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Abstract

Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained
stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual
learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29
normally-sighted observers were trained to discriminate Gabor stimuli presented at 9u eccentricity with either identical or
orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL).
Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after
training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in
all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to
CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or
target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and
decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was
reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for
crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration
plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in
learning.
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Introduction

Perceptual learning refers to improvement in sensitivity brought

about through practice on sensory (perceptual) tasks. Visual

perceptual training has been shown to improve various visual

functions such as Vernier acuity [1,2], contrast sensitivity [3–5],

letter identification [6–8], orientation discrimination [9,10],

motion discrimination [11,12], and face recognition [13]. The

extent of perceptual learning has been found to depend on

stimulus and task complexity. For example, tasks requiring

discrimination on the basis of both spatial frequency and

orientation of the stimulus yield more learning (greater enhance-

ment) than those requiring discrimination of spatial frequency only

[14].

A common characteristic of perceptual learning is specificity

(failure to transfer to untrained parameters or locations) to the

training stimulus and task [15–17]. Specificity is thought to reflect

early cortical stage involvement in the learning process, which

occurs in tasks such as orientation or contrast judgements based on

one parameter of the target, rather than more complex tasks based

on more than one parameter, such as identification [18–20].

According to the reverse hierarchy theory of perceptual learning,

specificity is linked to task difficulty in a different way (on the basis

of factors such as stimulus presentation, position uncertainty or

target eccentricity), with more difficult tasks yielding more specific,

lower level learning than easier tasks [21].

Stimulus complexity is dependent on parameters of the target

and any contextual features (e.g. flankers) surrounding the target

that may elicit suppressive or facilitatory interactions [22], and

perceptually may enhance or reduce visibility due to factors such

as ‘pop-out’ and crowding. Spatial context (e.g. lateral flankers) is

generally considered responsible for lateral masking, which has some

similarities, but is distinct from crowding [23,24]. Crowding is

reduced visibility due to surrounding elements, and is found in a

range of tasks including letter identification (requiring detection,

discrimination and identification of the letter; e.g. Chung, Levi, &

Legge, 2001) [25], Vernier acuity and contrast discrimination;

however, most previous findings show that crowding is negligible

in tasks requiring detection (e.g. Saarinen & Levi, 1995, Levi and

Carney, 2011, but see also Poder, 2008) [22,23,26]. Discrimina-

tion of a crowded target involves not only detection and

discrimination of the target but also discrimination of the target

from the surrounding features, and this additional requirement
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suggests that it occurs at a stage beyond simple detection (e.g. Levi,

2008) [27].

The crowding effect can be reduced by perceptual training, as

has been shown in a letter identification task by training on the

same task [7,8,28,29] or on a contrast detection task [30]. The

latter finding is interesting because it suggests that a task that is

subject to crowding (letter identification) can be modified by

training on a task that is widely found not to be subject to

crowding (detection). These studies on the effect of perceptual

training were carried out in the periphery, where crowding is

strongest in the normal visual system, and crowding has been

based on letter identification. Maniglia et al. (2011) found that

improved contrast detection thresholds for horizontal Gabors

flanked by iso-oriented Gabors did not transfer to identical

horizontal Gabor target detection with orthogonal (vertical)

flankers. This finding suggests that there was no learning following

exposure to the target per se, and that the learning was context-

specific, related to exposure to the target plus flankers. While the

role of context in foveal perceptual learning has been controversial

[31,32], ‘‘context’’ may add to the task difficulty by inducing

crowding and this may affect learning [33,34].

The aims of the present study were to investigate whether

context (in the form of flankers adjacent to the target) that may

yield crowding facilitates perceptual learning and its transfer; and

to investigate whether perceptual training affects crowding. A

peripheral contrast discrimination task was employed for training

on stimuli with and without flankers. We hypothesised that

learning would be greater and less specific after training on flanked

than on unflanked target stimuli, and that the perceptual training

would reduce crowding in contrast discrimination. We found the

learning to be specific to the trained location, target-flanker

separation and to the stimulus configuration, with no transfer to

untrained conditions, referred to here as context-specific learning.

Crowding reduction was also specific to the trained conditions,

and did not occur in any untrained conditions. Our findings

support the idea that the visual system learns to discriminate the

whole stimulus, including target plus flankers, and extend previous

findings in spatial localisation [35], contrast detection [30] and

letter identification [36] to contrast discrimination.

Materials and Methods

All research investigations in this study have been conducted

according to the principles expressed in the Declaration of

Helsinki.

1. Observers
29 normally-sighted observers (age range 20–60 years, 18

females) participated in this study. Initial vision screening included

examination for best corrected visual acuity, oculomotor balance,

suppression (Worth four-dot test), and stereopsis (Randot stereo

test). Only subjects within the normal limits on all tests were

included; they also had a history of normal ocular and systemic

health. Twenty-two observers were inexperienced in psychophys-

ical experiments and seven were experienced observers. Four of

these were naı̈ve to the purpose of the study, and three were

authors. The research was approved by the University of New

South Wales Human Research Ethics Committee and written

informed consent was obtained from each observer. All observers

participated in pre-training, training and post-training tests.

Figure 1. Stimulus configurations employed in the study; the central Gabors (either below or above fixation) are target and
reference stimuli, while the three Gabors on each side of the central stimuli are flankers. Stimuli in this figure are located at 9u
eccentricity and the target-flanker separation is 0.64u. Figure (a) and (b) represent Iso and Cross configuration respectively. Note that the size of the
Gabor patch is increased here for the purpose of illustration.
doi:10.1371/journal.pone.0063278.g001

Figure 2. Post/pre contrast discrimination threshold ratios for
the three training stimulus configurations (indicated by
different symbols). The mean PPR for each group (solid lines; error
bars signify standard error of the mean) is also shown in the Figure. The
horizontal dashed line is indicative of no learning.
doi:10.1371/journal.pone.0063278.g002
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2. Apparatus & Stimuli
Visual stimuli were generated using MATLAB software (version

7.2) and Psychtoolbox and were displayed on a 220 (200 viewable

image size) flat profile, gamma corrected Mitsubishi Diamond Pro

2070SB CRT monitor. The space-averaged screen luminance was

30.4 cd/m2 in an otherwise dark room.

Stimuli (target, reference and flankers) were Gabor patches

consisting of a sinusoidal grating (spatial frequency (SF) of 6

cycles/degree) multiplied by a Gaussian envelope with a standard

deviation (s) of 0.16u (s= 1/SF). The target stimulus consisted of a

pedestal at 50% Michelson contrast and a superimposed test

stimulus, which were identical in all parameters except contrast.

The reference stimulus was identical to the pedestal, while the

target contrast was always higher than the pedestal and varied

during an experimental session. Thus, the test contrast was the

difference between the target and the pedestal contrast. The

target, pedestal and reference Gabors were of horizontal

orientation.

The target and reference stimuli were flanked by six Gabors

(flankers), three on each side, arranged laterally. Flanker contrast

was always 70%. The centre-to-centre separation between any two

Gabor stimuli was 4s units (0.64u) in training, while the separation

between the target/pedestal and flankers was varied in pre- and

post-training tests (target-flanker separation paradigm; see below). A

fixation point (0.48u) was located at the centre of the monitor

throughout the experiments (except when the stimulus was

presented centrally). The target/pedestal and reference stimuli

were presented at equal eccentricity of 9u in training, however, the

eccentricity was varied in pre- and post-training (viewing eccentricity

paradigm).

Two basic stimulus configurations were used: Iso (horizontally

oriented flankers, identical to the target/pedestal; Figure 1a) and

Cross (vertically oriented flankers, orthogonal to the target/

flankers; Figure 1b). In addition, an ‘‘isolated-target’’ (Control)

condition was employed at all eccentricities. A detailed description

of stimulus conditions in the two paradigms (viewing eccentricity

and target-flanker separation) is given below.

3. Procedure
Observers viewed the stimuli from a distance of 75 cm using

their non-dominant eye (based on sighting [37]), with the fellow

eye covered with a translucent occluder.

Contrast discrimination thresholds were measured using a

spatial two-alternative forced choice (2AFC) paradigm. Observers

were simultaneously presented (250 ms duration) with both target

and reference stimuli, each located randomly either above or

below fixation. Spatial noise (random dots) with a central fixation

point was presented initially and between trials to eliminate any

afterimages. At ‘‘0u’’ eccentricity, the stimuli were only slightly

eccentric (0.32u) and the fixation point was not visible during the

stimulus presentation since the edge-edge separation of the target

and reference stimuli was 0u. To ensure fixation, the point was

presented prior to each trial (in the spatial noise) and then

disappeared just before the stimulus presentation. The task was to

indicate which stimulus (above or below fixation) appeared to be of

higher contrast while maintaining central fixation. The stimulus

presentation was accompanied by an auditory tone to reduce

temporal uncertainty, and auditory feedback was provided after

each correct response.

An adaptive random double staircase procedure with two-down

and one-up (2/1) rule was used to obtain contrast discrimination

thresholds (CDT). The first reversal on each staircase was

excluded. The CDT was calculated as the mean of contrast levels

at 10 reversals.

4. Study Design
Pre-training tests were completed in two sessions conducted on

the same day. Each session was 30–40 minutes duration and

included CDT measurement in one of the two paradigms. The

order of these paradigms was randomised in pre- and post-training

sessions and among the observers.

Training consisted of CDT measurement in 70 blocks in total

(10 blocks per day) for each observer in one of the three stimulus

conditions as follows: Group I: ISO-9 (n = 10), Group II:

CROSS-9 (n = 10), and Group III: CONTROL-9 (n = 9). The

first term in these conditions indicates stimulus configuration or

control, while the number indicates the eccentricity (9 degrees

above or below fixation). Each training session was approximately

50 minutes duration, with each block consisting of about 70 trials.

Therefore, each subject practiced around 5000 trials in total in

seven sessions scheduled on seven different days. All observers

completed the study within a period of 7–12 days.

The post-training sessions were conducted on the last day of the

training and were identical to the pre-training sessions. Each

subject took a break of at least an hour between the last training

and first post-training session on that day to avoid any fatigue

effects.

The two paradigms employed in pre- and post-training are

described below:

4.1. Paradigm I: viewing eccentricity. This paradigm

included measurement of CDT at three eccentricities (0u, 4.5u
and 9u) across the two configurations and in the isolated-target

condition. The targets and flankers were located at the closest

centre-centre separation in this paradigm (0.64u), which was

employed to determine any transfer of learning to untrained

eccentricities and stimulus configuration in terms of CDTs and the

crowding effect.

4.2. Paradigm II: Target-flanker (TF) separation. This

paradigm included measurement of CDT at four TF separations

(0.64u, 1.28u, 2.56u, and 5.12u) across the two configurations. The

separations were calculated by multiplying the smallest centre-

centre separation between the target (or reference) and flanking

Gabor stimuli (0.64u) by 1, 2, 4 and 8. The target, flankers and

reference were located at 9u in this paradigm. The paradigm was

used to determine any transfer of learning to untrained TF

separations and stimulus configuration in terms of CDTs and the

crowding effect.

5. Data Analyses
All statistical analyses were conducted using Graphpad Prism

(version 6). The data were considered in three parts for the

purpose of analysis: (i) data collected during training (ii) pre- and

Figure 3. Relative contrast discrimination thresholds plotted as a function of eccentricity of the target stimulus. Data for pre- and
post-training thresholds are represented by black circles and gray squares respectively. Error bars signify standard error of the mean. The different
panels in Figure 3 depict data for the different training and test stimulus configurations grouped so that the rows indicate different training
configurations, while columns indicate different test configurations. Framed panels indicate the training and test configurations in which a significant
learning effect was observed; asterisks denote the condition in which the difference between pre- and post- contrast thresholds was statistically
significant.
doi:10.1371/journal.pone.0063278.g003
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post-training CDTs, and (iii) pre- and post-training relative CDTs

(see below).

We looked for perceptual learning within individuals by

calculating the ratio between post- and pre-training CDTs (post/

pre ratio). While previous studies have shown overall reduction in

thresholds during perceptual training, their data show consider-

able variation across sessions (e.g. Figure 5A in Fahle and Henke-

Fahle, 1996; Figures 2 and 3 in Beard et al., 1995; Figure 2 in

Sowden et al., 2002) [17,38,39]. A measure of post/pre training

threshold ratio is subject to this variation. In an attempt to

minimise the effects of variation, post and pre-training thresholds

(within the training session only) were calculated as the mean of

the last two and first two threshold values respectively in an

observer’s training (Note that the post and pre-training thresholds

used in this calculation are different from the thresholds measured

separately in the pre- and post-training sessions.). Thresholds in

the pre- and post-training sessions were used to measure the

crowding effect in terms of relative thresholds, calculated as a ratio

of CDT in the flanked to the unflanked (isolated-target) condition

at both pre- and post-training. Thus, statistically significant

elevation in relative threshold above 1.0 indicated crowding.

Note that the isolated-target condition is referred to as the

‘‘Control’’ condition in the Results and Discussion sections below.

The specific statistical tests are mentioned along with the results in

the following section.

Results

Perceptual learning occurred with training on ISO-9, CROSS-

9, and CONTROL-9 stimuli, as shown by Figures S1, S2 and S3,

which plot the absolute contrast discrimination threshold as a

function of the training session for each observer in the three

training groups. While the data follow a general trend towards

reduction in thresholds with training, thresholds vary considerably

between sessions, consistent with previous work (e.g. Beard et al.,

1995) [39] as discussed earlier (see ‘‘Data analyses’’ section). Post/

pre ratios (PPRs) were calculated for each observer and these

values are plotted in Figure 2 for each training group. A PPR of

1.0 indicates no learning and values below 1.0 indicate learning. A

repeated measures ANOVA revealed a significant learning effect

(F (2, 26) = 4.948, p = 0.02). In each of the three training

conditions, the average post-training threshold was reduced from

pre-training threshold by a factor of approximately 0.75 to 0.5. Of

the three conditions, the highest learning effect was found in the

ISO-9 group (post-hoc Tukey’s multiple comparison tests for

CROSS-9 vs ISO-9: mean difference 20.22 (p = 0.03), and

CONTROL-9 vs ISO-9: mean difference 20.25 (p = 0.02)).

However, learning was not significantly different between

CROSS-9 and CONTROL-9 groups (mean difference 20.03;

p = 0.92).

Figures 3 and 4 show relative thresholds measured before (black

circles) and after (gray squares) training, as a function of

eccentricity (Figure 3) and target-flanker separation (Figure 4). A

relative threshold of 1 (indicated by the dashed line in each

individual plot in Figures 3 and 4) indicates no crowding, with no

difference in the absolute CDT between the flanked and unflanked

(Control) conditions. One-sample t-tests (corrected for multiple

comparisons at an alpha of 0.05) confirmed that significant

crowding was found in all conditions at 4.5 and 9 degrees

eccentricities in both pre- and post-training phases (p#0.01). The

results are consistent with the well-established finding that the

crowding effect is smaller at the fovea than in the periphery (e.g.

Leat et al., 1999) [40]. Crowding was also affected by target-

flanker separation, with significant crowding found only at small

target-flanker separations of 0.64u and 1.28u (p#0.01).

Repeated measures ANOVA (comparing relative thresholds at

each eccentricity and target-flanker separation in pre- and post-

training phases) was conducted for different pairings of training

and test stimulus configurations (i.e. the different panels in

Figures 3 and 4). A main effect of learning was observed

(p,0.05) only for the pairings in which the same stimulus

parameters were used in training and testing during pre- and post-

training phases. Post-hoc Bonferroni tests (corrected for multiple

comparisons at a confidence level of 0.05) for these conditions

revealed that the pre- and post- training relative thresholds were

significantly different (denoted by * in Figures 3 and 4) only at the

trained eccentricity of 9 degrees (ISO-Iso – mean difference: 0.86,

p = 0.01; CROSS-Cross – mean difference: 0.71, p = 0.01) and

target-flanker separations of 0.64 degrees (i.e., ISO-Iso – mean

difference: 1.12, p = 0.003; CROSS-Cross – mean difference: 1.3,

p = 0.001). These analyses also revealed a main effect for both

eccentricity and target-flanker separation (p,0.05) across all

different pairings of training-test stimulus configurations. Howev-

er, no significant interaction effects were observed indicating that

changing either eccentricity or target-flanker separation had

similar effects on pre- and post- training relative thresholds.

Discussion

We find learning that is specific to the configuration,

eccentricity and target-flanker separation of the trained stimulus.

This suggests that the learning is not procedural, related to the

subject’s task of discriminating the target from its pedestal, since

the task was identical throughout the study. If the improvements in

discrimination threshold reflected a general improvement in ability

to do this task, or an increased ability to separate target from

flankers via attentional mechanisms, those improvements should

have also occurred for untrained stimulus conditions. The findings

also indicate that the subject learns to the see the whole stimulus

(target plus flankers) and not only the target.

Previous studies suggest that perceptual learning that does not

transfer to other stimuli reflects changes at an early level of visual

processing [32,41] such as the striate cortex, where cells are tuned

to a narrow range of orientations and spatial frequencies (e.g.

Tootell et al., 1988) [42]. The training stimuli used in the present

study consisted of a target Gabor with or without flanking Gabors,

in which all target Gabors had the same orientation and spatial

frequency. Therefore, we cannot know whether learning trans-

ferred to any untrained target orientations or spatial frequencies.

However, we measured thresholds at various target-flanker

separations, eccentricities and target-flanker configurations before

and after training, and found that learning occurred only in the

trained condition and did not transfer to an untrained configu-

ration, location or target-flanker separation.

Training in the present study was performed at 9 degrees and at

the smallest possible target-flanker separation, while the pre- and

post-training measurements were also taken at other eccentricities

and target-flanker separations (see sections 4.1. and 4.2.). The

Figure 4. Relative thresholds plotted (in the same format as Figure 3) as a function of target-flanker separation. As in Figure 3, these
data are organised to represent the different combinations of training and test stimulus configurations. The horizontal dashed line indicates relative
threshold of 1, at which no crowding effect is evident.
doi:10.1371/journal.pone.0063278.g004
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learning is more likely to be location-specific at a low than a high

level of visual processing because receptive fields increase in size at

higher levels (e.g. Smith et al., 2001) [43]. Thus, the location-

specificity of learning found here suggests lower level learning;

however we cannot comment on closer eccentricities than 4.5

degrees, since we did not carry out pre- and post-training tests at

closer locations.

Our results indicate that the observers’ visual systems learned to

discriminate the target embedded within context; contrast

discrimination was improved after training, but only for the

stimulus configuration used for training. For example, learning

with horizontal flankers (ISO) did not improve discrimination of

the same target with vertical flankers (CROSS). This finding

suggests that training improved processing of the unit combining

inputs from the target and flankers, rather than the target per se,

and is in agreement with previous work on perceptual learning

[30,35,36].

Crist et al. (1997) found that perceptual learning on spatial

localisation of a bar target presented at 5 degrees from fixation was

specific to the configuration of adjacent bars. Maniglia et al. (2011)

trained the normal periphery on a contrast detection task with

collinear flanking stimuli, and found increased contrast sensitivity

for the target with collinear flankers, but not for the same target

with orthogonal flankers. Similarly, Hussain et al. (2012) trained

the normal periphery on a task involving identification of a letter

surrounded (crowded) by other letters. They measured crowded

and uncrowded (isolated) letter acuity before and after training,

and found that perceptual learning occurs only for flanked letters

(the trained condition) and not for isolated (untrained) letters.

These findings suggest that learning in detection, localisation or

identification tasks, is based on the whole stimulus (context) and

not specifically on the target. The present study shows the same

type of learning in a contrast discrimination task.

Adini et al. (2002) proposed the idea of context-enabled

learning, based on their finding that contrast discrimination

learning is facilitated by the presence of flanking stimuli [31]. Yu

et al. (2004), however, demonstrated that learning occurs in this

type of task without flanking stimuli, and suggested that context-

enabled learning is simply learning to see the target and that the

context (flankers) have little or no effect [32]. In the present study,

a contrast discrimination task of this kind was employed, with

training on targets without context (the Control or no-flanker

condition) and with context similar to (ISO) or different from

(CROSS) the target. We found that learning was greatest when the

target and flankers were similar (ISO) but was significant in all

three configurations, indicating that perceptual learning occurs

both with and without flankers.

Ahissar and Hochstein (1997) found that transfer of perceptual

learning occurs in easy but not difficult training tasks [33], with

training on a difficult task involving priming at low levels of the

visual system, while training on easy tasks can occur without low-

level involvement. The task employed in the present study

involved simultaneous comparison of two stimuli separated by

18 degrees, one located above and one below fixation, within a

250 ms time period. The difficulty of this task is likely to have been

high, since subjects needed to attend to two peripheral locations

simultaneously, in which case Ahissar and Hochstein’s theory

would suggest low level learning. This possibility is supported by

our finding that learning did not transfer to eccentricities or target-

flanker separations different from the training condition, since

previous studies suggest that learning that is specific to the trained

stimulus parameters indicates learning at lower cortical levels

[18,20].

We found that the effect of flankers, referred to here as a

crowding effect, is reduced by perceptual learning, and that the

reduced crowding occurs only at the trained target-flanker

configuration, eccentricity and separation. Reduced crowding in

the normal periphery has been demonstrated previously, with

training on a contrast detection task [30] or a letter identification

task [36]. The present findings indicate that the improvement that

occurs in peripheral contrast discrimination is specific to the

configuration of the stimulus, including the orientation and

location of flankers. It includes not only a reduction in target

threshold but also weakening of any inhibitory effect of flankers

(crowding). In agreement with previous work on spatial localisa-

tion and letter identification [30,35,36], the findings suggest that

perceptual learning involves learning to see not only the target but

also any associated features such as the flanking Gabor stimuli

used here.

Supporting Information

Figure S1 Contrast discrimination threshold (%) is
plotted as a function of training blocks for each observer
in ISO-9 group.

(TIFF)

Figure S2 Contrast discrimination threshold (%) is
plotted as a function of training blocks for each observer
in CROSS-9 group.

(TIFF)

Figure S3 Contrast discrimination threshold (%) is
plotted as a function of training blocks for each observer
in CONTROL-9 group.

(TIFF)
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