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Advances in signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse
diagnosis. However, because of the inevitable intraclass variations of pulse patterns, the automatic classification of pulse waveforms
has remained a difficult problem. Utilizing the new elastic metric, that is, time wrap edit distance (TWED), this paper proposes
to address the problem under the support vector machines (SVM) framework by using the Gaussian TWED kernel function. The
proposed method, SVM with GTWED kernel (GTWED-SVM), is evaluated on a dataset including 2470 pulse waveforms of five
distinct patterns. The experimental results show that the proposed method achieves a lower average error rate than current pulse
waveform classification methods.

1. Introduction

Pulse diagnosis is one of the most valuable and widely
used diagnostic methods in traditional Chinese medicine
(TCM) [1]. In pulse diagnosis, physicians palpate the pulse
on the radial artery at the styloid process of the radius
with fingertips. By recognizing the pulse patterns of patients
which are related to different syndromes and diseases with
TCM, physicians can customize the scheme of treatment.
Pulse diagnosis is a convenient, noninvasive, and effective
diagnostic method. However, as the diagnosis result highly
depends on physician’s sense and experience, pulse diagnosis
is a skill that requires considerable training and practice and,
for different physicians, may produce significant variations
in diagnosis results. Over the last several decades, pulse
diagnosis has attracted an increasing amount of attention in
both clinical medicine [2–4] and biomedicine [5–7]. Many
techniques developed for measuring, processing, and ana-
lyzing the physiological signal [7–11] have been considered
in quantitative pulse diagnosis to improve the reliability and
consistency of diagnoses.

As an important step in the quantification research of
Chinese pulse diagnosis, the automatic classification of pulse

waveforms has attracted much recent attention [7, 10–13].
Pulse waveform classification aims to assign a pulse pattern to
a pulsewaveformaccording to the criteria of shape, regularity,
force, and rhythm [1]. However, because of the complicated
intraclass variations in pulse patterns and the inevitable influ-
ence of local time shifts in pulse waveforms, conventional
classification methods, such as artificial neural networks [12,
13], decision trees [14], and wavelet networks [15], usually
cannot achieve satisfactory classification accuracy. Moreover,
as most of the previous results are tested on datasets with
a small sample size, the effectiveness of these methods still
requires further verification on large scale datasets.

Previously, by using edit distance with real penalty
(ERP) [16], we proposed an elastic kernel function, Gaus-
sian ERP (GERP) kernel [17], and incorporated it with
a kernel difference-weighted 𝑘-nearest neighbor classifier
(KDF-WKNN) [18] for pulse waveform classification, and
the experimental result on a dataset with 2470 samples
has preliminarily shown its effectiveness. In this paper, we
further extend this kind of elastic kernel-based approach by
proposing a support vector machine (SVM) with a Gaus-
sian time warping edit distance (GTWED) kernel method
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Figure 1: Schematic diagram of pulse waveforms acquisition and preprocessing.

(GTWED-SVM).Thedifference betweenGTWED-SVMand
the method in [17] can be summarized as follows.

(1) The TWED distance in the proposed elastic kernel
function, the GTWED kernel, is more promising
for time series classification in comparison with
ERP distance [19] and is thus expected to be more
effective in enhancing the accuracy of pulse waveform
classification.

(2) The proposed new method for pulse waveform clas-
sification embeds the GTWED kernel in the SVM
framework, while the method in [17] incorporates
the GERP kernel into the KDF-WKNN classifier. Our
experimental results show that, for pulse waveform
classification, the GTWED-SVMmethod can achieve
an average error rate (AER) of 9.43% and is more
suitable than the KDF-WKNN with GERP kernel
(GERP-KDF) and other pulse waveform classification
methods.

The remainder of this paper is organized as follows.
Section 2 describes the proposed method, that is, GTWED-
SVM. Some basic modules for pulse waveform classification,
including pulse waveform acquisition and preprocessing, are
also introduced in this section. Section 3 provides the exper-
imental results and discussion. Finally, Section 4 concludes
this paper.

2. Method

In this section, we first briefly introduce some background
knowledge, that is, pulse waveforms acquisition and prepro-
cessing. Then, we define the GTWED kernel function and

propose a new method for pulse waveforms classification,
that is, GTWED-SVM.

2.1. Pulse Waveform Acquisition and Preprocessing. The pro-
cedure of pulse waveform acquisition and preprocessing is
summarized in Figure 1. The first step is to acquire the digital
pulse waveforms. This work is performed by our pressure
sensor-based pulse waveforms acquisition system [20], which
simulates pulse palpation by attaching pressure sensors on
the surface of the radial artery at the styloid process of
radius.Then, the pulse signals caught by the pressure sensors
are transformed to digital pulse waveforms with a sampling
frequency of 150Hz. Finally, the digital pulse waveforms are
stored into a PC through the USB interface.

Because of the inevitable powerline interference and
different types of artifacts, the acquired pulse waveforms
always suffer from the problems of noise and baseline drift as
shown in Figure 1. These problems could significantly distort
the shapes of the pulse waveforms and, finally, reduce the
classification accuracy. Thus, it is necessary to remove the
noise and the baseline drift before further analysis. In this
paper, we employ aDaubechies 4wavelet transform to remove
noise by empirically comparing the performance of several
wavelet functions and adopt wavelet-based methods [9] to
remove the baseline drift. After that, each pulse waveform
is split into several single-period segmentations according to
the onsets, and only one of them is selected for normalization.
By using the bilinear interpolation method, all the selected
segmentations are normalized to the equal length; that is,
each has 150 data points, for pulse waveform classification.
Figure 2 shows the typical normalized pulse waveforms of
five different pulse patterns, namely, moderate, slippery, taut,
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Figure 2: Typical pulse waveforms of five pulse patterns: (a) moderate, (b) slippery, (c) taut, (d) hollow, and (e) unsmooth.
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Figure 3: Pulse waveforms with similar shapes: (a) the similarity of an untypical moderate pulse waveform to (b) a slippery pulse waveform.

hollow, and unsmooth pulses, which are acquired by our pulse
waveforms acquisition system.

Pulse waveforms classification suffers from complicated
intraclass variations. For example, as shown in Figure 3, the
waveform of a moderate pulse with an unnoticeable tidal
wave is similar to that of a slippery pulse, and for taut pulses,
there are three typical shapes as shown in Figure 4.Moreover,
as a common problem in time series classification, local time
shifting also has influence on pulse waveforms classification
accuracy. Nevertheless, our previous work has preliminarily
shown the effectiveness of kernel-based methods in address-
ing the problems of pulse waveform classification [17]. In this
paper, we further extend this kind of method and propose an
elastic kernel function, GTWED, for kernel machine-based
pulse waveform classification. The details are provided in the
following sections.

2.2. Gaussian Time Warp Edit Distance Kernel Function. By
utilizing the development in time series matching, namely,
TWED [19], we propose an elastic kernel function, GTWED
kernel, for pulse waveforms classification. In the following,
we first present relatedwork in TWEDand then the proposed
GTWED kernel function.

2.2.1. Time Warp Edit Distance. Motivated by the success
of dynamic time warping (DTW) [21] in handling time
shifting problems, elastic similarity measures are widely used
in time seriesmatching. Generally speaking, elastic similarity
measures can be grouped into two categories: (1) nonmetric
such as DTW and longest common subsequence (LCSS) [22]
and (2) elastic metric, which, namely, satisfies the triangle
inequality, such as ERP [16]. TWED [19] is a newly developed
elastic metric with the following definition.
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where A𝑝
𝑖
(or B𝑞

𝑗
) is the subtime series that consists of

the 𝑖th (or 𝑗th) to the 𝑝th (𝑞th) samples of A𝑚
1

(or B𝑛
1
),

𝑑
𝐿𝑃
(⋅, ⋅) denotes the 𝐿𝑝-norms, and 𝜆, ] are two nonnegative

parameters which are used to adjust the stiffness of TWED
distance. TWED satisfies the triangle inequality and is a
metric [19].

TWEDmetric is effective in handling the problemof local
time shifting in time series classification. Moreover, it is also
appealing to use the TWED metric for time series retrieval,
because many data structures and algorithms have been
optimized for efficient indexing and retrieval in metric space
[23]. In the following, we show another potential advantage of
the TWEDmetric, that is, in the construction of elastic kernel
functions.

2.2.2. Gaussian TimeWarp Edit Distance Kernel Function. By
utilizing the TWED metric, we propose a new elastic kernel
function, the GTWED, which is defined as follows.
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Figure 4: Taut pulses with three typical pulse waveforms.

Definition 2. Let 𝑆 be a nonempty time series set, and the
dimension of each element is less than or equal to 𝑑 (𝑑 ≥ 1).
Then, the GTWED kernel on 𝑆 is defined as

𝑘gtwed (A
𝑚

1
,B𝑛
1
) = exp(−

𝑑
2

twed (A
𝑚

1
,B𝑛
1
)

2𝜎2
) , ∀A𝑚

1
,B𝑛
1
∈ 𝑆,

(2)

where 𝑚, 𝑛 are the lengths of times series A𝑚
1
and B𝑛

1
with

𝑚, 𝑛 ≤ 𝑑, 𝑑twed(⋅, ⋅) denotes the TWED metric, and 𝜎 is the
standard deviation of the Gaussian function.

GTWED is an elastic kernel function, which can be
regarded as embedding TWED metric into the Gaussian
function. Actually, motivated by the effectiveness of elastic
measures in handling the time shifting problem, it is tempting
to use elastic measures to construct elastic kernel functions
for kernel machine-based time series classification. By using
the DTW distance, the Gaussian DTW (GDTW) kernel is

first proposed and embedded into an SVM for online hand-
writing recognition with a reported performance comparable
to hidden Markov model [24]. Counterexamples, however,
have reported the SVM with GDTW kernel (GDTW-SVM)
cannot outperform either the SVM with Gaussian radial
basis function (RBF) kernel or the nearest neighbor classifier
with DTW distance [25] and is not suitable for time series
classification [26].

We argue that the poor performance of GDTW-SVM
should be attributed to the nonpositive definite symmetric
(PDS) property of GDTW kernel function [26]. For SVM,
a PDS kernel is required to satisfy Mercer’s condition [27],
which is essential to ensure the convexity of the optimization
problem [28]. Otherwise, the solution to the optimization
problem may only be local optimal and may not even
converge at all. This may explain why GDTW-SVM may
perform well for several tasks, but very poorly for most time
series classification applications [25].
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Actually, for any nonmetric similarity measure, 𝑑nom(⋅, ⋅)
(either elastic or nonelastic), the kernel function 𝑘

𝑒
(⋅, ⋅)

defined in the following form:

𝑘
𝑒
(⋅, ⋅) = exp (−𝛾𝑑2nom (⋅, ⋅)) , (3)

is definitely not a PDS kernel function [29], where 𝛾 > 0

is a user-specified parameter. That is to say, the necessary
condition for 𝑘

𝑒
(⋅, ⋅) to be a PDS kernel is that 𝑑nom(⋅, ⋅) is a

metric. This can also prove that GDTW is not PDS, because
we can easily get GDTW kernel by replacing 𝑑nom(⋅, ⋅) with
the nonmetric measure, that is, DTW distance. In contrast
to the GDTW kernel function, the proposed GTWED is
constructed by embedding TWED in a Gaussian form as
(2). Since TWED is an elastic metric [19], we suppose that
GTWEDwould be more suitable for time series classification
than GDTW.

In our previous work, we proposed another elastic kernel
function, the GERP [17], by embedding an elastic metric, that
is, ERP distance into a Gaussian function. Compared with
ERP distance, by incorporating a nonnegative parameter ]
on the time stamps, the TWED metric provides an easy way
to adjust its own elasticity, which makes it more robust to
time shifting. Also, experimental results on the UCR time
series datasets show that the classification performance of
TWED is better than that of ERP [19]. Based on this, we
supposeGTWED ismore effective in time series classification
than GERP and propose to use GTWED-SVM for pulse
waveforms classification.

2.3. Pulse Waveforms Classification by Using GTWED-SVM.
In this subsection, we first briefly present a survey on SVM.
Then, we will describe the pulse waveforms classification
method by using GTWED-SVM.

2.3.1. Support Vector Machine. As a state of the art classifier,
SVM has been widely used in many applications [30, 31]. Let
{(𝑥
𝑖
, 𝑦
𝑖
)}
𝑁

𝑖=1
be a set of𝑁 training samples, where 𝑥

𝑖
is the 𝑖th

sample in the input space x, and 𝑦
𝑖
∈ {+1, −1} is the class label

of 𝑥
𝑖
. In the nonlinear SVM, by using a nonlinear operator

Φ(⋅), the input space x is mapped into aHilbert inner product
space Η, as 𝑥

𝑖
⋅ 𝑥
𝑗
→ Φ(𝑥

𝑖
) ⋅ Φ(𝑥

𝑗
) = 𝑘(𝑥

𝑖
, 𝑥
𝑗
), where 𝑘(⋅, ⋅)

is a kernel function, and inΗ, the two classes samples can be
separated by a hyperplane:

𝑓 (x) = wΤΦ (x) + 𝑏 = 0, (4)

where w is a weight vector and 𝑏 is bias [28].
For a given training set, there may be many hyperplanes

that satisfy (4). SVM classifier finds the optimal hyperplane
that maximizes the separating margin between two classes
as shown in Figure 5. Mathematically, this hyperplane can be
obtained by solving the following optimization problem:

min 𝐽 (w, 𝜉) = 1

2
‖w‖2 + 𝐶

𝑁

∑

𝑖=1
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𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁,

(5)

Hyperplane

Margin

Figure 5: Optimal hyperplane of SVM in nonseparable case.

where 𝐶 is the regularization parameter that controls the
tradeoff between margin maximization and classification
error. {𝜉

𝑖
}
𝑁

𝑖=1
is the slack variable that is related to classification

errors [31]. By using the technique of Lagrange multipliers
[28], the optimization problem can be transformed to an
equivalent dual problem:
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(6)

where 𝛼
𝑖
is the Lagrange multiplier and 𝑘(⋅, ⋅) denotes the

kernel function which should satisfy Mercer’s condition.
In practice, this optimization problem can be numerically
solved through quadratic programming. Then, the decision
function of SVM can be represented as

𝑓 (𝑧) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
Φ

T
(x
𝑖
)Φ (𝑧) + 𝑏

=

𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑘 (x
𝑖
, 𝑧) + 𝑏,

(7)

where 𝑧 is an unclassified sample.

2.3.2. Pulse Waveforms Classification Framework. In this
paper, we propose to use GTWED-SVM for pulse wave-
forms classification. Generally, there are mainly two steps
in GTWED-SVM, including a training step, which involves
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Table 1: Pulse waveform dataset used in our experiment.

Pulse pattern Moderate Slippery Taut Hollow Unsmooth Total
Number 800 550 800 160 160 2470

training the structure of the SVM to obtain the hyperplane
and the decision function, and a testing step, which involves
using the obtained decision function to obtain the class labels
of unclassified pulse waveforms.

Let 𝑘gtwed(⋅, ⋅) denote the GTWED kernel function and
let {(x

𝑖
, 𝑦
𝑖
) | 𝑦
𝑖
∈ {1, −1}}

𝑚

𝑖=1
denote a training set of pulse

waveforms. By using (2), (6), and (7), for each element z in
the test set of pulse waveforms, we can get its class label 𝑦(z)
as

𝑦 (z) = sign (𝑓gtwed (z)) = sign(
𝑚

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑘gtwed (x𝑖, z) + 𝑏)

= sign(
𝑚

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
exp(−

𝑑
2

twed (x𝑖, z)
2𝜎2

) + 𝑏) ,

subject to 0 ≤ 𝛼
𝑖
≤ 𝐶,

𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0,

(8)

where 𝑑twed(x𝑖, z) can be calculated by using (1).

3. Experimental Results

In this section, we evaluate the effectiveness of GTWED-
SVM for pulsewaveforms classification. First, a description of
the dataset and experimental setup is provided in Section 3.1.
Then, in Section 3.2, we present the experimental results of
the proposed method.

3.1. Experimental Setup. By using the method described in
Section 2.1, we construct a dataset with 2470 pulse waveforms
of five patterns which can be classified by their shapes.
They are moderate, slippery, taut, hollow, and unsmooth
pulses. Table 1 summarizes the information of the dataset.
All subjects are patients in the hospital between 20 and 60
years old. Clinical data, for example, biomedical data and
past medical history, are also obtained for reference. For each
subject, only the pulse signal of the left hand is acquired,
and three experts are asked to determine the pulse pattern
according to their pulse signal and the clinical data. If the
diagnosis results of the experts are the same, the sample is
kept in the dataset, else it is abandoned. To the best of our
knowledge, this dataset is the largest dataset used for pulse
waveform classification. In the following, we use this dataset
to evaluate the performance of GTWED-SVM.

We adopt the 10-folder cross validation [32] to evaluate
the proposed method. This procedure is as follows.

(1) We randomly divide the pulse waveform dataset into
10 subsets.

(2) For each subset, repeat the following process: use the
subset as the testing set and the other 9 subsets as the

training set T. Each training set T is divided into two
parts T

1
and T

2
. The dataset T

1
is used for training,

andT
2
is used for tuning the parameters.That is to say,

we can use T
2
to adjust the parameters of evaluated

methods until we find the optimal parameters. Then,
we rerun the training step on the larger dataset
T by using the optimized parameters. Finally, the
classification error rate is measured on testing subset.

(3) This process runs for 10 times, and the overall error
rate is averaged across all 10 partitions.

Notice that, in GTWED-SVM, there are four parameters
(𝜆, ], 𝐶, 𝜎) to be determined in the tuning step, while 𝜆,
], and 𝜎 are used to calculate the GTWED kernel function,
and 𝐶 is the regularization parameter of SVM. The values
of 𝜆 and ] are selected from [10−5, 10−4, 10−3, 10−2, 10−1, 1]
and [0, 0.25, 0.5, 0.75, 1], respectively [19]. The values of 𝜎
and 𝐶 are selected from [10−2, 10−1, 1, 10, 102, 103, 104] and
[10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105], respectively. In this
paper, we adopt the grid search to find the values of 𝜆, ], 𝐶,
and 𝜎, because it will always find the optimal values of these
parameters. In the following, we use the above methods to
evaluate the performance of proposed method.

3.2. Performance of GTWED-SVM in Pulse Waveform Classi-
fication. In our previous work, we proposed another method
for pulse waveform classification, namely, GERP-KDF [17],
which has the best performance in current pulse waveforms
classification methods. So, in this paper, we will compare
the performance of GTWED-SVM with that of GERP-
KDF. As we have employed two distinct kernel functions
in the two methods, that is, GTWED and GERP, which are
constructed by embedding two similarity measures, TWED
and ERP, respectively, we divide the comparison into two
parts: similarity measures comparison, that is, TWED versus
ERP, and AER comparison, that is, GTWED-SVM versus
GERP-KDF.

3.2.1. Comparison of Similarity Measures. The comparison
between TWED and ERP is performed by using 10-folder
cross validation under the framework of one nearest neighbor
classifier (1NN). Figure 6 plots the error rates obtained by
using one nearest neighbor classifier with a TWED metric
(1NN-TWED) and one nearest neighbor classifier with an
ERP metric (1NN-ERP), while the results of one nearest
neighbor classifier with Euclidean distance (1NN-ED) are
also plotted for reference. In TWED, the optimal values of 𝜆
and ] are 0.01 and 0.25, respectively. Table 2 shows the average
error rates (AERs) of each method.

As we can see that both the AERs of 1NN-ERP and
1NN-TWED are much lower than that of 1NN-ED, which
indicates that, compared with the nonelastic metric, that
is, Euclidean distance, elastic metrics, that is, TWED and
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Table 2: Comparison of AERs obtained by using 1NN-ED, 1NN-
ERP, and 1NN-TWED.

Methods 1NN-ED 1NN-ERP 1NN-TWED
AER (%) 13.35 11.28 10.84

1NN-ED 1NN-ERP 1NN-TWED
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Figure 6: Error rates of 1NN-ED, 1NN-ERP, and 1NN-TWED.

ERP, are more effective in handling the problem of local
time shifting in pulse waveforms and more suitable for pulse
waveform classification. Furthermore, among the two elastic
metrics, TWED achieves an AER of 0.1084, which is slightly
lower than that of the ERP, that is, 0.1128. The comparison
results show that, in terms of AER, the TWED metric is
better than the ERP metric in the task of pulse waveforms
classification.

3.2.2. Performance Comparison of GTWED-SVM and GERP-
KDF. We run 10-folder cross validation on GTWED-SVM
and GERP-KDF, respectively, and plot the error rates of two
methods in Figure 7. For comparison, we also plot the result
of 1NN-ED, 1NN-ERP, and 1NN-TWED in Figure 7. In terms
ofAER, the kernel basedmethods, that is, GTWED-SVMand
GERP-KDF, are better than those similarity measures, that is,
1NN-ED, 1NN-ERP, and 1NN-TWED.

To give a comprehensive comparison of GTWED-SVM
and GERP-KDF, we also count the correctly classified and
misclassified samples in each class of the pulse waveforms
dataset. The results are represented in the form of confusion
matrices as shown in Tables 3 and 4.

In the two tables, each column represents the instances
in a predicted class, while each row represents the instances
in an actual class. In this way, it makes it easy to see if the
method is confusing different classes, that is, mislabeling
one as another. It is apparent that the bold data on the
diagonal of the tables are the numbers of correctly classified
samples. Table 5 shows the average error rates (AERs) of the
two methods in each pulse pattern, while the bold number
denotes the minimum AERs of each row. For all the pulse
patterns, GTWED-SVM is able to achieve error rate better
than or comparable to GERP-KDF.

1NN-ED 1NN-ERP  1NN-
TWED

GERP-
  KDF

GTWED-
    SVM

8

9

10

11

12

13

14

15

Er
ro

r r
at

e (
%

)

Figure 7: Error rates of GTWED-SVM and GERP-KDF.

Table 3: Confusion matrix of the GTWED-SVM.

Predicted class
Moderate Slippery Taut Hollow Unsmooth

Actual class
Moderate 719 63 17 1 0
Slippery 74 466 4 7 0
Taut 16 3 775 1 5
Hollow 7 12 3 136 2
Unsmooth 1 1 16 2 141

Table 4: Confusion matrix of the GERP-KDF.

Predicted class
Moderate Slippery Taut Hollow Unsmooth

Actual class
Moderate 710 69 18 3 0
Slippery 70 465 7 8 0
Taut 23 5 762 1 10
Hollow 7 10 4 136 2
Unsmooth 1 0 21 1 137

4. Conclusion

By incorporating one of the state-of-the-art time series
matching methods, that is, TWED, we propose to use the
GTWED kernel and SVM classifier for pulse waveform
classification. By using an elastic kernel function, that is,
GTWED, the proposed method is promising in addressing
intraclass variations and the problem of local time shifting
in pulse waveforms classification and thus can achieve lower
classification error rates in comparison with other meth-
ods. The experimental results on a dataset with 2470 pulse
waveforms show that the GTWED-SVM achieves an AER of
9.43%, which is lower than that of other state-of-the-art pulse
waveform classification methods.

The GTWED kernel in the proposed method can be
regarded as the distance substituting kernels by embedding
TWED elastic distance into the Gaussian. Commonly, the
positive definite symmetric property of this kind of kernel
could not be always guaranteed. However, this problem
could be solved by using the recursive time warp kernel
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Table 5: AERs (%) of different methods.

Pulse patterns

AERs (%)
GTWED-SVM
[𝜆, ], 𝜎, 𝐶] =

[10
−2

, 0.25, 10
2

, 10
2

]

GERP-KDF [17]
[𝑘, 𝜂, 𝜎] =

[30, 10
−2

, 10]

Moderate 10.12 11.25
Slippery 15.27 15.45
Taut 3.12 4.75
Hollow 15 15
Unsmooth 11.88 14.38
Total AERs 9.43 10.53

constructionmethod [33]. In the future, we will further study
the effectiveness of elastic kernel function in pulse waveform
and other time series classification.

Acronyms

TWED: Time wrap edit distance
ERP: Edit distance with real penalty
DTW: Dynamic time warping
LCSS: Longest common

subsequence
SVM: Support vector machine
GTWED: Gaussian time wrap edit

distance kernel
GTWED-SVM: Support vector machine with

GTWED
GERP: Gaussian edit distance with

real penalty kernel
GERP-SVM: Support vector machine with

GERP
GDTW: Gaussian dynamic time

warping kernel
GDTW-SVM: Support vector machine with

GDTW
KDF-WKNN: Kernel difference-weighted

𝑘-nearest neighbor classifier
GERP-KDF: KDF-WKNN with Gaussian

edit distance with real penalty
kernel

1NN-ED: One nearest neighbor
classifier with Euclidean
distance

1NN-ERP: One nearest neighbor
classifier with ERP

1NN-TWED: One nearest neighbor
classifier with TWED.
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