) for 30 minutes and then 
incubated with horseradish peroxidase (HRP) coupled 
secondary antibody for 1 hour at room temperature. Finally, 
the signals of the target proteins were detected using an 
enhanced chemiluminescence (ECL) detection system, 
and the grayscale values of the target proteins bands were 
analyzed using Image J software version 1.8.0 (National 
Institutes of Health, Bethesda, MD, USA). β-actin was used 
as the total proteins, and Lamin-b was used as the nuclear 
proteins loading controls.

Detection of oxidative stress

HSC-3 cells were seeded at a density of 2.0×105 cells per 
well in 6-well plates. After 12 hours of seeding, cells were 
treated with different concentrations (0, 2, 4, 8 μg/mL) 
of AAVC-I for an additional 12 hours. For the estimation 
of ROS, DCFH-DA (Jiancheng Bioengineering Institute, 
Nanjing, China) and Bodipy-C11 (Maokang Biotechnology, 
Shanghai, China) fluorescent probes were used. In short, 
the cells were incubated with the probes for 30 minutes 
followed by removal of treatment and the ROS levels 
were measured according to the instructions using flow 
cytometry and fluorescence microscope.

Measurement of glutathione (GSH), superoxide 
dismutase (SOD), and malondialdehyde (MDA) was 
performed according to the reagent kits (Wanleibio). 
For this experiment, samples were collected from HSC-
3 cells and the protein concentration of the samples were 
determined using the BCA assay kit and the activity of 
SOD, GSH, and MDA were measured according to the 
manufacturer’s guidelines.

Statistical analysis

All experiments were carried out independently at least 
3 times. Statistical analysis was performed using SPSS 
18.0 statistical software (IBM Corp., Armonk, NY, USA). 
Measurement data were expressed as x ± s, and t-tests 
were used for comparison between two groups. Analysis of 
variance (ANOVA) was used for multiple group comparisons. 
A P value <0.05 was considered a significant difference.

Results

Cytotoxicity and apoptosis

The effects of AAVC-I on the survival rates of HSC-3 
cells are presented in Figure 2A. AAVC-I induced HSC-
3 cell death in a concentration-dependent manner with 
a 50% inhibiting concentration (IC50) of 8.86  μg/mL 
after 24 hours of treatment. It was noted that at 2 μg/mL  
of AAVC-I, the survival rates of HSC-3 cells started to 
decrease notably, and at a concentration of 4 μg/mL, it 
reached a statistically significant difference. Therefore, in 
subsequent experiments, the treatment groups were used 
as follows: 2, 4, and 8 μg/mL as low, medium, and high 
concentration groups, respectively (Table 1).

The treatment of AAVC-I induced apoptosis of HSC-
3 cells (Figure 2B) and the proportion of apoptotic and 
necrotic cells were increased with the increment of AAVC-I 
concentration.

AAVC-I induced reduction of mitochondrial membrane 
potential

Reduction of mitochondrial membrane potential is a 
hallmark of apoptosis. Thus, we used a JC-1 kit to measure 
the mitochondrial membrane potential of HSC-3 cells 
followed by AAVC-I treatment. It was noted that AAVC-I 
caused a significant reduction of mitochondrial membrane 
potential of HSC-3 cells (Figure 3). Interestingly, with 
the increasing of AAVC-I concentration, the intensity of 
red fluorescence decreased, whereas the intensity of green 
fluorescence increased. These results indicated the higher 
loss of mitochondrial membrane potential with higher doses 
of AAVC-I treatment (Figure 3).

Regulation of apoptosis-related proteins by AAVC-I 
treatment

The upregulation or downregulation of apoptosis-related 
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proteins in HSC-3 cells followed by AAVC-I were analyzed 

using western blots. The expressions of Bax, Bcl2, caspase-3, 

cleaved caspase-3, caspase-9, cleaved caspase-9, and Cyt-c 

were examined. It was found that with the increasing of 
AAVC-I concentrations, the expression levels of Bax, 
cleaved caspase-3, cleaved caspase-9, and Cyt-c increased 
whereas the expression level of Bcl2 decreased significantly 
(P<0.05). The expression of caspase-3 at various doses 
remained the same whereas caspase-9 expression increased 
significantly at 4  μg/mL or higher doses of AAVC-I 
treatment (Figure 4).

Inactivation of the Keap1/Nrf2 pathway by AAVC-I 
treatment

The expression levels of Keap1, Nrf2, HO-1, NQO1, 
and Nrf2 in the nuclear proteins were examined. The 
expression of Keap1 increased significantly with increasing 
concentrations of AAVC-I, whereas the expression 
of Nrf2 decreased in the nuclear proteins fraction  
(Figure 5). However, the expression of Nrf2 in total proteins 
did not change significantly. In addition, expression of heme 
oxygenase 1 (HO-1) slightly increased at low concentrations 
(2 μg/mL) yet decreased significantly at the concentrations 
of 4 μg/mL or higher doses. Furthermore, the expression of 
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Figure 2 Effect of AAVC-I on the survival rate and apoptosis of HSC-3 cells. (A) Changes in survival rate of HSC-3 cells treated with 
different concentrations of AAVC-I. **, compared with the control group, P<0.01. (B) Apoptosis of HSC-3 cells treated with AAVC-I. 
AAVC-I, Agkistrodon acutus venom component I; Q1, the selected cell range; UL, upper left quadrant; UR, upper right quadrant; LL, lower 
left quadrant; LR, lower right quadrant; PI, propidium iodide; FITC, fluorescein isothiocyanate. 

Table 1 Effect of AAVC-I on the growth of HSC-3 cells

Group Cell viability (24 h) Cell viability (48 h)

Control 1.000±0.076 1.000±0.040

AAVC-I

0.25 μg/mL 1.001±0.064 0.938±0.032

0.5 μg/mL 0.980±0.066 1.035±0.089

1 μg/mL 0.955±0.099 0.925±0.032

2 μg/mL 0.876±0.014 0.907±0.043

4 μg/mL 0.765±0.040 0.641±0.083

8 μg/mL 0.515±0.039 0.331±0.026

12 μg/mL 0.225±0.047 0.150±0.024

16 μg/mL 0.197±0.038 0.116±0.004

Data are presented as mean ± standard deviation. AAVC-I, 
Agkistrodon acutus venom component I. 
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Figure 3 Mitochondrial membrane potential of HSC-3 cells treated with AAVC-I. (A) Fluorescent microplate reader; (B) flow cytometry. 
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NAD(P)H:quinone oxidoreductase 1 (NQO1) significantly 
increased at low (2  μg/mL) and medium (4  μg/mL)  
concentrations, and on the contrary, it decreased at high 
concentrations (8 μg/mL). However, this reduction of 
NQO1 at higher doses of AAVC-I treatment did not reach 
the statistical significance level (Figure 5). These results 
implied that treatment of HSC-3 cells with AAVC-I 
induced inactivation of Keap1/Nrf2 signaling pathway.

Induction of oxidative stress in HSC-3 cells by AAVC-I 
treatment

Production of ROS in HSC-3 cells after AAVC-I treatment at 
low, medium, and high concentrations is presented in Figure 6. 
The results showed that ROS level in HSC-3 cells increased 
significantly after AAVC-I treatment with a concentration-
dependent manner (Figures 6,7). In addition, analysis of GSH 
and SOD showed that at lower dose (2 μg/mL) of AAVC-I, 
the level of GSH and SOD increased slightly, whereas it 
significantly decreased at high concentration of AAVC-I 
(8 μg/mL) treatment (Figure 8A,8B). Meanwhile, the level 
of MDA in HSC-3 cells increased with the increment of 
AAVC-I treatment, indicating a concentration-dependent 
pattern of elevation of MDA in HSC-3 cells receiving 

AAVC-I treatment (Figure 8C).

Discussion

Chemotherapy is an important option for the patients 
with OSCC in clinical settings. However, low response, 
adverse side effects, and resistance to the chemotherapies 
deteriorate the quality of life and limit their point-of-care 
application. Thus, it is an urgent need to develop effective 
drugs for the treatment of patients with OSCC. The 
present study revealed that AAVC-I inhibited the survival 
of OSCC (HSC-3) cells significantly through induction 
of the apoptosis of cancer cells. Also, it was noted that 
AAVC-I reduced the mitochondrial membrane potential 
and increased the ROS levels in HSC-3 cells. In addition, 
AAVC-I may regulate the Keap1/Nrf2 signaling pathway to 
increase oxidative stress levels in OSCC cells, resulting in 
effective elimination of cancer cells (Figure 9).

Snake venom is a complex mixture of proteins and 
peptides that exhibit biological activity during physiological 
processes. Therefore, further separation and detailed 
study of the components within this mixture is currently a 
research hotspot. Previous studies (15-17) have highlighted 
the potential applications of snake venom toxins in 
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Figure 4 Effect of AAVC-I on the expression of apoptosis related proteins in HSC-3 cells. *, compared with the control group, P<0.05; **, 
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anti-tumor therapy. Ha et al. identified four proteins: 
PLA2, SVMP, CRiSP, and CTL/snalec in the venom of 
Agkistrodon acutus using methods such as mass spectrometry, 
electrophoresis, and N-terminal sequencing (16). Among 
these, PLA2 has been suggested to exhibit anti-tumor and 
angiogenic effects, although some reports (17,18) indicate 
that PLA2 lacks cytotoxicity. SVMP has been documented 
in multiple studies (15,16) as disrupting the extracellular 
matrix, altering the adhesion and migration of cancer cells, 
and has significant implications for the development of 
anticancer drugs. CRiSP has been recognized for biological 
functions such as antimicrobial activity and Ca2+ and K+ 
channel blockade, but its anti-tumor activity has yet to be 
reported (19). AAVC-I, an anti-tumor component extracted 
from the crude venom of Agkistrodon acutus, may enhance 
the functionality of each individual component in practical 

applications.
The balance between cell survival (proliferation) 

and death is crucial for maintaining normal growth and 
development. Once this balance is disrupted, it leads to the 
pathogenesis of cancers and other degenerative diseases. 
Apoptosis, a key programmed cell death phenomenon, is 
often considered an effective target for developing cancer 
therapeutics (20). In this study, considerable portion of cells 
treated with AAVC-I underwent apoptosis, thereby reducing 
the survival rate of HSC-3 cells in a dose-dependent 
manner. Similarly, AAVC-I causes reduction of growth 
and proliferation of cancer cells derived from laryngeal, 
lung, and other types of cancers (7,8). Additionally, at a 
higher dose (8 μg/mL), AAVC-I increased the proportion 
of necrotic cells along with an increase in the proportion of 
apoptotic cell populations.
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Figure 5 Expression of oxidative stress pathway proteins in HSC-3 cells. *, compared with the control group, P<0.05; **, compared with 
the control group, P<0.01; ns, compared with the control group, there was no significant difference. AAVC-I, Agkistrodon acutus venom 
component I.

Apoptosis is a type of programmed cell death mediated 
by various pathways, including exogenous (death receptors) 
and endogenous (mitochondria), ultimately leading to 
cell death. Related molecular events include changes 
in mitochondrial membrane potential, DNA breakage, 
and specific protease cascades. In this process, Bcl2, by 
binding to BH3, promotes the formation of pro-apoptotic 
effectors by interacting with Bax and Bak. This complex 
affects mitochondrial membrane permeability and releases 
Cyt-c into the cytoplasm. Subsequently, Cyt-c binds to 
Apaf-1, resulting in the formation of an apoptotic body, 
which triggers the caspase cascade reactions of apoptosis 
(21,22). Cyt-c is translocated to the cytoplasm, oxidative 
phosphorylation is decoupled, and higher levels of ROS 

such as H2O2, and OH− are generated (23). This excessive 
ROS generation and accumulation induce apoptosis of 
cells through the mitochondrial and endoplasmic reticulum 
pathways (24,25). AAVC-I treatment of HSC-3 cells 
caused a reduction in the anti-apoptotic protein Bcl2 and 
increased the expression of the pro-apoptotic protein Bax, 
which is consistent with a previous study on oropharyngeal 
cancer (7). Additionally, HSC-3 cells receiving AAVC-I 
showed a decrease in mitochondrial membrane potential 
and an increase in ROS levels. Next, we further examined 
the expression of cleaved caspase-9 and caspase-3, and 
noted that the expression of cleaved caspase-9 and cleaved 
caspase-3 significantly increased after AAVC-I treatment. 
Therefore, AAVC-I primarily induces cell apoptosis 
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Figure 6 ROS levels in HSC-3 cells. After treatment of HSC-3 cells with different concentrations of AAVC-I, the production of ROS was 
detected by DCFH-DA probe. (A) Fluorescence staining; green: the production of ROS in HSC-3 cells; blue: nucleus. Magnification: 400×. 
(B) ROS levels in HSC-3 cells detected by flow cytometry. NC, control group; AAVC-I, Agkistrodon acutus venom component I; DAPI, 
4',6-diamidino-2-phenylindole; ROS, reactive oxygen species.
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Figure 8 SOD, GSH, and MDA levels in HSC-3 cells. (A) SOD; (B) GSH; (C) MDA. *, compared with the control group, P<0.05; **, 
compared with the control group, P<0.01; ns, compared with the control group, there was no significant difference. SOD, superoxide 
dismutase; GSH, glutathione; MDA, malondialdehyde. 
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through endogenous pathways.
ROS accumulation in cancer cells can induce oxidative 

stress by modulating the activity of the Keap1/Nrf2 
signaling pathway. Activation of Nrf2 promotes an 
antioxidant response and reduces intracellular ROS levels. 
Meanwhile, inactivation of Nrf2 is associated with reduced 

cell proliferation. Therefore, Nrf2 can promote oncogene-
induced cancer growth and proliferation (26-28). Results 
from the present study suggest that AAVC-I appears to be 
a potential inhibitor of Nrf2, as the expression of Nrf2 in 
both total and nuclear proteins of HSC-3 cells decreased 
significantly after AAVC-I treatment. Most importantly, 
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Figure 9 Possible mechanism of AAVC-I. AAVC-I induces apoptosis in HSC-3 cells through the classical mitochondrial pathway and 
enhances cellular oxidative stress levels by inhibiting the expression of Nrf2 in the nucleus. Green arrows represent a promoting effect 
on the next stage, red arrows represent the inhibitory effect, black arrows indicate an increase in expression level. Blue arrows mark the 
composition of the apoptotic complex (this figure was drawn by Adobe Illustrator). AAVC-I, Agkistrodon acutus venom component I; ROS, 
reactive oxygen species; MMP, mitochondrial membrane potential. 
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Nrf2 expression in the nucleus was inhibited even at low 
concentrations of AAVC-I (2 μg/mL). Under physiological 
conditions, Keap1 binds to Nrf2 and localizes it in the 
cytoplasm, resulting in its ubiquitination and degradation. 
However, under oxidative stress, Nrf2 dissociates from 
Keap1 and translocates to the nucleus, where it interacts 
with the antioxidant response element (ARE), leading to 
the activation of transcription of a series of antioxidant 
response genes, thereby enhancing the cell’s antioxidant 
capacity (28). AAVC-I treatment induced excessive ROS 
generation and simultaneously reduced Nrf2 expression 
and upregulated Keap1 expression. Deng et al. recently 
reported that metformin can inhibit the Nrf2/HO-1 
signaling pathway and increase oxidative stress levels in 
cancer cells. When oxidative stress levels in cells rise, 
MDA levels typically increase, whereas those of SOD 
and GSH decrease (29). This aligns with our research 
findings, which indicate that AAVC-I elevates oxidative 
stress levels in HSC-3 cells. In an earlier study, Park 
et al. found that viper venom can elevate oxidative 
stress levels in neuroblastoma cells; however, they only 
measured two indicators of oxidative stress, ROS and 
mitochondrial membrane potential, and their evaluation of 
the corresponding molecular events was incomplete (30).  
Thus, the Keap1/Nrf2 signaling pathway is the main 
antioxidant pathway in cells, and interference with this 
pathway by AAVC-I appears promising for developing 
better therapeutics. Interestingly, this finding contrasts 
with traditional chemotherapy drugs such as cisplatin, 
which increases the expression of Nrf2 in cancer cells, 
thereby leading to drug resistance (31,32). Furthermore, 
AAVC-I treatment induced the downregulation of HO-1 
in HSC-3 cells, whereas NQO1 expression was mildly 
upregulated. It has been observed that overexpression of 
HO-1 and NQO1 is associated with drug resistance in 
cancer cells (31,32). However, overexpression of NQO1 
alone does not affect the Keap1/Nrf2 pathway (33,34).

In this study, we primarily report that AAVC-I, a mixture 
isolated from Agkistrodon acutus venom, may regulate the 
oxidative stress pathway and induce tumor cell apoptosis. 
Considering the significant side effects of existing 
chemotherapy drugs, the extraction of anti-tumor agents 
from snake venom may offer new breakthroughs in future 
cancer treatment. However, our current research is limited 
to a single cell line in vitro and the lack of in vivo evidence; 
additionally, the biological safety of AAVC-I has not been 
evaluated. These aspects need to be addressed in subsequent 
studies.

Conclusions

In summary, this study demonstrates that AAVC-I 
inhibits the proliferation and survival of OSCC (HSC-3)  
cells by inducing the endogenous apoptosis pathway. 
Unlike traditional chemotherapy drugs, AAVC-I not only 
increases oxidative stress but also inhibits the Keap1/Nrf2 
signaling pathway, potentially overcoming drug resistance 
caused by activation of this pathway. Under oxidative 
stress conditions, Nrf2 translocates to the nucleus and 
activates the transcription of a series of antioxidant genes, 
thereby mitigating the oxidative stress response. AAVC-I 
may inhibit this process by promoting ubiquitin-mediated 
degradation of Nrf2 in the cytoplasm. However, further 
studies involving animal models and the examination of 
AAVC-I’s biological safety in vivo and its host toxicity are 
required. Additionally, as only one cell line was used in this 
study, more research is necessary to support AAVC-I as a 
new therapeutic for treating oral cancer. 
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