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Abstract

Accurate and comprehensive identification of surface-exposed proteins (SEPs) in parasites is a key 

step in developing novel subunit vaccines. However, the reliability of MS-based high-throughput 

methods for proteome-wide mapping of SEPs continues to be limited due to high rates of false 

positives (i.e., proteins mistakenly identified as surface exposed) as well as false negatives (i.e., 

SEPs not detected due to low expression or other technical limitations). We propose a framework 

called PlasmoSEP for the reliable identification of SEPs using a novel semisupervised learning 

algorithm that combines SEPs identified by high-throughput experiments and expert annotation of 

high-throughput data to augment labeled data for training a predictive model. Our experiments 

using high-throughput data from the Plasmodium falciparum surface-exposed proteome provide 

several novel high-confidence predictions of SEPs in P. falciparum and also confirm expert 

annotations for several others. Furthermore, PlasmoSEP predicts that 25 of 37 experimentally 

identified SEPs in Plasmodium yoelii salivary gland sporozoites are likely to be SEPs. Finally, 

PlasmoSEP predicts several novel SEPs in P. yoelii and Plasmodium vivax malaria parasites that 

can be validated for further vaccine studies. Our computational framework can be easily adapted to 

improve the interpretation of data from high-throughput studies.
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1 Introduction

Malaria remains one of the largest global health burdens today, with an estimated 438 000 

deaths and 214 million new infectious occurring annually [1]. This disease is caused by a 

eukaryotic parasite of the genus Plasmodium that is transmitted by infected Anopheles 
mosquitoes. Five Plasmodium species infect humans, including P. falciparum and P. vivax, 

which together cause nearly all of the mortalities and morbidities. In addition, there are 

several Plasmodium species that infect small animals, and thus serve as excellent models of 

infection (e.g. P. yoelii and P. berghei in mice, P. cynomolgi in nonhuman primates). These 

parasites (except P. vivax, which cannot be continuously passaged in the laboratory) have 

been used to identify weaknesses in the parasite that can be exploited for chemotherapies 

and vaccine candidates.

Significance of the study

Profiling the surface exposed proteome of the malaria parasite is of major importance for 

understanding host-parasite interactions and for identifying novel subunit vaccine 

candidates. MS-based proteomic techniques have increasingly become the state-of-the-art 

experimental approach for mapping surface exposed proteins (SEPs) in many target 

pathogens. However, more efforts are needed to improve the reliability of the 

interpretation of the results of such experiments. We propose a novel computational 

approach to effectively postprocess MS results and filter out false positive as well as 

false-negative results. Specifically, we integrate imperfect results of MS experiments for 

mapping SEPs in P. falciparum, expert annotation of these data, and semi-supervised 

machine learning approaches to develop prediction models that could be used to: (i) 

validate the output of MS experiments; (ii) predict novel SEPs that have been missed by 

the MS experiments; (iii) predict novel SEPs in different species of Plasmodium (e.g., P. 
yoelii and P. vivax). This study, which, to the best of our knowledge, is the first study of 

its kind, opens up opportunities for developing community resources that integrate and 

improve the reliability of SEPs identified by high-throughput MS-based proteomic 

experiments.

Current efforts to reduce and eliminate parasite transmission have relied upon controlling the 

mosquito vector, supplying insecticide-treated bednets, and administering antimalarial drugs 

that kill the blood stage of the parasite. In contrast to these efforts, the development of an 

effective vaccine against P. falciparum and P. vivax has encountered several barriers, and to 

date no licensed vaccine candidate has reached the levels of protection thought to be 

required to make a substantial impact upon parasite transmission (reviewed in [2]). The most 

advanced vaccine candidate (called RTS, S) provides limited, short lived protection in Phase 

III clinical trials in Africa, but has served as an important first milestone [3]. The RTS, S 

vaccine consists of a single surface protein (circumsporozoite protein, CSP) that is present 

on the sporozoite form of the parasite, which is transmitted from mosquitoes to humans. As 

CSP is known to have considerable variation in field isolates (ibid), parasites are likely to 

evade antibody-based immune responses by simply changing the composition of this 

protein. Ongoing efforts now aim to improve upon RTS, S by adding additional antigens to 

create bivalent or multivalent vaccine candidates, and by using alternate delivery approaches 
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(e.g. viral vectors) [4]. However, the experimental validation of surface-exposed proteins 

(SEPs) that will be accessible to antibodies has been limited in scope, and thus the list of 

vetted antigens available for multivalent vaccines has remained short.

Our previous work has provided an initial, and then more recently a comprehensive, list of 

proteins on the surface of the transmitted sporozoite form of the parasite, which are 

accessible to antibody-based immune responses [5, 6]. Taken together, these catalogues of 

SEPs provide a much needed, experimentally validated list to draw upon to design next 

generation, multivalent malaria vaccines. These studies have focused primarily upon P. 
falciparum, which can be grown in the laboratory and is thus amenable to these studies.

In the absence of data describing the SEPs in other human-infectious malaria parasites, it 

would be advantageous to draw upon our current knowledge of the surface proteome of 

sporozoites to accurately predict which proteins may be targetable. The supervised machine 

learning approach [7] is an efficient and cost-effective approach to extract hidden patterns 

from data (e.g., P. falciparum SEPs) and train predictive models that could be applied to 

predict novel SEPs in other human-infectious malaria parasites. However, the reliability of 

the predictions depends mainly on the quality of the training data. Taking into account the 

technical limitations of MS techniques [8, 9], our identified P. falciparum SEPs are expected 

to have a significant number of false positives (labeled cytosolic proteins from dying cells) 

as well as false negatives (due to limits of detection and sample scarcity), making the 

applicability of supervised machine learning algorithms to learn from such data a practical 

challenge. To address this challenge, we propose a novel framework for developing reliable 

predictive models from noisy high-throughput P. falciparum surface exposed proteomic data. 

Our approach integrates expert annotation of high-throughput data and semisupervised 

machine learning algorithms [10] to develop reliable predictive models for predicting SEPs 

in Plasmodium. Our results using simulated datasets acknowledge the viability of semi-

supervised learning (SSL) to develop classifiers from small-size labeled data by exploiting 

available unlabeled data. Moreover, we demonstrate improvements in performance of SSL 

by leveraging noisy expert-annotated data. Finally, we have extended our approach to predict 

SEPs in human-infectious P. vivax, which cannot be continuously cultured in the laboratory. 

Taken together, here we provide the scientific community with predicted and experimentally 

validated SEPs for different Plasmodium species, along with an algorithm to help guide 

experimental validations of these proteins’ potential as malaria subunit vaccine candidates.

2 Materials and methods

2.1 Surface-exposed proteomics

The surface exposed proteome of P. yoelii sporozoites was determined as previously 

described with few modifications [5,6]. The detailed procedure is reported in Supporting 

Information Materials and Methods.

2.2 SSL

SSL [10, 11] is a class of supervised learning (SL) that makes use of available (often large 

amounts of) unlabeled data to train a model using a small set of costly labeled data. Many 
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machine-learning researchers reported considerable improvements in classifier performance 

when unlabeled data is used in conjunction with small-size training data as opposed to 

building the model using only available labeled training data. In Supporting Information 

Materials and Methods, we summarize the self-training algorithm [10], a commonly used 

semisupervised algorithm that has been successfully used for various SSL tasks in 

Bioinformatics applications (e.g., [12–17]).

2.3 Self-training with potentially labeled data

In some applications, in addition to the labeled data L and unlabeled data U, we may have 

access to potentially labeled data P where the labels are based on information (e.g., expert 

opinion) that may be less reliable than direct experimental evidence. In Supporting 

Information Materials and Methods, we present a natural extension of the self-training 

algorithm to SSL that takes advantage of such potentially labeled data when available. Our 

Java implementation of the proposed self-training algorithm has been made freely available 

to the broader research community as part of the EpiT tool [18] (available at http://

ailab.ist.psu.edu/epit/). This allows our algorithm to be invoked using the WEKA GUI [19] 

and to take advantage of several amino acid sequence derived features for building classifiers 

using EpiT.

2.4 Our framework

Figure 1 summarizes our proposed framework for improving the reliability of the results of 

high-throughput proteomics experiments for identifying SEPs. First, the output of one or 

more high-throughput proteomics studies for identifying SEPs in P. falciparum is used to 

generate a set of non-SEPs from the entire P. falciparum proteome (see Section 2.5 for 

details); Experimentally identified candidate SEPs are annotated by domain expert(s) as 

known SEPs, likely SEPs, unlikely SEPs, and unknown SEPs. Second, our novel self-

training algorithm is applied to labeled, annotated, and unlabeled P. falciparum data to build 

a classifier for predicting SEPs in P. falciparum, PlasmoSEP. Third, the PlasmoSEP classifier 

and two additional Bioinformatics tools (SignalP [20] and an in-house model trained to 

predict protective antigens in parasites) are integrated together into a final prediction model 

that returns the maximum prediction score from these three predictors. The final model is 

then used to predict SEPs from among the experimentally identified candidate SEPs. This 

helps filter out false positives from proteomics experiments, which have been especially 

problematic in recent studies. Finally, an integrated model is also used to identify novel 

SEPs from entire P. falciparum proteomes and proteomes of other related malaria species, P. 
yoelii and P. vivax.

2.5 Classification experiments

We experimented with the two self-training algorithms using simulated and real-world 

datasets. Detailed description of the datasets, the extracted features, and the experimental 

settings are provided in Supporting Information Materials and Methods.
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2.6 Other sources of information

To improve the reliability of our predicted SEPs, we used two additional types of evidence 

for complementing the predictions supplied by the PlasmoSEP classifier: (i) prediction of 

signal peptides provided by SignalP Web server [20] (as the presence of a signal peptide in a 

protein suggests that the protein is secreted or is a membrane protein [21, 22]); and (ii) 

prediction of protective antigens in parasites provided by our in-house classifier, described in 

Supporting Information Materials and Methods.

3 Results and discussion

3.1 Predictive models trained using semisupervised methods outperform those trained by 
their supervised counterparts

First, we compared the performance of SL and self-training (both using two basic SL 

algorithms, Naïve Bayes (NB) and random forest with 100 trees (RF100)) on the simulated 

datasets. In this experiment, the training dataset was randomly partitioned into labeled data 

L = {L+ ∪ L−| s.t. |L+| = |L−|} and unlabeled data U. Figure 2 reports the area under ROC 

curve (AUC) [23] estimated using the independent test data for NB (top) and RF100 

(bottom) trained using only L and self-training classifiers using an NB and RF100 classifiers 

trained on L and U for different choices of |L+|. Our results show that when the number of 

labeled data samples is small, the self-training algorithm substantially outperforms its 

supervised counterpart. For all choices of |L+| considered in this experiment, the classifiers 

trained using the semisupervised algorithm (SSL_NB and SSL_RF100) consistently 

outperform those trained using their supervised counterparts (SL_NB and SL_RF100).

3.2 Noisy expert-annotated data improve the performance of models trained using SSL

The results summarized in Fig. 2 suggest that when |L+| is less than 110 positive samples or, 

in other words, when the size of the labeled training data is less than 220 samples, the AUC 

of the SSL model is less than 0.80. To examine whether potentially labeled data (e.g., 

expert-annotated data) improve the performance of the semisupervised self-training 

algorithm, Algorithm 2, we designed the following experiment. We set |L+| to 90 and we 

randomly selected a subset of the remaining training data as potentially labeled such that 

potentially labeled data include an equal number of positively and negatively labeled 

samples (e.g., |P+| = |P−|). We also experimented with different numbers of potentially 

labeled data samples (|P+| = {10, 30, 50, 70, 90}) and different levels of randomly added 

noise to the labels of the potentially labeled data. Using NB as the base classifier, we found 

that, for all choices of the number of potentially labeled samples and the fraction that are 

incorrectly labeled, predictive models trained using our proposed semisupervised self-

training algorithm that takes advantage of potentially labeled data outperform those that do 

not (Fig. 3A). We repeated the experiment using RF100 as the base classifier for the two 

self-training algorithms (with |L+| set to 30 because for |L+| greater than 30, the AUC of 

SSL_RF100 is greater than 0.80 and very close to the upper limit for performance obtained 

using RF100 and the entire training dataset). Figure 3B shows that the proposed SSL 

algorithm using noisy potentially labeled data consistently outperforms the basic SSL 

algorithm so long as the fraction of potentially labeled data with incorrect labels does not 

exceed 30%. Interestingly, in some of the cases, the models trained on noisy potentially 
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labeled data outperform or perform as well as those trained on accurate potentially labeled 

data. This observation may be explained in part by the theoretical results that suggest that 

noise in the training data mimics the behavior of regularization which in turn helps reduce 

overfitting and improve generalization, at least in the supervised setting [24]. This finding 

suggests that the proposed approach to SSL can take advantage of noisy potentially labeled 

data.

3.3 PlasmoSEP predicted SEPs in P. falciparum

We applied our proposed semisupervised self-training algorithm to learn from a P. 
falciparum surface-exposed proteome dataset, as described in Section 2. Briefly, each 

protein sequence is represented using its composition transition distribution features (see 

Supporting Information Materials and Methods) and we applied Algorithm 2 to train a RF 

classifier with 100 trees (RF100) from labeled, unlabeled, and potentially labeled data. Our 

choice of a RF100 classifier is based on its superior performance observed on the simulated 

data and its ability to cope with high-dimensional data [25]. The final learned model was 

then applied to the total P. falciparum salivary gland sporozoite proteome (2003 proteins) 

and a score was assigned to predict the probability that the protein is surface exposed. Two 

additional scores for each protein are obtained using SignalP and our in-house protective 

antigenicity predictor, respectively. Supporting Information Table 1 reports the three scores 

for every protein in the P. falciparum salivary gland sporozoite proteome and ranks all 

proteins using the maximum of the three scores. Supporting Information Table 2 reports the 

top 190 ranked proteins, those with a maximum score ≥0.7. Interestingly, this set of 190 

predicted P. falciparum SEPs covers the 13 known SEPs (Supporting Information Table 3), 

11 of 24 proteins annotated by expert curation as likely to be SEPs (Supporting Information 

Table 4), and only four of 41 proteins tagged as unlikely to be SEPs (Supporting Information 

Table 5). Finally, of 127 proteins tagged as unknown by expert curation, 23 proteins are 

predicted to be SEPs (Table 1). The top hit in the prediction for both P. falciparum and P. 
yoelii (see below), which also scored positively for P. vivax was GAPDH. Interestingly, 

while GAPDH is commonly regarded as a cytosolic housekeeping protein, it was recently 

shown experimentally to also be a bona fide surface antigen, and thus likely has 

moonlighting functions on the cell surface as well [26]. We hold that predicted SEPs in these 

lists, which may similarly be dismissed due to having a well-known/canonical cytosolic 

function, should be considered as having a possible surface function.

It should be noted that neither SignalP, a program for predicting secreted proteins, nor our 

in-house classifier for predicting protective antigens in parasites, on its own, is sufficiently 

reliable as a predictor of SEPs. However, because any protective antigen is essentially 

surface exposed or an exported protein [27, 28] and secreted proteins are frequently (but not 

always) retained on the cell surface [5, 6], we employ these two predictors to aid in the 

identification of potential SEPs that are not detected by our PlasmoSEP classifier. Therefore, 

the final PlasmoSEP score is set to be the maximum of scores predicted by the PlasmoSEP, 

SignalP, and the antigenicity classifiers. For example, if a query protein is assigned a low 

prediction score by PlasmoSEP classifier and a high score by SignalP and/or the antigenicity 

classifier, then we conclude that PlasmoSEP prediction is more likely to be a false negative 

and we return the high score assigned by SignalP and/or the antigenicity classifier as our 
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final predicted score. On the other hand, if a query protein is assigned a high score by 

PlasmoSEP classifier but low scores by SignalP and/or the antigenicity classifier, then we 

conclude that the query protein is likely to be surface exposed that is not secreted or not a 

putative protective antigen.

Finally, we found that our predicted SEPs are consistent with their known biological roles in 

the parasite. Thus, the predicted SEPs include invasion-related proteins such as rhoptry neck 

proteins (ASP, RON2, RON3) and sporozoite invasion-associated protein 1 (SIAP1), surface 

adhesion proteins (CSP, TRAP), members of the gliding motility/inner membrane complex 

(IMC) apparatus, proteases (ROM4), perforins to aid cell traversal (PLP1), and metabolite 

transporters (Supporting Information Tables 2 and 3). As shown by previous experimental 

studies [6], even proteins that are transiently exposed to the surface during gliding, traversal, 

or invasion cues are truly surface exposed and are accessible to membrane impermeable 

labeling reagents and antibodies.

3.4 PlasmoSEP predicted SEPs in P. yoelii salivary gland sporozoites

In order to demonstrate the utility of the PlasmoSEP predictor across Plasmodium species, 

we next applied PlasmoSEP to the proteome of the rodent-infectious malaria species P. 
yoelii. Our previous studies, which first described an approach to identify the surface-

exposed proteome of sporozoites, uncovered only a small number of proteins that were 

surface exposed on P. yoelii [5]. As this small number of proteins is insufficient for robustly 

testing the algorithm, we have built upon these initial findings and have now used improved 

labeling and washing conditions to expand the high confidence surface-exposed proteome 

(Table 2, Supporting Information Table 6). In brief, highly purified sporozoite samples were 

split just prior to addition of the biotin-conjugated cross-linker, with one half receiving the 

disulfide-containing labeling reagent (EZ-Link Sulfo-NHS-SS-Biotin) and the other half 

remaining unlabeled. These matched controls were otherwise treated identically throughout 

the experiment, including a high stringency washing protocol in urea and SDS. Together, the 

high stringency washes and improved elution conditions (e.g. reducing the disulfide bond 

present in the crosslinker) reduced background contamination substantially, with only one 

and two proteins being captured in the unlabeled control replicates [5].

Several aspects of these data indicate that these proteins are bona fide surface proteins. As 

anticipated, many well-known SEPs are detected in this experimentally defined list, 

including CSP, TRAP, SPECT2, SIAP1, GAMA, TRSP, hexose transporter, and many others 

[5, 29–32]. Many of these proteins serve as the basis for existing malaria vaccine antigens 

(CSP, TRAP) or are the chosen targets for chemotherapeutics (hexose transporter) [2, 29]. 

Additionally, proteins involved in the IMC that are used by the invasive forms of the parasite 

for locomotion (termed gliding motility) were also detected [33]. Several of these proteins 

were also recently shown to be accessible to antibodies for P. falciparum sporozoites, and 

should now be considered during selection of antibody-based therapeutics and vaccines [6]. 

Lastly, the orthologues of 43 of 52 proteins (83%, Supporting Information Table 6) with 

known P. falciparum orthologues were also detected in our recent P. falciparum surface-

exposed proteome, again lending support to the categorization of these proteins as being 

surface exposed.

El-Manzalawy et al. Page 7

Proteomics. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparison of the PlasmoSEP predicted surface-exposed proteome with the experimentally 

determined surface-exposed proteome demonstrates the practical utility of our approach. 

Table 2 reports the predicted scores of PlasmoSEP, SignalP, and antigenicity predictors on a 

set of 37 identified high confidence (defined as having two or more unique peptides and/or 

published confirmation of surface exposure independent of mass spectrometric methods) 

SEPs on P. yoelii, ranked by the maximum score of the three predictors. Our approach 

confirms that 25 proteins are surface exposed with a prediction score ≥ 0.60. Interestingly, a 

careful examination of the 12 proteins not identified by our approach reveals that six of them 

are unlikely to be exposed to the surface and three of them are likely to be SEPs. This 

suggests that our approach is very promising in computationally assessing high-throughput 

results. Finally, we provide our predicted scores for the entire P. yoelii proteome in 

Supporting Information Table 7. Our predictions suggested that 159 proteins are expected to 

be surface exposed with prediction score ≥0.7 and 65 of these proteins have prediction 

scores ≥0.8.

It should be noted that the extremely small number (13) of known SEPs in our training data 

makes it very challenging to estimate a reasonable cut-off score (i.e., one that corresponds to 

a desired sensitivity-specificity tradeoff) for reliably discriminating SEPs from non-SEPs. 

Estimation of such a cutoff score will have to wait until we accumulate a larger and diverse 

sample of known SEPs. Until then, our predictions should be viewed as a prioritized list of 

candidate SEPs for further experiments, which in turn can help improve the classifier, in an 

iterative fashion. Despite this limitation, we anticipate that these predictions will help to 

guide future experimental work for identifying novel SEPs in P. yoelii.

3.5 Application of PlasmoSEP to the human-infectious P. vivax malaria parasite

As P. vivax parasites cannot be continuously cultured in the laboratory, it is extremely 

difficult to conduct experimental determinations of the surface-exposed proteome of this 

malaria parasite species, even with access to patient isolates from endemic regions. To 

overcome this limitation, we have instead turned solely to computational approaches. 

Buoyed by the success of the predictions of the PlasmoSEP algorithm with P. falciparum and 

P. yoelii proteomes, we have also applied this prediction software to the P. vivax proteome 

(Supporting Information Table 8). Several known SEPs (CSP, TRAP, IMC proteins, 

transporters, and proteins that are secreted during gliding and invasion) score positively 

using similar thresholds as were applied for P. falciparum and P. yoelii, indicating that the 

predictor accurately identifies SEPs. Moreover, as this is a proteome wide predictor, surface 

antigens from other life cycle stages (p25 and p28 are known surface proteins of the 

ookinete stage) also score positively, as this algorithm does not restrict the prediction only to 

sporozoites. This indicates that the same properties of these proteins may dictate their 

surface exposure throughout the life cycle. Lastly, a great number of the highest scoring 

proteins have not been experimentally or bioinformatically defined for P. vivax, and are 

currently noted as “hypothetical protein, conserved” in PlasmoDB. In light of this, our 

predictions that these are SEPs, which may be targetable by antibodies, may help to focus 

and prioritize future characterizations. Studies of these top candidates to first verify that they 

are indeed surface exposed, and then to also determine the importance of their biological 

function in the parasite will help guide efforts to rationally design subunit vaccines.
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4 Concluding remarks

High-throughput MS-based proteomics has increasingly become the state-of-the-art 

experimental approach for mapping SEPs in many target pathogens [34, 35]. This is an 

essential and key step in developing novel subunit vaccines. However, due to technical 

limitations, the MS approach suffers from false positive as well as false-negative inferred 

protein identifications. We address this limitation by integrating high-throughput 

experimental studies, expert-annotated data, machine learning, and in silico bioinformatics 

tools to substantially improve the reliability of identification of SEPs in the malaria parasite. 

Our framework makes use of potentially labeled data (proteins tagged by an expert as 

surface or non-surface exposed) to build classifiers from small amount of labeled data as 

well as typically much larger amount of unlabeled data. By applying our approach to 205 

experimentally determined SEPs of P. falciparum salivary gland sporozoite, we developed 

the PlasmoSEP classifier for predicting SEPs in P. falciparum from amino acid derived 

information. We used the PlasmoSEP classifier along with in silico bioinformatics tools for 

predicting secreted and protective proteins to filter out false positives from the P. falciparum 
SEPs identified using proteomics experiments, and to predict novel SEPs in P. falciparum 
proteome. To further assess the viability of PlasmoSEP, we used it to predict novel SEPs in 

P. yoelii (which were independently validated experimentally) and P. vivax malaria parasite.

The modularity of the PlasmoSEP framework allows it to be customized in several ways. For 

example, it can be easily modified to make use of potentially labeled data obtained from 

annotations supplied by multiple human experts or some in silico tools (e.g., tools for 

predicting protein subcellular localization). The framework can be used, in principle, to 

improve the reliability of the output of high-throughput experiments beyond the applications 

considered in this paper, as long as some labeled data, potentially labeled data, and 

unlabeled data are available. Work in progress aims to: (i) adapt other sophisticated 

semisupervised algorithms (e.g. [36, 37]) to learn predictive models from potentially labeled 

data; (ii) apply our framework to identify SEPs in other interesting pathogens, e.g., B. 
pertussis [38]; (iii) Develop a community resource for depositing the output of MS 

proteomics, enable community annotation and integration of data from multiple studies, and 

support the application of our framework to these data using Web browser based 

computational workflows.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AUC area under ROC curve

IMC inner membrane complex

NB Naïve Bayes

RF random forest

SEPs surface-exposed proteins

SL supervised learning

SSL semi-supervised learning

References

1. WHO. World malaria report 2014. WHO; 2015. Available at: http://www.who.int/malaria/
publications/world-malaria-report-2015/report/en/

2. Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Am J Prev 
Med. 2015; 49:S319–S333. [PubMed: 26590432] 

3. Neafsey DE, Juraska M, Bedford T, Benkeser D, et al. Genetic diversity and protective efficacy of 
the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015; 373:2025–2037. [PubMed: 26488565] 

4. Hodgson SH, Ewer KJ, Bliss CM, Edwards NJ, et al. Evaluation of the efficacy of ChAd63-MVA 
vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human 
malaria infection in malaria-naive individuals. J Infect Dis. 2015; 211:1076–1086. [PubMed: 
25336730] 

5. Lindner SE, Swearingen KE, Harupa A, Vaughan AM, et al. Total and putative surface proteomics 
of malaria parasite salivary gland sporozoites. Mol Cell Proteomics. 2013; 12:1127–1143. 
[PubMed: 23325771] 

6. Swearingen KE, Lindner SE, Shi L, Harupa A, et al. Interrogating the plasmodium sporozoite 
surface: identification of surface-exposed proteins and demonstration of glycosylation on CSP and 
TRAP by mass spectrometry-based proteomics. PLoS Pathog. 2016; 12:e1005606. [PubMed: 
27128092] 

7. Kotsiantis, S. Supervised machine learning: a review of classification techniques. Proceedings of the 
2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real 
Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive 
Technologies; Netherlands: IOS Press; 2007. p. 3-24.

8. Drabovich, AP., Pavlou, MP., Batruch, I., Diamandis, EP. Proteomic and mass spectrometry 
technologies for biomarker discovery. In: Haleem, JI., Timothy, DV., editors. Proteomic and 
Metabolomic Approaches to Biomarker Discovery. Elsevier; Netherlands: 2013. p. 17-37.

9. Bock T, Bausch-Fluck D, Hofmann A, Wollscheid B. CD proteome and beyond–technologies for 
targeting the immune cell surfaceome. Front Biosci. 2012; 17:1599–1612.

10. Zhu X, Goldberg AB. Introduction to semi-supervised learning. Synthesis lectures on artificial 
intelligence and machine learning. 2009; 3:1–130.

11. Chapelle, O., Schölkopf, B., Zien, A. Semi-Supervised Learning. MIT Press; London, England: 
2006. 

12. Fischer B, Grossmann J, Roth V, Gruissem W, et al. Semisupervised LC/MS alignment for 
differential proteomics. Bioinformatics. 2006; 22:e132–e140. [PubMed: 16873463] 

El-Manzalawy et al. Page 10

Proteomics. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/


13. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel 
eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005; 33:6494–6506. 
[PubMed: 16314312] 

14. Ou HY, Guo FB, Zhang CT. GS-Finder: a program to find bacterial gene start sites with a self-
training method. Int J Biochem Cell Biol. 2004; 36:535–544. [PubMed: 14687930] 

15. Stanescu, A., Caragea, D. Semi-supervised self-training approaches for imbalanced splice site 
datasets. The Sixth International Conference on Bioinformatics and Computational Biology 
(BICoB); Las Vegas, NV. 2014; p. 131-136.

16. Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. 
Nucleic Acid Res. 2015:gkv227.

17. Xu Y-Y, Yang F, Shen H-B. Incorporating organelle correlations into semi-supervised learning for 
protein subcellular localization prediction. Bioinformatics. :btw219.2016

18. El-Manzalawy, Y., Honavar, V. A framework for developing epitope prediction tools. Proceedings 
of the First ACM International Conference on Bioinformatics and Computational Biology; Niagara 
Falls, NY: ACM; 2010. p. 660-662.

19. Hall M, Frank E, Holmes G, Pfahringer B, et al. The WEKA data mining software: an update. 
ACM SIGKDD Explor Newslett. 2009; 11:10–18.

20. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from 
transmembrane regions. Nat Methods. 2011; 8:785–786. [PubMed: 21959131] 

21. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically 
processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes 
of murine myeloma. J Cell Biol. 1975; 67:835–851. [PubMed: 811671] 

22. Coleman J, Inukai M, Inouye M. Dual functions of the signal peptide in protein transfer across the 
membrane. Cell. 1985; 43:351–360. [PubMed: 3907854] 

23. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning 
algorithms. Pattern Recognit. 1997; 30:1145–1159.

24. Bishop CM. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995; 
7:108–116.

25. Qi, Y. Random forest for bioinformatics. In: Zhang, C., Ma, Y., editors. Ensemble Machine 
Learning. Springer; New York: 2012. p. 307-323.

26. Cha SJ, Kim MS, Pandey A, Jacobs-Lorena M. Identification of GAPDH on the surface of 
Plasmodium sporozoites as a new candidate for targeting malaria liver invasion. J Exp Med. 2016; 
213:2099–2112. [PubMed: 27551151] 

27. Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine. 
2001; 19:2688–2691. [PubMed: 11257410] 

28. Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original 
design. Ann N Y Acad Sci. 2013; 1285:115–132. [PubMed: 23527566] 

29. Ortiz D, Guiguemde WA, Johnson A, Elya C, et al. Identification of selective inhibitors of the 
Plasmodium falciparum hexose transporter PfHT by screening focused libraries of anti-malarial 
compounds. PLoS One. 2015; 10:e0123598. [PubMed: 25894322] 

30. Arumugam TU, Takeo S, Yamasaki T, Thonkukiatkul A, et al. Discovery of GAMA, a Plasmodium 
falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infect 
Immun. 2011; 79:4523–4532. [PubMed: 21896773] 

31. Engelmann S, Silvie O, Matuschewski K. Disruption of Plasmodium sporozoite transmission by 
depletion of sporozoite invasion-associated protein 1. Eukaryot Cell. 2009; 8:640–648. [PubMed: 
19181869] 

32. Carey AF, Singer M, Bargieri D, Thiberge S, et al. Calcium dynamics of Plasmodium berghei 
sporozoite motility. Cell Microbiol. 2014; 16:768–783. [PubMed: 24617597] 

33. Heintzelman, MB. Seminars in Cell and Developmental Biology. Elsevier; Netherlands: 2015. 
Gliding motility in apicomplexan parasites; p. 135-142.

34. Cordwell SJ. Technologies for bacterial surface proteomics. Curr Opin Microbiol. 2006; 9:320–
329. [PubMed: 16679049] 

El-Manzalawy et al. Page 11

Proteomics. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ. Surfomics: shaving 
live organisms for a fast proteomic identification of surface proteins. J Proteomics. 2014; 97:164–
176. [PubMed: 23624344] 

36. Criminisi, A., Shotton, J., Konukoglu, E. Foundations and Trends® in Computer Graphics and 
Vision 7. 2012. Decision forests: a unified framework for classification, regression, density 
estimation, manifold learning and semi-supervised learning; p. 81-227.

37. Bennett, K., Demiriz, A. Semi-supervised support vector machines. In: Kearns, MS.Solla, SA., 
Cohn, DA., editors. Advances in Neural Information Processing Systems. The MIT Press; 
Cambridge, MA: 1999. 

38. Raeven RH, van der Maas L, Tilstra W, Uittenbogaard JP, et al. Immunoproteomic profiling of 
Bordetella pertussis outer membrane vesicle vaccine reveals broad and balanced humoral 
immunogenicity. J Proteome Res. 2015; 14:2929–2942. [PubMed: 25988566] 

El-Manzalawy et al. Page 12

Proteomics. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Flowchart of PlasmoSEP framework for integrating proteomics studies, expert annotations, 

bioinformatics tools, and semisupervised learning for accurate identification of SEPs in the 

malaria parasite (Plasmodium spp.).
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Figure 2. 
AUC comparisons between supervised learning (SL) and semisupervised learning (SSL), 

Algorithm 1, using NB (top) and RF100 (bottom) as supervised and base classifiers.
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Figure 3. 
AUC comparisons between basic SSL and our proposed SSL (SSL_k%) with k% noise in 

potentially labeled data using NB (top) and RF100 (bottom) as base classifiers.

El-Manzalawy et al. Page 15

Proteomics. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El-Manzalawy et al. Page 16

Ta
b

le
 1

L
is

t o
f 

pr
ed

ic
te

d 
P.

 fa
lc

ip
ar

um
 S

E
Ps

 w
ith

 m
ax

im
um

 s
co

re
 ≥

 0
.7

0 
fr

om
 th

e 
se

t o
f 

ex
pe

rt
 a

nn
ot

at
ed

 u
nk

no
w

n 
SE

Ps

ID
N

am
e

P
la

sm
oS

E
P

Si
gn

al
P

A
nt

ig
en

ic
it

y
M

ax
_s

co
re

PF
3D

7_
14

62
80

0
G

ly
ce

ra
ld

eh
yd

e-
3-

ph
os

ph
at

e 
de

hy
dr

og
en

as
e 

(G
A

PD
H

)
1.

00
0.

17
0.

35
1.

00

PF
3D

7_
08

18
90

0
H

ea
t s

ho
ck

 p
ro

te
in

 7
0 

(H
SP

70
)

1.
00

0.
11

0.
56

1.
00

PF
3D

7_
14

44
80

0
Fr

uc
to

se
-b

is
ph

os
ph

at
e 

al
do

la
se

 (
FB

PA
)

1.
00

0.
10

0.
25

1.
00

PF
3D

7_
09

03
70

0
A

lp
ha

 tu
bu

lin
 1

1.
00

0.
14

0.
38

1.
00

PF
3D

7_
09

22
20

0
S-

ad
en

os
yl

m
et

hi
on

in
e 

sy
nt

he
ta

se
 (

SA
M

S)
1.

00
0.

11
0.

32
1.

00

PF
3D

7_
06

27
50

0
4-

M
et

hy
l-

5(
B

-h
yd

ro
xy

et
hy

l)
-t

hi
az

ol
 m

on
op

ho
sp

ha
te

 b
io

sy
nt

he
si

s 
en

zy
m

e
1.

00
0.

12
0.

60
1.

00

PF
3D

7_
11

40
40

0
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
1.

00
0.

10
0.

62
1.

00

PF
3D

7_
11

33
40

0
A

pi
ca

l m
em

br
an

e 
an

tig
en

 1
 (

A
M

A
1)

0.
00

0.
55

0.
91

0.
91

PF
3D

7_
12

35
70

0
A

T
P 

sy
nt

ha
se

 s
ub

un
it 

be
ta

, m
ito

ch
on

dr
ia

l
0.

90
0.

15
0.

27
0.

90

PF
3D

7_
08

26
70

0
R

ec
ep

to
r 

fo
r 

ac
tiv

at
ed

 c
 k

in
as

e 
(R

A
C

K
)

0.
90

0.
10

0.
41

0.
90

PF
3D

7_
06

20
00

0
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

00
0.

87
0.

58
0.

87

PF
3D

7_
13

35
90

0
Sp

or
oz

oi
te

 s
ur

fa
ce

 p
ro

te
in

 2
 (

T
R

A
P)

0.
10

0.
85

0.
30

0.
85

PF
3D

7_
10

28
60

0
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

00
0.

10
0.

85
0.

85

PF
3D

7_
08

12
30

0
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

00
0.

84
0.

39
0.

84

PF
3D

7_
09

17
90

0
H

ea
t s

ho
ck

 p
ro

te
in

 7
0 

(H
SP

70
-2

)
0.

10
0.

84
0.

48
0.

84

PF
3D

7_
05

13
30

0
Pu

ri
ne

 n
uc

le
os

id
e 

ph
os

ph
or

yl
as

e 
(P

N
P)

0.
80

0.
12

0.
56

0.
80

PF
3D

7_
05

24
00

0
K

ar
yo

ph
er

in
 b

et
a 

(K
A

Sb
et

a)
0.

00
0.

10
0.

78
0.

78

PF
3D

7_
07

08
40

0
H

ea
t s

ho
ck

 p
ro

te
in

 9
0 

(H
SP

90
)

0.
10

0.
13

0.
75

0.
75

PF
3D

7_
08

27
90

0
Pr

ot
ei

n 
di

su
lf

id
e 

is
om

er
as

e 
(P

D
I8

)
0.

00
0.

74
0.

35
0.

74

PF
3D

7_
13

61
80

0
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

00
0.

11
0.

70
0.

70

PF
3D

7_
09

22
50

0
Ph

os
ph

og
ly

ce
ra

te
 k

in
as

e 
(P

G
K

)
0.

00
0.

10
0.

70
0.

70

PF
3D

7_
03

20
30

0
T-

co
m

pl
ex

 p
ro

te
in

 1
 e

ps
ilo

n 
su

bu
ni

t, 
pu

ta
tiv

e
0.

00
0.

10
0.

70
0.

70

PF
3D

7_
10

37
30

0
A

D
P/

A
T

P 
tr

an
sp

or
te

r 
on

 a
de

ny
la

te
 tr

an
sl

oc
as

e
0.

70
0.

19
0.

19
0.

70

Proteomics. Author manuscript; available in PMC 2017 September 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El-Manzalawy et al. Page 17

Ta
b

le
 2

L
is

t o
f 

37
 id

en
tif

ie
d 

SE
Ps

 in
 P

. y
oe

lii
 s

al
iv

ar
y 

gl
an

d 
sp

or
oz

oi
te

s 
us

in
g 

M
S 

ex
pe

ri
m

en
ts

 a
nd

 th
ei

r 
pr

ed
ic

te
d 

Pl
as

m
oS

E
P,

 S
ig

na
lP

, a
nd

 a
nt

ig
en

ic
ity

 s
co

re
s

ID
N

am
e

P
la

sm
oS

E
P

Si
gn

al
P

A
nt

ig
en

ic
it

y
M

ax

PY
17

X
_1

33
02

00
G

ly
ce

ra
ld

eh
yd

e-
3-

ph
os

ph
at

e 
de

hy
dr

og
en

as
e,

 p
ut

at
iv

e 
(G

A
PD

H
)

1.
00

0.
14

0.
58

1.
00

PY
17

X
_0

71
21

00
H

ea
t s

ho
ck

 p
ro

te
in

, p
ut

at
iv

e 
(H

SP
70

)
1.

00
0.

11
0.

62
1.

00

PY
17

X
_1

00
76

00
Sp

or
oz

oi
te

 in
va

si
on

-a
ss

oc
ia

te
d 

pr
ot

ei
n 

1 
(S

IA
P1

)
1.

00
0.

87
0.

40
1.

00

PY
17

X
_1

31
24

00
Fr

uc
to

se
-b

is
ph

os
ph

at
e 

al
do

la
se

 2
 (

A
L

D
O

2)
1.

00
0.

10
0.

31
1.

00

PY
17

X
_0

42
05

00
A

lp
ha

 tu
bu

lin
 1

1.
00

0.
14

0.
45

1.
00

PY
17

X
_1

35
48

00
Sp

or
oz

oi
te

 s
ur

fa
ce

 p
ro

te
in

 2
, t

hr
om

bo
sp

on
di

n-
re

la
te

d 
an

on
ym

ou
s 

pr
ot

ei
n 

(T
R

A
P)

0.
50

0.
83

0.
97

0.
97

PY
17

X
_1

00
77

00
Pe

rf
or

in
-l

ik
e 

pr
ot

ei
n 

1,
 s

po
ro

zo
ite

 m
ic

ro
ne

m
al

 p
ro

te
in

 e
ss

en
tia

l f
or

 c
el

l t
ra

ve
rs

al
 (

SP
E

C
T

2)
0.

80
0.

64
0.

56
0.

80

PY
17

X
_1

46
19

00
A

ct
in

 I
0.

80
0.

10
0.

52
0.

80

PY
17

X
_0

83
55

00
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

20
0.

67
0.

79
0.

79

PY
17

X
_0

70
22

00
Se

cr
et

ed
 o

ok
in

et
e 

pr
ot

ei
n,

 p
ut

at
iv

e,
 G

PI
-a

nc
ho

re
d 

m
ic

ro
ne

m
al

 a
nt

ig
en

, p
ut

at
iv

e 
(G

A
M

A
)

0.
00

0.
76

0.
48

0.
76

PY
17

X
_1

42
72

00
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

10
0.

74
0.

54
0.

74

PY
17

X
_0

21
05

00
T

hr
om

bo
sp

on
di

n 
re

la
te

d 
sp

or
oz

oi
te

 p
ro

te
in

, p
ut

at
iv

e 
(T

R
SP

)
0.

30
0.

72
0.

31
0.

72

PY
17

X
_1

21
01

00
T

ub
ul

in
 b

et
a 

ch
ai

n,
 p

ut
at

iv
e

0.
70

0.
10

0.
44

0.
70

PY
17

X
_0

40
54

00
C

ir
cu

m
sp

or
oz

oi
te

 (
C

S)
 p

ro
te

in
 (

C
SP

)
0.

70
0.

68
0.

70
0.

70

PY
17

X
_1

03
78

00
G

lid
eo

so
m

e 
as

so
ci

at
ed

 p
ro

te
in

 w
ith

 m
ul

tip
le

 m
em

br
an

e 
sp

an
s 

3,
 p

ut
at

iv
e 

(G
A

PM
3)

0.
70

0.
12

0.
14

0.
70

PY
17

X
_0

90
27

00
.1

M
er

oz
oi

te
 a

dh
es

iv
e 

er
yt

hr
oc

yt
ic

 b
in

di
ng

 p
ro

te
in

 (
M

A
E

B
L

)
0.

30
0.

69
0.

44
0.

69

PY
17

X
_0

82
67

00
Ph

os
ph

og
ly

ce
ra

te
 k

in
as

e,
 p

ut
at

iv
e 

(P
G

K
)

0.
00

0.
10

0.
68

0.
68

PY
17

X
_0

91
23

00
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

40
0.

12
0.

68
0.

68

PY
17

X
_0

40
48

00
In

ne
r 

m
em

br
an

e 
co

m
pl

ex
 p

ro
te

in
 1

a 
(I

M
C

1a
)

0.
20

0.
11

0.
67

0.
67

PY
17

X
_1

43
98

00
E

nd
op

la
sm

in
, p

ut
at

iv
e 

(G
R

P9
4)

0.
10

0.
65

0.
47

0.
65

PY
17

X
_1

21
75

00
E

no
la

se
, p

ut
at

iv
e 

(E
N

O
)

0.
50

0.
11

0.
64

0.
64

PY
17

X
_1

31
65

00
G

am
et

e 
eg

re
ss

 a
nd

 s
po

ro
zo

ite
 tr

av
er

sa
l p

ro
te

in
, p

ut
at

iv
e 

(G
E

ST
)

0.
20

0.
63

0.
46

0.
63

PY
17

X
_1

03
45

00
R

ho
pt

ry
-a

ss
oc

ia
te

d 
pr

ot
ei

n 
1,

 p
ut

at
iv

e 
(R

A
P1

)
0.

00
0.

62
0.

22
0.

62

PY
17

X
_0

91
04

00
C

ar
bo

ni
c 

an
hy

dr
as

e,
 p

ut
at

iv
e

0.
20

0.
54

0.
61

0.
61

PY
17

X
_1

13
49

00
E

lo
ng

at
io

n 
fa

ct
or

 1
-a

lp
ha

, p
ut

at
iv

e
0.

60
0.

12
0.

45
0.

60

PY
17

X
_0

70
31

00
Pr

ot
ei

n 
di

su
lf

id
e 

is
om

er
as

e,
 p

ut
at

iv
e

0.
10

0.
59

0.
49

0.
59

PY
17

X
_0

40
49

00
M

em
br

an
e 

sk
el

et
al

 p
ro

te
in

, p
ut

at
iv

e
0.

10
0.

10
0.

55
0.

55

PY
17

X
_0

52
53

00
G

lid
eo

so
m

e 
as

so
ci

at
ed

 p
ro

te
in

 w
ith

 m
ul

tip
le

 m
em

br
an

e 
sp

an
s 

2,
 p

ut
at

iv
e 

(G
A

PM
2)

0.
50

0.
10

0.
27

0.
50

Proteomics. Author manuscript; available in PMC 2017 September 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

El-Manzalawy et al. Page 18

ID
N

am
e

P
la

sm
oS

E
P

Si
gn

al
P

A
nt

ig
en

ic
it

y
M

ax

PY
17

X
_1

36
14

00
M

yo
si

n 
A

 (
M

yo
A

)
0.

20
0.

10
0.

40
0.

40

PY
17

X
_0

30
31

00
H

ex
os

e 
tr

an
sp

or
te

r 
(H

T
)

0.
40

0.
13

0.
24

0.
40

PY
17

X
_0

71
28

00
14

-3
-3

 P
ro

te
in

, p
ut

at
iv

e 
(1

4-
3-

3I
)

0.
10

0.
10

0.
32

0.
32

PY
17

X
_0

70
65

00
N

uc
le

os
id

e 
tr

an
sp

or
te

r, 
pu

ta
tiv

e 
(N

T
2)

0.
20

0.
11

0.
32

0.
32

PY
17

X
_1

42
49

00
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

10
0.

11
0.

30
0.

30

PY
17

X
_0

82
37

00
Su

ga
r 

tr
an

sp
or

te
r, 

pu
ta

tiv
e

0.
20

0.
30

0.
19

0.
30

PY
17

X
_0

51
41

00
C

on
se

rv
ed

 P
la

sm
od

iu
m

 p
ro

te
in

, u
nk

no
w

n 
fu

nc
tio

n
0.

00
0.

10
0.

22
0.

22

PY
17

X
_1

14
31

00
60

S 
ri

bo
so

m
al

 p
ro

te
in

 L
40

/U
B

I,
 p

ut
at

iv
e

0.
00

0.
12

0.
09

0.
12

PY
17

X
_1

11
82

00
H

is
to

ne
 H

3 
va

ri
an

t, 
pu

ta
tiv

e 
(H

3.
3)

0.
00

0.
10

0.
03

0.
10

O
ur

 a
pp

ro
ac

h 
co

nf
ir

m
s 

th
at

 th
e 

fi
rs

t 2
5 

pr
ot

ei
ns

 a
re

 S
E

Ps
 w

ith
 p

re
di

ct
ed

 s
co

re
 ≥

0.
60

.

Proteomics. Author manuscript; available in PMC 2017 September 15.


	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Surface-exposed proteomics
	2.2 SSL
	2.3 Self-training with potentially labeled data
	2.4 Our framework
	2.5 Classification experiments
	2.6 Other sources of information

	3 Results and discussion
	3.1 Predictive models trained using semisupervised methods outperform those trained by their supervised counterparts
	3.2 Noisy expert-annotated data improve the performance of models trained using SSL
	3.3 PlasmoSEP predicted SEPs in P. falciparum
	3.4 PlasmoSEP predicted SEPs in P. yoelii salivary gland sporozoites
	3.5 Application of PlasmoSEP to the human-infectious P. vivax malaria parasite

	4 Concluding remarks
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

