
Alzheimer's disease (AD) is a disorder of two
pathologies—plaques and tangles. The former have
as a key constituent amyloid protein and the latter
the microtubule-associated protein tau. Genetics
has demonstrated that changes in either protein
are sufficient to cause dementia. The amyloid cas-
cade hypothesis proposes that plaque-related
changes precede tangle-related changes and posi-
tions amyloid as central to the degeneration of AD.
All the evidence suggests this is correct, including
evidence that presenilins alter the processing of the
amyloid precursor protein and evidence that dis-
rupting the normal properties of tau underlies the
related frontotemporal dementias. The amyloid cas-
cade hypothesis has provided the basis for nearly a
decade of intensive basic science—the skeleton of
that hypothesis can now be fleshed out, and confi-
dence is growing that this will result in useful dis-
ease-modifying therapies in the future.

asic research into Alzheimer’s disease (AD)
more than two decades ago demonstrated early and
profound loss of cholinergic neurons, a finding that
led to the first therapeutic advance with the develop-
ment and licensing of the first specific treatments: the
acetylcholinesterase inhibitors. Whatever the thera-
peutic efficiency of these compounds, their impact in
the field of dementia care cannot be overestimated.
However, today’s basic research has the power to go
beyond the cholinergic hypothesis, and there is every
hope that the current process of fleshing out the
bones of the amyloid cascade hypothesis will yield
effective disease-modifying treatments.

The amyloid 
cascade hypothesis

In 1992, soon after the discovery of mutations in the
amyloid precursor protein gene, John Hardy proposed
the amyloid cascade hypothesis, which in its most
basic form states that amyloid is at the center of the
pathophysiology, that amyloid deposits in AD result
from a multitude of genetic or environmental insults
and are at the origin of the neurodegeneration that
leads to dementia.1 Although many new questions
have arisen—for instance, is the pathogenic amyloid
intracellular and soluble or extracellular and fibril-
lar?—the hypothesis not only stands, but has been
confirmed with each new advance of recent years.
Furthermore, important aspects of basic research are
omitted from the cascade, or at least cannot at present
be easily fitted into the cascade, including the role of
inflammation and the putative pathogenic events
resulting from risk factors such as prior affective dis-
order or hypertension. Nevertheless, most of the mol-
ecular and cellular biology of AD can be discussed in
the context of this important framework.
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APP and the formation of plaques

The core component of plaques is a 4-kd peptide known
as Aβ.2,3 In plaques, the peptide forms fibrils in a beta-
pleated sheet configuration, thus assuming the proper-
ties of amyloid characterized by its unique birefringence
with Congo red staining.Aβ is derived from amyloid pre-
cursor protein (APP), the gene for which is on chromo-
some 21. The discovery that mutations in the APP gene
cause a rare form of autosomal dominant AD confirmed
the process of Aβ formation from APP as central to the
etiopathogenesis of AD.4-8 APP is a ubiquitous and large
single-pass membrane-spanning protein, the function of
which is not clear, although there are suggestions that it
may have a role in cell-to-cell contact signaling or neu-
rite outgrowth.9,10 When derived from APP, Aβ is a pep-
tide of between 40 and 43 amino acids that has a ten-
dency to aggregate in vitro.This tendency is enhanced in
the longer forms of the peptide, suggesting that these
slightly larger peptides are more pathogenic (and that
inhibiting fibril formation may therefore be therapeu-
tic).11-13 Although the process in vivo is not understood, it
is assumed that Aβ peptide is formed intracellularly and
then aggregates either within the cell or after release
into the extracellular space. However, some early work
did find intracellular fibrils in cells expressing the c-ter-
minal fragment of APP, and increasing attention is being
paid to the possibility of intracellular Aβ toxicity.14-16

These deposits of Aβ form diffuse plaques visible on
immunohistochemistry in affected regions of the brain.
Technically, as these diffuse plaques consist only of fib-
rillized extracellular peptide that is not in a beta-pleated
sheet configuration and hence not birefringent, they can-
not properly be said to be amyloid. Careful studies of
Down’s syndrome brains suggest a sequential series of
steps whereby diffuse plaques form the neuritic or clas-
sic plaque containing true amyloid, which in time
evolves to form the burnt-out plaque where only the
amyloid deposit remains.17

Understanding the process whereby Aβ is generated
from APP is of the utmost importance and is the most
obvious target for therapy. APP is metabolized through
two opposing pathways involving three proteases.18 The
first, often called the nonamyloidogenic pathway,
results in cleavage of APP within the Aβ sequence 
moiety by the putative α-secretase. It is thought that 
α-secretase cleavage occurs at the extracellular mem-
brane, but it is clear that it results in the secretion of
the large extracellular portion of APP known as
sAPPα . The function of this secreted peptide is not
fully understood, but α-secretase cleavage certainly
prevents the formation of Aβ as the cleavage site is
within this part of the protein. Although the enzyme
itself has not yet been identified, the regulation of the
activity of α-secretase has been extensively examined.
Phorbol ester activation of protein kinase C (PKC)
increases sAPPα secretion into the medium of trans-
fected cells, and in neurons very considerably so.19-23

Interestingly, the same observation was made when
acetylcholine receptors linked through second mes-
sengers to PKC were stimulated. Stimulation of other
PKC-linked receptors also stimulates sAPPα release,
whereas stimulation of muscarinic receptors linked to
cyclic adenosine monophosphate does not.24 These find-
ings are intriguing and may have therapeutic signifi-
cance, especially as a similarly beneficial effect of mus-
carinic stimulation is seen in a process thought to
underlie the formation of tangles.
In contrast to nonamyloidogenic processing of APP, the
production of Aβ necessitates two protease activities.
The previously named enzyme β-secretase was recently
identified and renamed BACE (for beta-site APP-cleav-
ing enzyme).25 Interestingly, a very similar protease was
found near the region on chromosome 21 critical for
Down’s syndrome (Down’s region aspartic protease
[DRAP], or BACE2). These proteases cleave APP
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within the extracellular domain, probably in the endo-
somal-lysosomal pathway following reinternalization of
extracellular membrane–bound APP that escapes α-sec-
retase cleavage.26 Action of the putative protease γ-sec-
retase at a second site releases free Aβ of between 40
and 42 amino acids, depending on the exact site of cleav-
age. The γ-secretase site is unusual in that it is buried
within the lipid bilayer.

Mutations in APP and the formation of Aβ

Activity of all three secretases can be found in normal
brain. Aβ and APPs can be detected from normal cells,
and, in humans, Aβ is detectable by enzyme-linked
immunosorbent assay (ELISA) in cerebrospinal fluid
(CSF) as well as in serum. These, then, are not patho-
logical processes per se, but rather they suggest that dis-
ease results from a tendency towards the amyloidogenic
combination of secretases resulting, over a lifetime, in
increased Aβ formation and increased plaque forma-
tion. What then are the known influences on these,
essentially normal, processes? The first influence on
APP metabolism to be discovered was the mutations in
APP. Autosomal dominant AD in a few rare families
results from mutations that cluster adjacent to the
regions of α-, β-, or γ-secretase cleavage. The first set of
mutations to be discovered were those clustering at, or
adjacent to, the γ-secretase cleavage site (APP717).
Expression of these mutated APP cDNAs in cells con-
firmed that the mutation does indeed alter APP metab-
olism, as relatively more of the longer forms of Aβ were
generated in mutation-carrying cells.27,28 Mutations at the
c-terminal end of the Aβ sequence within APP also alter
APP metabolism, presumably by interfering with
BACE. These mutations, the double Swedish mutation
(APP670/671), also alter APP metabolism in cultured
cells, and the amount of Aβ in serum or CSF of patients
carrying either the mutations near the γ- or the β-secre-
tase site is increased.29,30 Two very interesting mutations
occur within the Aβ region close to the α-secretase site.
One, at APP693, is associated with a rare disorder,
hereditary cerebral hemorrhage with amyloidosis, Dutch
type, and the other, at APP692, with presenile dementia
and cerebral hemorrhage due to cerebral amyloid
angiopathy—a clearly related, but not identical, disorder.
In the APP692 disorder, but not in APP693 disease,
there was not only angiopathy but large plaques and
neurofibrillary tangles.31 In cells, the effect of the APP692

mutation is to increase both Aβ40 and Aβ42 secretion,
whereas APP693 does not. Thus there is, in the APP
mutations, convincing evidence in favor of the amyloid
cascade hypothesis—mutations associated with AD
increase either all Aβ or the longer and more fibrillo-
genic forms of Aβ, whereas mutations associated with
other disease do not.

Presenilins and APP metabolism

Mutations in two very closely homologous genes—pre-
senilin-1 and -2 (PS-1 and -2)—also cause early-onset
autosomal dominant AD.32,33 The proteins encoded by
these genes are multipass membrane–associated pro-
teins that are certainly present in endoplasmic reticu-
lum and possibly in nuclear envelope and plasma mem-
brane as well.34-37 The normal biology of the presenilins is
under extensive examination, and transgenic animals
have already provided some insight into this. Overex-
pression of APP with the disease causing mutations
results in plaque-like deposits of amyloid in mice, and
this process is accelerated in mice overexpressing
mutated PS-1.38,39 Knockouts of PS-1, however, are
embryonically lethal. Studies from neurons from these
animals, among other data, strongly suggest that the pre-
senilins function as γ-secretase or as regulators of γ-sec-
retase, as these neurons produce low levels of Aβ, result-
ing from low levels of γ-secretase activity.40,41 Whether
the Alzheimer-related mutations increase γ-secretase
activity or have some other gain-of-function activity is
not entirely clear, but from the transgenic animals, stud-
ies in transfected cells, and studies in fibroblasts from
families carrying these mutations, it is clear that the PS-
1 mutations somehow increase the production, espe-
cially of the longer forms of the amyloid peptides, offer-
ing more evidence that the amyloid cascade hypothesis
is correct to position APP processing as a central event
in pathogenesis.42

Neurofibrillary tangles and 
the tau question

If there has been any real controversy associated with
the amyloid cascade hypothesis, this has been with the
question of tau and neurofibrillary tangles (NFTs).
These neuronal inclusion bodies are a defining feature of
AD and are also found in other degenerative disorders
such as dementia pugilistica and certain frontotemporal
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dementias. The number of NFTs correlates extremely
well with dementia severity, in contrast to plaques where
some analyses of total amyloid load correlate with
dementia, but other neuropathological studies show no
such correlation.43-45 Furthermore, NFTs show an
anatomical localization in those regions where function
is lost, occurring first in the transentorhinal region and
spreading to hippocampal regions and then to cortex,
but never occurring in cerebellum.46,47 Plaques, on the
other hand, show no such consistent progression, and
while they do occur in some quantity in the hippocam-
pus where function is lost, they also occur in cerebel-
lum, where no such loss is noted in dementia.48 Finally,
NFTs are intraneuronal lesions, the neurons containing
NFTs show loss of vital intracellular organization with
the loss of normal neuronal cytoskeleton, and there is
convincing neuropathological evidence that the pres-
ence of NFTs heralds the death of that neuron. All this
circumstantial evidence points very firmly in the direc-
tion of NFTs being essential pathological components of
the cascade resulting in dementia. Nonetheless, there
was some dissension from this view—perhaps NFTs
were a nonessential by-product of neurodegeneration,
an epiphenomenon.
Under the electron microscope, NFTs can be seen to
consist principally of paired helical filaments together
with a smaller proportion of straight filaments.These fil-
aments are composed of the microtubule-associated pro-
tein tau, present in a highly phosphorylated state, and
are abnormal, being found only in dementia. In the nor-
mal state, tau is expressed to a significant extent only in
neurons where it is present in axons. Here it acts to sta-
bilize microtubules, which are an essential component of
the cellular cytoskeleton and in neurons assume a
straight track parallel to axons. Microtubules are essential
for fast axonal transport, the process whereby vesicles
and other organelles such as mitochondria are trans-
ported from the cell body to distal parts of the neuron
including synapses. The consequences of loss of fast
axonal transport from the neuron or destruction of
microtubules are not fully understood, but would be
expected to result in loss of function of the neuron if not
loss of viability. Tau, therefore, has an important role in
regulating the stability and function of neurons. In vitro,
tau binds to tubulin (the building block of the micro-
tubule itself) and promotes the formation of tubulin
polymers and the extension of these polymers into micro-
tubules. Six different isoforms of tau are generated from

a single gene in the central nervous system, and there is
some evidence that these isoforms have different abilities
to promote microtubule assembly in vitro.There is devel-
opmental regulation of the expression of these isoforms,
as in the fetal forms, which bind microtubules that are in
excess relatively weakly, with a change to stronger bind-
ing isoforms on maturation. However, such regulation is
a relatively slow process and real-time regulation of the
properties of tau is almost certainly altered by the phos-
phorylation state of tau.

Tau phosphorylation—regulation of microtubule stabil-
ity and role in Alzheimer’s disease

Tau is a highly phosphorylated protein, and its ability to
bind microtubules is regulated by this phosphorylation—
the more phosphates, the less tau promotes microtubule
assembly.49 There is some controversy as to whether it is
the amount of phosphorylation that is important or
whether there are specific sites in tau that are critical in
tau-tubulin interactions.50 In the fetus, tau is very highly
phosphorylated, and even in normal adult human brain
examined in biopsy samples the amount of phosphory-
lation is relatively high.51,52 It is likely that acute regulation
by a combination of kinases and phosphatases of tau
phosphorylation controls the properties of neurons,
which in turn alters the rate of transport within the neu-
ron and, perhaps, other, structural, properties of tau. Even
though tau is phosphorylated in normal adult neurons,
and more so in normal fetal neurons, in the PHF-tau
aggregates of AD, tau is even more phosphorylated.The
amount of phosphorylation is higher in total terms, and
there may be specific sites of tau that are phosphory-
lated only in AD. Functional studies of tau from human
brain reflect this phosphorylation, with tau from fetal
brain being less able to promote microtubule association
in vitro than normal brain, and tau from AD brain being
even less able to stabilize microtubule formation than
fetal tau.49 It is not yet clear whether tau phosphorylation
and the functional deficiencies seen in tau from AD brain
precedes or follows aggregation. However, careful patho-
logical studies suggest that phosphorylated epitopes of
tau appear in neurons together with the appearance of
tau in the cell bodies of affected neurons (tau normally
being seen only in axons) before the presence of aggre-
gates of tau in NFTs.46,53 It is at least a viable hypothesis
that an alteration in the phosphorylation state of tau
results in a failure to bind microtubules, a consequent
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accumulation in cell bodies, and eventual loss of micro-
tubules and aggregation of tau into NFTs.
This hypothesis led to an intensive search for the kinases
and phosphatases that might regulate tau. Of the phos-
phatases, type 2A protein phosphatase (PP2A) would
appear to be the most viable candidate. In vitro, PP2A
readily phosphorylates tau, it is found associated with
microtubules, and, in cells, inhibition of PP2A results in
an increase in the phosphorylation state of tau.54-56 A
parallel investigation of the kinases responsible for tau
phosphorylation has proved more controversial. Many
kinases act on the common serine and threonine sites
phosphorylated in paired helical filaments (PHF)–tau.
However, in cells, we demonstrated that it is only glyco-
gen synthase kinase–3 (GSK-3) that is able to phospho-
rylate tau readily at epitopes also phosphorylated in
AD.57,58 Simultaneously, Ishiguro and colleagues purified
a kinase from brain that readily phosphorylated tau,
which they named tau protein kinase 1 (TPK1).59 On
purification,TPK1 was found to be GSK-3, and, although
other kinases certainly do phosphorylate tau and may
even be necessary to prime tau for subsequent phos-
phorylation, it does appear now that GSK-3 is the pre-
dominant kinase at these sites in brain.60 Functional stud-
ies have added weight to the growing evidence for a role
of GSK-3 in the phosphorylation of tau in vivo as GSK-3
activity alters the properties of tau, reducing its ability to
bind and promote microtubule assembly in vitro and,
in cells, reduces the ability of tau to alter the morphology
and stability of microtubules.61

Regulation of the phosphorylation of tau

Interesting findings have emerged from studies of GSK-3
regulation, which might begin to tie together the two
strands of AD basic science—the amyloid strand and
the tau strand. Most enticingly, Aβ is neurotoxic to neu-
rons in culture and matured and fibrillized Aβ peptides
increase tau phosphorylation.62,63 Inhibiting GSK-3 activ-
ity protects neurons, suggesting that GSK-3 might be an
intermediary step between amyloid and tau phospho-
rylation.64,65 One approach to inhibition of GSK-3 that
has been used in these studies is lithium. Lithium results
in developmental abnormalities in experimental mod-
els that mimic a signal transduction cascade known as
Wingless (wnt in mammals). Wingless or wnt signaling
results in GSK-3 inhibition, and this led Klein and
Melton to hypothesize and then demonstrate that

lithium mimics Wingless signal by inhibiting GSK-3.66 In
nonneuronal cells, in neurons, and in animals, lithium
has now been shown to reduce tau phosphorylation as
would be expected if GSK-3 is a predominant tau-
kinase.67-72 This inhibition of GSK-3 alters the properties
of tau in neurons and in living nonneuronal cells, and
does so within the therapeutic range of lithium. This
body of work does raise the interesting question as to
whether GSK-3 is the target of lithium in the therapy of
affective disorders, especially as another agent used in
bipolar disorder, sodium valproate, also inhibits GSK-3.73

Attention has recently turned to a pathway that interacts
with Wingless signaling—the Notch pathway. Notch is a
transmembrane protein essential for neurogenesis, but
also present, and presumably therefore active, in adult
brain.74-76 Activation of Notch involves cleavage within
the membrane domain, very reminiscent of the γ-secre-
tase cleavage of APP.77 A role for presenilins in Notch
activity was first suggested by homology as the equiva-
lent of presenilins in Caenorhabditis elegans, SEL12, is
associated with LIN12, the C elegans equivalent of
Notch. Human presenilins are able to compensate for
loss of SEL12, but mutated human presenilins lose this
ability.78,79 In a number of different mammalian model
experiments, the presenilin protein has now been shown
to activate Notch.79-84 The evidence that presenilins are
involved in Notch signaling is now compelling, and this is
intriguing, as Notch signaling and Wingless signaling
interact.85-87 In the Wingless signal cascade, inhibition 
of GSK-3 results in accumulation of a protein called 
β-catenin, and, to add to the complexity of this area, pre-
senilins bind to catenins and affect β-catenin signaling.88-92

Much needs to be done to untangle this complicated set
of observations, not all of which are consistent. How-
ever, it does appear to be the case that Wingless and
Notch signaling interact, and that, in doing so, GSK-3
activity is regulated, and that the presenilins are
involved—certainly with Notch signaling, and possibly
with Wingless signaling.
In addition to Wingless/wnt signaling, GSK-3 is inhibited
by insulin signaling through protein kinase B (PKB) and
PI3-kinase. As predicted, insulin not only reduces tau
phosphorylation in neurons, but also increases tau-
microtubule interactions.93 Just as GSK-3 might be the
missing link between amyloid and tau, so too might
GSK-3 be the missing link between an important finding
from epidemiology and etiopathogenesis. Diabetes has
now been shown to be a significant risk factor for AD.94
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This finding is not explained simply by the confound-
ing factor of increasing vascular risk in people with dia-
betes, and the finding that insulin resistance also
increases risk of AD suggests that the pathogenic factor
might be a failing of insulin signaling.95,96 If insulin sig-
naling is deficient in some way, then might GSK-3
escape normal regulation? If this were so, then the pre-
dicted result would be increased tau phosphorylation
and increased neuronal vulnerability.

Tau and the tauopathies

All doubt about the role of tau in dementia was finally
laid to rest, however, when mutations in tau were shown
to be the cause of some familial dementias.97-99 Muta-
tions in tau, both missense coding mutations and
intronic, were found in some families with frontotem-
poral dementia and parkinsonism linked to chromosome
17 (FTDP-17).These families have a clinical appearance
of a frontal lobe dementia, very similar in presentation
to Pick’s disease, but with some parkinsonism. On neu-
ropathology, many have tau inclusion bodies in either
glia or neurons or both.100 A new classification of cer-
tain dementia disorders has now arisen, including Pick’s
disorder, progressive supranuclear palsy (PSP), and 
the frontotemporal dementias, which have variable
amounts of tau pathology, in some cases caused by tau
mutations—these disorders being now known as the
tauopathies.101,102 Ironically, it took the tauopathies to
confirm the amyloid cascade hypothesis—mutations in
APP give rise to both plaques and tangles, while muta-
tions in tau give rise to tangles only. This is exactly the
design of a genetic experiment to investigate sequential
biochemical steps in a model organism. It follows, with-
out any doubt at all, that the direction of effect is from
amyloid through tau to dementia, and that tau is an
essential part of the cascade. It does not follow that there
are not other mechanisms whereby dementia can occur,
and it might be that in some instances a remote event
might give rise independently to both plaque and tangle
pathology, although Occam’s razor argues against this.
The effect of the intronic tau mutations appears to be to
alter the proportion of isoforms with 3- and 4- micro-
tubule binding domains expressed in brain. The muta-
tions cluster at the splice site for these alternative iso-
forms and disrupt splicing.103-105 This is very much in line
with the biochemistry from pathological samples in
these cases, which suggests that in frontotemporal

dementia there is a disruption in the normal equal
expression of 3- and 4- repeat isoforms. Both in vitro
and in vivo studies of the exonic missense mutations
suggest that these disrupt microtubule binding.106-108 In
our own studies, we showed that the mutations reduce
the ability of tau to promote microtubule extension in
cells in exactly the same manner as phosphorylation.109

Other in vitro studies have suggested that the mutations
in tau increase its propensity to self-aggregation.110

A molecular model of Alzheimer’s disease

The amyloid cascade hypothesis can now be elaborated in
some detail. Normally, APP is processed via both amy-
loidogenic and nonamyloidogenic routes. A number of
events perturb the balance to a greater or lesser extent.
Mutations in APP profoundly bias metabolism toward
the amyloidogenic route, and head injury increases 
amyloidogenesis perhaps by simply increasing the total
levels of APP expression. Somehow, amyloid production
increases tau phosphorylation. Perhaps the most likely
hypothesis at the present time is that amyloid peptide
increases GSK-3 activity, although whether this is through
intra- or extracellular amyloid is uncertain. GSK-3 activ-
ity increases tau phosphorylation, which then fails to bind
microtubules, resulting in loss of microtubule stability and
accumulation of tau in the cell body, which predisposes to
tau aggregation. Mutations in tau also cause increased
aggregation and reduced binding to microtubules in a
manner analogous to phosphorylation. Mutations in pre-
senilins certainly cause increased amyloid production
from APP and might also have other effects including
through Notch and/or Wingless signaling that might
impact upon tau phosphorylation.
What else is known about AD that impacts upon the cas-
cade? Most obviously omitted from this scheme is
apolipoprotein E (apo E), the only confirmed genetic
association with late-onset AD.111,112 Studies of the biol-
ogy of apo E have proved very difficult to conduct, with
disparate results partly accounted for by technical differ-
ences in the preparation of apo E protein. Apo E has
been shown to interact with amyloid peptide, but some
studies show greater interaction with apo E2 and others
with apo E4.113-115 Depending upon the true result in vivo,
apo E binding might enhance amyloid fibrillization and
hence plaque formation, or enhance amyloid clearance
and hence plaque destruction.Alternatively, apo E might
affect tau phosphorylation. Tau binds apo E in an iso-
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form-dependent manner, and it was hypothesized that
such binding would alter the phosphorylation state of
tau.116-118 We have confirmed this is in fact the case (unpub-
lished observations), although whether this occurs in vivo
is uncertain. Indeed it is not even known if tau and apo E
would meet in vivo. Some studies suggest extracellular
apo E is internalized into the cytoplasm compartment.119,120

At least one study suggests it is not.121 In neurons, apo E
appears to be in the cytoplasm, but this might result from
expression of apo E in a form that is not immediately
secreted.122-124 Other cellular approaches do suggest tau
alters microtubules and affects neuronal growth, both
compatible with, but not proving, an effect of apo E on
tau.120,125-127 It might be that apo E has no effect on either
tau or amyloid, affecting instead local cholesterol trans-
port, neuronal viability, and resilience to damage.At pre-
sent, apo E can be slotted into the cascade in too many
places to be sure which is the most likely.

Epidemiology has identified a few nonaging, nongenetic
factors that do fit in with the hypothesis. Head injury, for
example, might influence AD by increasing amyloid pro-
duction. Diabetes or insulin-resistance syndrome might
affect AD by reducing inhibition of GSK-3 and increas-
ing tau pathology. It will be interesting over the forth-
coming years to see how other factors, and the genetic
factors in particular, which will be identified following
the systematic genome scans, enhance our understanding
of the cascade. For now, however, it is clear that sub-
stantial parts of the cascade of events leading to neu-
ronal death and dementia are understood, and, most
importantly, the race is now on to convert these targets
for therapies into compounds that might delay, prevent,
or possibly even reverse this devastating disease. ❑
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Reforzando la hipótesis de la cascada
del amiloide: la biología molecular de
la Enfermedad de Alzheimer

La Enfermedad de Alzheimer (EA) es un trastorno de dos
patologías: placas y ovillos. Las primeras están constituidas
por proteínas de amiloide y los segundos por microtúbulos
asociados a la proteína tau. La genética ha demostrado que
los cambios en cualquiera de las proteínas son suficientes
para causar demencia. La hipótesis de la cascada de amiloi-
de propone que los cambios relacionados con las placas pre-
ceden a los cambios asociados con los ovillos y las posicio-
nes del amiliode como elementos centrales en la degenera-
ción de la EA.Todas las evidencias actuales sugieren que esta
hipótesis es correcta; hay evidencias que señalan que las pre-
senilinas alteran el procesamiento de la proteína precursora
de amiloide y otras que demuestran que los trastornos en las
propiedades normales de la proteína tau subyacen a las
demencias frontotemporales. La hipótesis de la cascada de
amiloide ha proporcionado las bases, por casi una década,
de numerosos trabajos en ciencias básicas (el esqueleto de
esta hipótesis ahora puede ser reforzado y existe gran con-
fianza en que esto se traducirá en terapias útiles que modifi-
carán la enfermedad en el futuro).

Développement de l’hypothèse de la 
cascade amyloïde : biologie 
moléculaire de la maladie d’Alzheimer

La maladie d’Alzheimer (MA) est un trouble résultant de
deux pathologies : les plaques séniles et la dégénérescence
neurofibrillaire. La première a comme constituant clé la
protéine amyloïde et la seconde la protéine tau liée aux
microtubules. La recherche en génétique a démontré que
des modifications d’une des deux protéines sont suffisantes
pour provoquer une démence. Selon l’hypothèse de la cas-
cade amyloïde, les modifications liées à la plaque précède-
raient celles liées à la dégénérescence neurofibrillaire,
conférant ainsi au peptide amyloïde une place centrale
dans le processus dégénératif de la MA. Cette hypothèse
semble actuellement étayée par l’ensemble des études, tant
celles montrant que les présénilines altèrent le processus du
peptide précurseur de l’amyloïde que celles indiquant que
l’altération des propriétés normales de la protéine tau est à
l’origine du développement des démences frontotempo-
rales. L’hypothèse de la cascade amyloïde a servi de
moteur à presque une décennie de recherche intensive dans
le domaine des sciences fondamentales. Il reste désormais
à concrétiser cette hypothèse avec l’espoir grandissant de
voir se développer dans l’avenir des traitements de fond
pour cette maladie.
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