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Compartmentalized metabolism supports 
midgestation mammalian development

Ashley Solmonson1, Brandon Faubert1,2, Wen Gu1, Aparna Rao1, Mitzy A. Cowdin3, 
Ivan Menendez-Montes4, Sherwin Kelekar1, Thomas J. Rogers1, Chunxiao Pan1, 
Gerardo Guevara1, Amy Tarangelo1, Lauren G. Zacharias1, Misty S. Martin-Sandoval1, 
Duyen Do1, Panayotis Pachnis1, Dennis Dumesnil1, Thomas P. Mathews1, Alpaslan Tasdogan1,5, 
An Pham6, Ling Cai1,7, Zhiyu Zhao1, Min Ni1, Ondine Cleaver3, Hesham A. Sadek3,4, 
Sean J. Morrison1,8 & Ralph J. DeBerardinis1,6,8 ✉

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. 
Midgestation features increasing oxygen and nutrient availability concomitant with 
fetal organ development2,3. Understanding how metabolism supports development 
requires approaches to observe metabolism directly in model organisms in utero. Here 
we used isotope tracing and metabolomics to identify evolving metabolic programmes 
in the placenta and embryo during midgestation in mice. These tissues differ 
metabolically throughout midgestation, but we pinpointed gestational days (GD)  
10.5–11.5 as a transition period for both placenta and embryo. Isotope tracing revealed 
differences in carbohydrate metabolism between the tissues and rapid 
glucose-dependent purine synthesis, especially in the embryo. Glucose’s contribution 
to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but 
not in the placenta. By GD12.5, compartmentalized metabolic programmes are 
apparent within the embryo, including different nutrient contributions to the TCA cycle 
in different organs. To contextualize developmental anomalies associated with 
Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that 
activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency 
suppresses TCA cycle metabolism during the GD10.5–GD11.5 transition, perturbs brain, 
heart and erythrocyte development and leads to embryonic demise by GD11.5. These 
data document individualized metabolic programmes in developing organs in utero.

Metabolism supports tissue development by supplying metabolic 
intermediates for energy production, anabolism, epigenetic regu-
lation of gene expression and the formation of metabolic gradients 
that inform embryonic patterning6–8. The post-implantation embryo 
and placenta initially develop in relative hypoxia9 (1–5% O2). During 
this period, both the placenta and embryo require hypoxia-inducible 
gene-expression programmes, and disrupting these pathways or pro-
longing exposure to hypoxia results in improper cell differentiation 
and premature lethality10–12 around GD10. Midgestation is marked by 
an increased transfer of nutrients and oxygen from the maternal cir-
culation as fetal erythropoiesis begins and the vasculature matures 
in the placenta and embryo. This period is characterized by accelerat-
ing growth of placenta and embryo, and morphogenesis in the heart, 
brain and liver2,13 (Fig. 1a), both of which suggest that midgestation is a 
metabolically dynamic period. Genetic and environmental alterations 
of metabolism result in developmental defects in humans14–16, although 
the mechanism of many such anomalies is unknown. Most previous 

analyses of mouse embryonic metabolism has relied on ex vivo models 
or inferred metabolic requirements indirectly from the developmental 
consequences of genetic loss-of-function experiments1. We set out to 
observe metabolism directly in the intact fetal–placental unit in vivo 
during midgestation to identify metabolic transitions and to test the 
effects of perturbing them.

Distinct metabolic transitions at GD10.5
In mice, placentation begins2 at GD3.5 and facile dissection of the pla-
centa from the embryo is possible by GD9.5. To characterize metabo-
lism during midgestation, we collected embryos and placentas from 
naively pregnant C57BL/6J dams from GD10.5 to GD13.5 and performed 
metabolomics. Tissue mass increased rapidly in both the placenta and 
embryo over this period (Fig. 1b). Placenta and embryo metabolomics 
differ throughout midgestation, as expected given their divergent 
cellular composition and functions (Fig. 1c, Extended Data Fig. 1).  

https://doi.org/10.1038/s41586-022-04557-9

Received: 1 March 2021

Accepted: 8 February 2022

Published online: 6 April 2022

Open access

 Check for updates

1Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. 2Section of Hematology and Oncology, Department of Medicine, The University 
of Chicago, Chicago, IL, USA. 3Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. 4Division of Cardiology, Department of Internal Medicine, 
University of Texas Southwestern Medical Center, Dallas, TX, USA. 5Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site Essen, Essen, Germany. 
6Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA. 7Quantitative Biomedical Research Center, Department of Population and Data Sciences, 
University of Texas Southwestern Medical Center, Dallas, TX, USA. 8Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.  
✉e-mail: ralph.deberardinis@utsouthwestern.edu

https://doi.org/10.1038/s41586-022-04557-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-04557-9&domain=pdf
mailto:ralph.deberardinis@utsouthwestern.edu


350 | Nature | Vol 604 | 14 April 2022

Article

In both tissues, GD10.5 was metabolically different from subsequent 
days, indicating transitions between GD10.5 and GD11.5 (Fig. 1c, 
Extended Data Fig. 1). These transitions were largely distinct between 
embryo and placenta, with most metabolites changing in one tissue 
but not the other (Fig. 1d, Extended Data Fig. 2a–d). Metabolic set 
overrepresentation analysis (MSOA) identified numerous pathways 
that change in the placenta between GD10.5 and GD11.5, particularly 
pathways related to nitrogen and amino acid metabolism (Extended 
Data Fig. 2d). Urea cycle-related metabolites increased abruptly but 
transiently in the placenta at GD11.5 (Extended Data Fig. 2e), possibly 
reflecting the role of arginine in stimulating placental–fetal blood flow17. 
In the embryo, MSOA between GD10.5 and GD11.5 identified purine and 
pyrimidine metabolism as two of the top-scoring pathways (Extended 
Data Fig. 2c). Most purines displayed a sustained increase after GD10.5 
in the embryo, whereas pyrimidines showed little change or decreased 
in both tissues (Fig. 1e).

Rapid and localized metabolism in utero
To assess metabolite turnover in utero, we adapted previous methods18 
to infuse uniformly labelled [13C]-glucose ([U-13C]glucose) into preg-
nant mice at GD10.5. Embryos and adjoined placentas were removed 
every 30 min while uterine blood flow was maintained so that nutri-
ent transport and metabolism could be assessed kinetically (Fig. 2a). 
This analysis revealed rapid labelling in maternal blood, placenta and 
embryo, indicating efficient glucose transfer from maternal circulation 
to embryo, as expected (Fig. 2b). By contrast, embryonic glutamine 
was labelled slowly from [U-13C]glutamine in the maternal circulation 
(Fig. 2c), indicating distinct transport kinetics for different nutrients.

Rapid labelling of downstream metabolites indicates robust metabo-
lism in the conceptus, and distinct labelling features in the embryo and 
placenta indicate metabolic differences between the tissues. Levels of 
13C enrichment in glucose-derived metabolites reflect the combined 
contribution of labelled and unlabelled substrates through intersecting 
pathways (Extended Data Fig. 3a). Glucose-6-phosphate (G6P) appeared 
rapidly in the embryo as m+6, indicating conversion from maternal 

glucose (Fig. 2d). However, placental G6P was labelled differently in 
the same mice. Overall G6P enrichment was lower than in the embryo, 
and G6P m+6 and m+3 appeared over similar time scales (Fig. 2d).  
A complete understanding of carbohydrate metabolism will require 
compartment-specific enzyme knockouts, but the placental labelling 
pattern suggests contributions from glycogenolysis, gluconeogenesis 
and other pathways previously reported in mammalian placentas19 
(Extended Data Fig. 3a).

The pentose phosphate pathway intermediate and nucleotide precur-
sor ribose-5-phophate (R5P) also turned over rapidly. R5P was similar 
to G6P in that labelling was distributed across several isotopologues, 
and fully labelled R5P (m+5) was the predominant labelled form in 
the embryo but not the placenta (Extended Data Fig. 3b, c). After 4 h, 
purines were extensively labelled in both placenta and embryo, but 
again labelling was higher in embryos (Fig. 2e, Extended Data Fig. 3d–f). 
The total enrichment (that is, 1.0 – the unlabelled fraction, incorporat-
ing all 13C-labelled forms) was above 0.3 in all purines analysed, indicat-
ing that within 4 h, at least 30% of the embryo purine pools contained 
carbon originating in the maternal circulation (Fig. 2e). Although much 
of the purine labelling appeared to arise from R5P, purine bases in the 
embryo also contained 13C; evidence for labelling in the bases included 
higher total labelling in purines than R5P (Fig. 2e), and the presence of 
inosine monophosphate, GMP and AMP containing more than five 13C 
nuclei (Extended Data Fig. 3d–f). In the context of the expanding purine 
pool (Fig. 1e) and extensive labelling of serine and glycine (Extended 
Data Fig. 3g), these data point to de novo purine synthesis in embryos. 
As an orthogonal labelling approach, we infused pregnant mice with 
[γ-15N]glutamine. The labelled nitrogen is incorporated into the purine 
ring during de novo synthesis. Again, higher relative enrichments 
were detected in inosine monophosphate and GMP in the embryos 
(Fig. 2f). Pyrimidines were also labelled by both [U-13C]glucose and 
[γ- 15N]glutamine, but with less consistent differences between embryo 
and placenta (Extended Data Fig. 3h, i). Overall, the data indicate rapid 
metabolism during midgestation, including prominent utilization of 
maternal glucose and glutamine for embryonic purines, and distinct 
patterns of metabolic labelling between embryo and placenta.
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Fig. 1 | Metabolic transition at GD10.5–GD11.5. a, Midgestation is a dynamic 
period of development. b, Tissue weights from pregnant dams, aged 13.6 ± 3.8 
weeks. c, Group average heat map of metabolomics data. d, Metabolites with 
P < 0.05 and fold change (FC) > 1.2 or < 0.8 between GD10.5 and GD11.5. e, Heat 
map of purines and pyrimidines, plotted as fold change relative to GD10.5. 

Statistical tests: straight-line least-squares fitting followed by the extra 
sum-of-squares F-test (b); Student’s t-tests (d). Data are mean ± s.d. Statistical 
tests were two-sided. Guanidine Ac, guanidine acetate; IMP, inosine 
monophosphate (additional abbreviations, Supplementary Table 1).
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Compartmentalized embryonic metabolism
Increases in vascularization, erythropoiesis and cardiac function2,20 
predict enhanced oxidative metabolism in the embryo during midg-
estation. We performed [U-13C]glucose infusions between GD9.5 and 
GD12.5, when oxygen levels increase9. On GD9.5, the placenta displayed 
higher labelling of tricarboxylic acid (TCA) cycle intermediates than 
the embryo (Fig. 3a). Labelling in the placental TCA cycle intermediates 
changed minimally over the next 3 days, but labelling in embryonic 
intermediates increased such that by GD12.5, labelling was similar or 
higher in the embryo than the placenta (Fig. 3b, Extended Data Fig. 4a, b).  
The citrate m+2/pyruvate m+3 ratio reports transfer of labelled 
two-carbon units from glucose to citrate via pyruvate dehydrogenase 
(PDH), whereas the citrate m+3/pyruvate m+3 ratio reports transfer of 
labelled three-carbon units via pyruvate carboxylase. In both tissues on 
all days, citrate m+2/pyruvate m+3 exceeds citrate m+3/pyruvate m+3, 
indicating that pyruvate enters the TCA cycle predominantly by PDH 
(Extended Data Fig. 4c, d). Both ratios increased between GD9.5 and 
GD12.5 in the embryos, but not in placenta, where labelling declined 
slightly. These data indicate that pyruvate oxidation is timed differ-
ently in the embryo and placenta, lagging in the embryo by a few days.

The increased contribution of glucose to the TCA cycle in the embryo 
may reflect the development of oxidative organs such as the liver, heart 
and brain. To assess gene-expression signatures relevant to mitochon-
drial function, we analysed polyA plus RNAseq data from the ENCODE 
portal21 from each of these organs across GD10.5–GD13.5. This revealed 
increased electron transport chain (ETC)-related transcript abundance 
over this period, particularly in the heart (Extended Data Fig. 4e).  
By contrast, most ETC-related transcripts declined in placenta over 
midgestation (Extended Data Fig. 4g). We then performed [U-13C]
glucose infusions and analysed labelling in the brain, heart and liver.  
On GD12.5, TCA cycle intermediates displayed uniformly high labelling in 
the brain and heart, with less labelling in in the liver (Fig. 3c). The ratio of 
citrate to pyruvate labelling in the heart increased during midgestation, 

corresponding to enhanced expression of ETC subunits (Extended Data 
Fig. 4e, f); this is notable because heart development requires increased 
oxygenation and reduced HIF1α expression2,22,23. We also infused [U-13C]
glutamine to assess metabolism of an alternative fuel. In contrast to 
[U-13C]glucose, infusion with [U-13C]glutamine resulted in higher label-
ling in metabolites from the GD12.5 liver compared with brain or heart 
(Fig. 3d). Kinetic experiments revealed consistent glutamine labelling 
in each organ, but higher labelling in glutamate in the liver throughout 
the time course (Extended Data Fig. 4h). These data indicate distinct 
patterns of fuel metabolism in developing embryonic organs.

LIPT1 enables developmental metabolism
To test the importance of enhanced oxidative metabolism during 
midgestation, we examined the impact of lipoyltransferase-1 (LIPT1) 
deficiency in utero. LIPT1 transfers the essential lipoic acid cofactor 
onto mitochondrial 2-ketoacid dehydrogenases related to the TCA 
cycle, including PDH, α-ketoglutarate dehydrogenase (AKGDH), 
branched-chain ketoacid dehydrogenase (BCKDH) and 2-oxoadipate 
dehydrogenase4,5. We reported a patient with compound heterozygo-
sity for pathogenic LIPT1 variants (N44S and S292X) and a phenotype 
of neurodevelopmental disability and seizures5. Mice homozygous for 
the N44S variant are detected at close to the expected Mendelian ratio 
at GD10.5 but absent by GD11.5, indicating embryonic lethality occurs 
between these days5. Lipt1WT/N44S mice are healthy, born at the expected 
frequency5 and have similar metabolomic signatures to Lipt1WT/WT 
embryos at GD10.5 (Fig. 4a, Extended Data Fig. 5a), so we grouped 
Lipt1WT/WT and Lipt1WT/N44S together as ‘healthy’ in statistical analyses. 
Lipt1N44S/N44S conceptuses are viable but small on GD10.5 (Extended 
Data Fig. 5b). On GD10.5, Lipt1N44S/N44S conceptuses had metabolomic 
patterns consistent with deficiencies in lipoylation and the TCA cycle. 
A defect in AKGDH was apparent from accumulation of α-ketoglutarate 
in the placenta and embryo; depletion of products downstream of 
AKGDH also occurred in the embryos (Fig. 4a, Extended Data Fig. 5c). 
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Other abnormalities related to 2-ketoacid dehydrogenase dysfunc-
tion included accumulation of lysine and branched-chain ketoacids, 
particularly in the embryos (Fig. 4a Extended Data Fig. 5c).

We next performed infusions in pregnant dams at GD9.5 and GD10.5, 
first evaluating the capacity of Lipt1N44S/N44S placentas to take up and trans-
fer nutrients to the embryo. Lipt1N44S/N44S placentas had no defects in taking 
up [U-13C]glucose or [U-13C]glutamine from the maternal circulation or 
transferring the label to the embryos (Extended Data Fig. 5d, e). Placental 
differentiation markers were largely conserved between healthy and 
Lipt1N44S/N44S placentas (Extended Data Fig. 5f). From this, we conclude 

that although LIPT1 deficiency alters placental metabolism, placental dys-
function is not the primary cause of lethality in the Lipt1N44S/N44S embryos.

We also investigated the effects of LIPT1 deficiency on TCA cycle label-
ling at GD9.5 and GD10.5 (Fig. 4b, c, Extended Data Fig. 5g), just before 
the point of demise. Lipt1N44S/N44S embryos were metabolically active and 
indistinguishable from healthy embryos in pyruvate or lactate labelling 
from 13C-glucose (Fig. 4b). However, TCA cycle labelling was suppressed 
in Lipt1N44S/N44S tissues, particularly downstream of AKGDH, at both GD9.5 
and GD10.5 (Fig. 4b, c, Extended Data Fig. 5g). Thus, Lipt1N44S/N44S embryos 
do not induce TCA cycle labelling just prior to their midgestation demise.
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were two-sided. α-KG, α-ketoglutarate; Aco, aconitase; Fum, fumarate; Lys, lysine; 
KIV, a-ketoisovalerate; KIC, α-ketoisocaproate; KMV, α-keto-β-methylvalerate.
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Finally, we assessed development in these embryos. Somite counts 
were indistinguishable among the genotypes at GD9.5 (Extended Data 
Fig. 6a). The initial formation and patterning of blood vessels was 
normal, and blood vessels were present throughout the Lipt1N44S/N44S 
embryos (Extended Data Fig. 6b). Vessel maturation as assessed by the 
flow-responsive marker Connexin 40, was also normal (Extended Data 
Fig. 6b). However, both the brain and heart were smaller in the mutants 
(Fig. 4d, Extended Data Fig. 6b). We also assessed erythropoiesis by 
performing flow cytometry on cells from dissociated embryos using cell 
surface markers. We observed a decreased abundance of CD71+TER119+ 
fetal erythrocytes and an increased abundance of CD41+c-Kit+  
myeloid–erythroid progenitors in LIPT1N44S/N44S embryos, suggesting 
impaired erythrocyte differentiation (Fig. 4e, Extended Data Figs. 6c, 
d, 7). To examine the human relevance of this observation, we reviewed 
15 years of clinical records from our LIPT1-deficient patient, and found 
that she suffers from chonic, unexplained anaemia (Fig. 4f) despite 
normal iron, folate and vitamin B12 levels. Her platelet and white blood 
cell counts are preserved (Extended Data Fig. 6e, f), suggesting a par-
ticular defect in the erythroid lineage.

Conclusions
Metabolic defects and exposure to metabolic inhibitors16 can result in 
human congenital anomalies, emphasizing the importance of precise 
metabolic control during fetal development. Although resources exist 
to assess gene-expression and epigenetic signatures throughout devel-
opment24,25, understanding the developmental consequences of meta-
bolic defects will benefit from methods to assess metabolism directly 
in utero. In this Article, we report metabolic features that evolve during 
midgestation in placenta and embryo, with both tissues undergoing 
extensive but largely distinct changes. The metabolic differences are 
consistent with requirements for rapid growth, dramatically divergent 
cellular composition of these tissues, and evolving celluar environ-
ments. Compartment-specific labelling differences in G6P and other 
metabolites indicate localized placental carbohydrate metabolism 
that may have little direct effect on embryonic glucose metabolism 
and possible differences in how each compartment meets its growth 
requirements. In the embryo, glucose supplies glycolysis, the pentose 
phosphate pathway and an expanding purine pool, all of which are 
rapidly labelled from glucose in the maternal circulation.

The contribution of maternally derived nutrients to the embry-
onic TCA cycle increases as midgestation progresses beyond GD9.526.  
We thus sought to examine the metabolic effects of a human genomic 
variant that interrupts this process. LIPT1 activates multiple enzymes 
responsible for providing respiratory substrates to the TCA cycle, and 
human LIPT1 deficiency results in developmental anomalies in oxida-
tive organs including the brain. In mice, we find that LIPT1 is required 
for precisely timed changes in mitochondrial metabolism necessary 
for development past GD10.5; LIPT1 mutants persist for about one day 
after TCA cycle labelling increases in wild-type counterparts, and then 
die. Embryonic demise involves delayed or defective development in 
tissues such as the heart that have enhanced pyruvate oxidation over 
this gestational time frame, and erythrocytes, whose development 
requires mitochondrial function27. Of note, the metabolic fate of pyru-
vate has been suggested to inform development in some contexts, with 
persistent conversion to lactate associated with stem cell expansion 
and oxidation in the TCA cycle associated with differentiation28–30. 
Observing metabolic pathways at the level of individual embryonic 
organs should provide an efficient approach to identify pathways that 
support spatiotemporal developmental programmes.
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Article
Methods

Materials
Materials were obtained as follows: [U-13C]glucose (Cambridge Iso-
topes, CLM-1396), [U-13C]glutamine (Cambridge Isotopes, CLM-1822), 
C57BL/6J (UTSW Mouse Breeding Core or Jackson Labs) and Lipt1N44S 
knock-in mice (developed in-house)5.

Subject information and clinical data
The LIPT1-deficient individual who provided clinical data in Fig. 4f, 
Extended Data Fig. 6e, f was described previously5. This patient was 
enrolled in a prospective, non-randomized, non-blinded observa-
tional study whose overarching goal is to discover new metabolic 
disease-associated genes in patients of any age, and to characterize the 
metabolic phenotype in these patients (NCT02650622). The study was 
approved by the Institutional Review Board (IRB) at University of Texas 
Southwestern Medical Center (UTSW), and written informed consent was 
obtained from the patient’s parents. Patients and family members eligible 
for the study are identified at UTSW, its affiliated hospitals, and other col-
laborating hospitals. After enrollment, study subjects provide blood for 
metabolomics and genomics, and a research-based integrated analysis of 
the data allows potentially pathogenic genomic variants to be prioritized 
for functional analysis in the laboratory. The study is purely observational 
in that no therapeutic interventions are proposed, although patients 
are followed longitudinally to understand each disease’s natural history 
and the effects of therapies instituted as a part of routine clinical care.  
A total enrollment of over 1,500 patients is planned with the intention 
of representing many rare conditions within the cohort.

Reference datasets and data processing
Data for fetal tissues during midgestation are available from the 
ENCODE21,35,40 project Mouse Development Matrix (https://www.
encodeproject.org/mouse-development-matrix). We downloaded 
the tsv files from the polyA plus RNAseq assay with the follow-
ing identifiers: ENCFF262TPS (E11.5 liver -1), ENCFF414APX (E11.5 
liver-2), ENCFF173NFQ (E12.5 liver-1), ENCFF144DHB (E12.5 liver-2), 
ENCFF971KKK (E13.5 liver-1), ENCFF042DVY (E13.5 liver-2), ENCFF-
770SOB (E10.5 heart-1), ENCFF351QKG (E10.5 heart-2), ENCFF159DWP 
(E11.5 heart-1), ENCFF168UJM (E11.5 heart-2), ENCFF484QWQ 
(E12.5 heart-1), ENCFF329HOZ (E12.5 heart-2), ENCFF148BEQ 
(E13.5 heart-1), ENCFF836QQS (E13.5 heart-2), ENCFF145PTV(E10.5 
forebrain-1), ENCFF476ADM (E10.5 forebrain-2), ENCFF606UHO 
(E11.5 forebrain-1), ENCFF434CSI (E11.5 forebrain-2), ENCFF928MQD 
(E12.5 forebrain-1), ENCFF046RSQ (E12.5 forebrain-2), ENCFF960KJV 
(E13.5 forebrain-1), ENCFF356CTG (E13.5 forebrain-2). Placenta RNA 
transcript abundance was obtained from Gene Expression Omnibus 
(GEO) accession code GSE100053. Expression data were filtered 
based on known metabolic genes37–39 and human–mouse gene map-
ping was based on the HomoloGene database (https://www.ncbi.
nlm.nih.gov/homologene).

Placental gene-expression data were obtained from the GEO reposi-
tory (https://www.ncbi.nlm.nih.gov/gds) using the GEOquery package36 
(https://doi.org/10.18129/B9.bioc.GEOquery) v2.62.1 from BioConduc-
tor release (3.14) (https://www.bioconductor.org/). Data were filtered 
based on known metabolic genes37–39 and sorted by Kyoto Encyclopedia 
of Genes and Genomes pathway annotation in the metaboAnalyst_KEGG 
R package (https://github.com/xia-lab/MetaboAnalystR). Human–
mouse gene mapping was based on the HomoloGene database (https://
www.ncbi.nlm.nih.gov/homologene).

Animal studies
All procedures were approved by the UT Southwestern Animal Care 
and Use Committee (IACUC) in accordance with The Guide for the Care 
and Use of Laboratory Animals. All mice were housed in a pathogen free 
environment (temperature 20–26 °C, humidity 30–70%) with a 12 h:12 h 

light:dark cycle and fed chow diet (Teklad 2916) ad libitum. Healthy 
8–15 week old, naïve pregnant females were set up for mating between 
05:00 and 07:00 with proven studs of the appropriate genotype.  
The following morning, females displaying vaginal plugs were identi-
fied as pregnant and moved to a new cage until the indicated gesta-
tional day.

Metabolomic analysis
All sample collection took place between 09:00 and 11:00 with no 
prior fasting of the pregnant dams. Mice were initially anaesthetized 
using isoflurane and samples were dissected in cold sodium chloride 
irrigating solution (Baxter) and snap frozen in liquid nitrogen. Whole 
embryos and placentas were homogenized manually with a rubber 
dounce homogenizer in ice-cold acetonitrile:water (80:20). Samples 
were flash frozen 3 times in liquid nitrogen and then centrifuged at 
16,000g for 10 min at 4 °C. Supernatants were subject to BCA analy-
sis and normalized to 70 μg ml−1 and placed in LC–MS vials. Metabo-
lite analysis used a Vanquish UHPLC coupled to a Thermo Scientific 
QExactive HF-X hybrid quadrupole orbitrap high-resolution mass 
spectrometer (HRMS) as performed previously31. Pooled samples 
were generated from an equal mixture of all individual samples and 
analysed using individual positive- and negative-polarity spectrometry 
ddHRMS/MS acquisition methods for high-confidence metabolite 
ID. Metabolite identities were confirmed in three ways: (1) precursor 
ion m/z was matched within 5 ppm of theoretical mass predicted by 
the chemical formula; (2) fragment ion spectra were matched within a 
5 ppm tolerance to known metabolite fragments; and (3) the retention 
time of metabolites was within 5% of the retention time of a purified 
standard run with the same chromatographic method. LC-MS/MS 
data were collected using SCIEX Analyst v1.6.3 and Thermo Scientific 
XCalibur 4.1.50 and data analysed using SCIEX Multiquant v2.1.1, and 
Thermo Scientific Trace Finder v5.1. Relative metabolite abundance 
was determined by integrating the chromatographic peak area of 
the precursor ion searched within a 5 ppm tolerance and then nor-
malized to total ion count (TIC). Statistical analysis for generation of 
PCA plots, heatmaps, differential abundances and MSOA were per-
formed using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca). 
Data were log-transformed and auto-scaled prior to the analysis. Addi-
tional heatmaps (Fig. 1e, Extended Data Fig. 2e) were generated using 
GraphPad Prism 9.0.1. For 13C studies, observed distributions of mass 
isotopologues were corrected for natural isotope abundances using 
a customized R script, which can be found at the GitHub repository 
(https://github.com/wencgu/nac). The script was written by adapting 
the AccuCor algorithm v0.2.432.

Pregnant mouse infusions
All infusions took place between 09:00 and 11:00 with no prior fasting 
of the pregnant dams. Mice were initially anaesthetized using ketamine 
and xylazine (120 mg kg−1 and 16 mg kg−1, respectively, intraperito-
neally) and maintained under anaesthesia using subsequent doses 
of ketamine (20 mg kg−1, intraperitoneally) as needed. Catheters 
(25-gauge) were inserted into the tail vein and isotope infusions began 
immediately after a retro-orbital blood draw to mark time zero. In the 
glucose infusions, the total dose was 2.48 g kg−1 dissolved in 750 μl 
normal saline and administered with a bolus of 62.5 μl min−1 for 1 min 
followed by an infusion rate of 2.5 μl min−1 for 3–4 h. Retro-orbital 
blood draws were taken throughout the infusion to monitor tracer 
enrichment in maternal blood. Glutamine infusions used a total dose 
of 1.73 g kg−1 dissolved in 1,500 μl normal saline administered as a bolus 
of 147 μl min−1 for 1 min followed by an infusion rate of 3 μl min−1 for 
5 h. Mice were euthanized at the end of the infusion, then the uterus 
was removed and placentas and embryos dissected in cold sodium 
chloride irrigating solution and frozen in liquid nitrogen. Care was 
taken during infusions not to increase nutrient concentrations over 
pre-infusion levels.
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Serial caesarian-section surgery
For serial caesarian sections, the infusion parameters were the 
same as described above with the following alterations: (1) Serial 
caesarian-section infusions did not include a bolus; (2) the infusion 
rate was increased to 5 μl min−1 in order to obtain sufficient label-
ling. Although the patterns of data for serial caesarian-sections 
matched what we observed in the 4 h infusions, the overall labelling 
was somewhat lower and for this reason we did not compare serial 
caesarian-section data to data from longer infusions. After cannu-
lation of the tail vein and retro-orbital blood draw for time zero, the 
lower abdomen of the pregnant dam was opened with a small incision.  
The uterus was removed from the peritoneal cavity and the conceptus 
nearest to one of the ovaries was dissected away from the uterus and 
further dissected into placenta and embryo in cold sodium chloride 
irrigating solution and then frozen in liquid nitrogen. The peritoneal 
cavity was flushed with sodium chloride irrigating solution, covered 
with gauze, and periodically rinsed with irrigating solution throughout 
the remainder of the surgery. The infusion was initiated and a single 
conceptus was dissected in a similar manner at the indicated time points 
until all embryos had been dissected or the 3 h time point was reached.

Gas chromatography mass spectrometry (GCMS)
Gas chromatography–mass spectrometry (GCMS) was used to identify 
glucose, pyruvate, lactate, citrate, succinate, malate and aspartate. 
These metabolites were also identified using liquid chromatography–
mass spectrometry (LC–MS) and enrichment values were similar. Blood 
samples obtained during the infusion were chilled on ice for 5–10 min 
and then flash frozen in liquid nitrogen. Aliquots of 10–20 μl were 
added to 80:20 acetonitrile:water for extraction. Frozen tissues (whole 
embryo and whole placenta) were added to 80:20 acetonitrile:water 
and extracted to analyse 13C enrichment. Samples were manually 
disrupted using a rubber dounce homogenizer, subjected to three 
freeze–thaw cycles, then centrifuged at 16,000g for 15 min to precipi-
tate macromolecules. For GCMS, 1 μl D27-myristic acid was added as an 
internal control, supernatants were evaporated, then re-suspended 
in 30 μl anhydrous pyridine with 10 mg ml−1 methoxyamine and incu-
bated at room temperature overnight. The following morning, the 
samples were incubated at 70 °C for 10–15 min and then centrifuged at 
16,000g for 10 min. The supernatant was transferred to a pre-prepared 
GC/MS autoinjector vial containing 70 μl N-(tert-butyldimethylsilyl)- 
N-methyltrifluoroacetamide (MTBSTFA) derivatization reagent.  
The samples were incubated at 70 °C for 1 h after which aliquots of 
1 μl were injected for analysis. Samples were analysed using either 
an Agilent 6890 or 7890 gas chromatograph coupled to an Agilent 
5973N or 5975C Mass Selective Detector, respectively. GC–MS data 
were collected and analysed using Agilent ChemStation E02.02.1431. 
The observed distributions of mass isotopologues were corrected for 
natural isotope abundances using a customized R script, which can 
be found at the GitHub repository (https://github.com/wencgu/nac).  
The script was written by adapting the AccuCor algorithm v0.2.432.

Gene expression
Total RNA was extracted from placental tissue using TRIzol Reagent 
(Thermo Fisher Scientific cat. no. 15596026). RNA (3,250 ng) was used 
as a template for a 70 μl cDNA synthesis reaction using TaqMan Reverse 
Transcription Reagents (Thermo Scientific cat. no. N8080234) according 
to the manufacturer’s instructions. cDNA was diluted 1:1 in nuclease-free 
water and plated at a final volume of 4 μl in a 384-well plate. Primers for 
placental markers were as described33 and diluted to a final concentra-
tion of 2.5 μM. Primers were mixed with iTaq Universal SYBR Supermix 
(Bio-Rad cat. no. 1725121) and plated at a volume of 6 μl for a total reaction 
volume of 10 μl. Plates were run in a Bio-Rad CFX384 Touch Real-Time PCR 
Detection machine using the following protocol: (1) polymerase activa-
tion: 95 °C hold for 30 min; (2) PCR phase, 40 cycles: 95 °C hold for 5 s, 

60 °C hold for 30 s; (3) melt curve, instrument default settings. Relative 
fold induction was computed using the ∆∆CT method, as described34.

Embryo RNA sequencing data were downloaded from the ENCODE 
Mouse Development Matrix35 (https://www.encodeproject.org/). 
PolyA plus RNA-seq data were obtained for fetal heart, forebrain and 
liver from GD10.5-GD12.5 (not all days are available for liver). Placenta 
RNA transcript abundance was obtained from GEO accession code 
GSE100053 using the GEOquery package36 (https://doi.org/10.18129/
B9.bioc.GEOquery) v2.62.1 from BioConductor release (3.14) (https://
www.bioconductor.org/). Data were filtered based on known metabolic 
genes37–39 and sorted by Kyoto Encyclopedia of Genes and Genomes 
pathway annotation in the metaboAnalyst_KEGG R package (https://
github.com/xia-lab/MetaboAnalystR). Human–mouse gene mapping 
was based on the HomoloGene database (https://www.ncbi.nlm.nih.
gov/homologene).

Flow cytometry
Whole embryos were collected from GD10.5 pregant mice into 1× PBS and 
mechanically disrupted using disposable pestles (VWR) and then filtered 
through a 40-μM cell strainer to remove clumps. Antibody staining was 
performed for 20 min on ice, followed by washing with HBSS (Invitrogen) 
and centrifugation at 200g for 5 min. Cells were stained with directly 
conjugated antibodies against mouse CD71 (FITC-R17.217.1.4 Biolegend, 
1:100), mouse Ter119 (APC-TER-119 TONBO, 1:100), mouse CD41 (PE/
Cy7-MWReg30 Biolegend, 1:100) and mouse CD117 (cKIT-APC-eFlour 
780-Invitrogen, 1:100). All cells were gated for forward and side scatter 
and gated for live cells based on DAPI (1 μg ml−1; Sigma, eFlour-450A). 
Erythrocytes were cells that were negative for CD117 (c-KIT), and posi-
tive for CD71 and Ter119. Myeloid–erythroid progenitors were negative 
for CD71 and TER119 and positive for CD41 and CD117 (c-KIT). Cells were 
examined on an LSRFortessa cell analyser (Becton Dickinson) and figures 
were generated using BD FACSDiva 8.0 and FlowJo v10.

Whole-mount immunofluorescent staining
Pregnant females at the desired developmental stage were euthanized 
by carbon dioxide asphyxiation and the uterus and extra-embryonic 
tissues were removed. Yolk sacs were used for genotyping and somites 
were counted. Embryos were fixed in 4% paraformaldehyde for 1 h at 
25 °C or 4 °C overnight. Fixed embryos were washed at least 3 times 
with 1× PBS and dehydrated through a series of methanol or ethanol 
(25%, 50%, 75% and 100%, two times), permeabilized using 1% Triton 
X-100 (Fisher Bioreagents, cat. no. BP151-100) in PBS for 1.5–2 h at 25 °C, 
then blocked using CAS Block (Life Technologies, cat. no. 008120) 
for 2 h. Embryos were incubated in primary antibodies diluted in CAS 
Block overnight at 4 °C: Rat-anti-PECAM1 (1:100, BD, Biosciences, cat. 
no. 553370), Rat-anti-endomucin (1:100, Santa Cruz, sc-65495) and 
Rabbit-anti-connexin 40 (1:100, Alpha Diagnostics International, cat. 
no. CX-40A). Embryos were washed with 1× PBS then incubated with 
secondary antibodies diluted in CAS Block at 1:250 overnight at 4 °C: 
donkey-anti-rat 488 (Invitrogen, cat. no. A21208), donkey-anti-rabbit 
555 (Invitrogen, cat. no. A31572). Embryos were washed in 1× PBS, 
then dehydrated to 100% methanol through a methanol series 
(25%, 50%, 75%, 100% two times, 10 min each), cleared in a 1:2 benzyl 
alcohol:benzyl benzoate (BABB) solution, and mounted in BABB in 
5 mm Thick Microscopy slides (Chang Biosciences, Rb167104D_1) and 
cover slipped. Images were obtained using a LSM700 Ziess confocal 
microscope with the Carl Zeiss ZEN 2011 software. If images of the dis-
sected heart were desired, whole embryos were rehydrated through a 
methanol series into PBS, hearts were dissected and placed in a 1.5 mm 
2-well concavity slide (Electron Microscopy Sciences, cat. no. 71878-
03) containing PBS. Whole-heart images were obtained using a Ziess 
Images M2 with an Axiocam 506 mono camera attached with the Carl 
Zeiss ZEN 2011 software. For sectioned samples, paraffin embedded 
samples were transverse sectioned at 5 μm and stained with haema-
toxylin and eosin.

https://github.com/wencgu/nac
https://www.encodeproject.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100053
https://doi.org/10.18129/B9.bioc.GEOquery
https://doi.org/10.18129/B9.bioc.GEOquery
https://www.bioconductor.org/
https://www.bioconductor.org/
https://github.com/xia-lab/MetaboAnalystR
https://github.com/xia-lab/MetaboAnalystR
https://www.ncbi.nlm.nih.gov/homologene
https://www.ncbi.nlm.nih.gov/homologene
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Statistical analysis
During flow cytometry, isotope tracing, metabolomics, quantitative 
PCR, tissue weights, somite counts and histology experiments, the data 
were analysed in a manner blinded to sample genotype. A.S. collected 
the samples and then passed them to A. Tasdogan. for flow cytom-
etry, or to I.M.-M. and M.A.C. for histology and immunofluorescence, 
and A. Tarangelo. for quantitative PCR. A.S. processed samples for 
mass spectrometry and analysed data. After the patterns had been 
analysed in each of these experiments, D. Dumesnil. provided the geno-
type information so results could be interpreted. For experiments 
in wild-type mice, no blinding was performed on placentas versus 
embryos because A.S. performed these experiments and analysed 
the data. For gene-expression studies from publicly available datasets, 
no blinding was performed.

Mice were allocated to experiments randomly and samples were pro-
cessed in an arbitrary order, but formal randomization techniques were 
not used. Samples sizes were not pre-determined based on statistical 
power calculations but were based on our experience with these assays. 
For most experiments, the minimum number of mice was 3, with some 
exceptions where the embryo/placenta numbers were n ≥ 10. No data 
were excluded; however, sometimes the small sample size was below 
the threshold for metabolomic analysis. In those instances, data that 
could be obtained from maternal blood or other tissues were used. 
These samples were not used during direct comparisons of embryo 
relative to its own placenta if one of the samples was absent.

Prior to analysing the statistical significance of differences among 
groups, we tested whether data were normally distributed and whether 
variance was similar among groups. To test for normality, we performed 
the Shapiro–Wilk tests when 3 ≤ n < 20 or D’Agostino omnibus tests 
when n ≥ 20. To test whether variability significantly differed among 
groups we performed F-tests (for experiments with two groups) or 
Levene’s median tests (for experiments with more than two groups). 
When the data significantly deviated from normality or variability 
significantly differed among conditions, we log2-transformed the 
data and tested again for normality and variability. If the transformed 
data no longer significantly deviated from normality and equal vari-
ability, we performed parametric tests on the transformed data.  
If log2-transformation was not possible or the transformed data still 
significantly deviated from normality or equal variability, we performed 
non-parametric tests on the non-transformed data.

When data or log2-transformed data were normal and equally vari-
able, statistical analyses were performed using Student’s t-tests or paired 
t-tests (when there were two groups), one-way ANOVAs or repeated 
measures one-way ANOVAs (when there were more than two groups), 
two-way repeated measures ANOVAs (when there were two or more 
groups with multiple metabolites or time points), or mixed effects 
models (when there were missing values but the data otherwise met 
the assumptions for a one-way or two-way repeated measures ANOVA). 
When the data or log2-transformed data were normal but unequally vari-
able, statistical analyses were performed using Welch’s t-tests (when 
there were two groups) or Welch’s one-way ANOVAs followed by the 
Dunnett’s T3 tests for multiple-comparisons adjustment (when there 
were more than two groups). When the data and log2-transformed 
data were abnormal or unequally variable, statistical analysis was per-
formed using Mann–Whitney or Wilcoxon matched pairs signed rank 
tests (when there were two groups) or Kruskal–Wallis tests (when there 
were more than two groups). P-values from multiple comparisons were 
adjusted using Tukey’s (when there were more than two groups and all 
of the comparisons were of interest) or Sidak’s method (when there 
were more than two groups and planned comparisons) after ANOVAs  
or mixed effects models, or Dunn’s method after Kruskal–Wallis tests. 
Holm–Sidak’s method was used to adjust comparisons involving multiple 
metabolites between two conditions. A linear regression or nonlinear 

curve fitting method, plateau followed by one-phase association, was used 
to fit the time series data and the extra sum-of-squares F-test was used to 
assess if there was difference between two fitted lines/curves. Multiple 
line/curve fitting P-values were adjusted using the Holm–Sidak method. 
Statistical tests were performed using GraphPad Prism V9.0.1 or R 4.0.2.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Source data are provided with this paper.

Code availability
Mass isotopologues were corrected for natural isotope abundances 
using a customized R script, which can be found at the GitHub reposi-
tory (https://github.com/wencgu/nac). The script was written by adapt-
ing the AccuCor algorithm v0.2.432.
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m+1 enrichment from [γ-15N]glutamine. 15N-glutamine enrichment is 
normalized to glutamine m+1 to account for differences among compartments 
(see Fig. 2c). Statistical significance was determined using paired t-tests (b, c, h, 
and i) or Wilcoxon matched-pairs signed rank tests (b-g) followed by the 
Holm-Sidak’s multiple comparisons adjustment (b-i). All data represent mean ± 
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Extended Data Fig. 4 | Tissue-specific TCA cycle metabolism in 
midgestation. (a) Labeling from [U-13C]glucose between gd9.5-gd12.5 in 
placenta. (b) Enrichments normalized to glucose m+6 on gd12.5. (c-d) Daily 
citrate m+2/pyruvate m+3 (c) and citrate m+3/pyruvate m+3 (d) enrichment 
ratios. (e) ETC-related transcript counts (n = 2) in fetal tissues normalized to 
gd10.5 (gd11.5 in liver). (f) Daily total citrate/pyruvate enrichment ratio in fetal 
heart. (g) Placental ETC complex gene expression. (h) Enrichment ratio of 
glutamate m+5/glutamine m+5 in fetal tissues infused with [U-13C]glutamine. 

Statistical significance was determined using Mann-Whitney tests (a, g), paired 
t-tests (b), or straight line least squares fitting (h) followed by the Holm-Sidak’s 
multiple comparisons adjustment (a, b, g, and h), linear mixed-effects analysis 
(c,d) followed by the Sidak’s (c-d; between-tissue comparisons) or Tukey’s (c-d; 
between-time comparisons) multiple comparisons adjustment, or one-way 
ANOVA followed by the Tukey’s multiple comparisons adjustment (f). All data 
represent mean ± s.d. Statistical tests were two-sided.
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Extended Data Fig. 5 | LIPT1 activity is critical for transition from 
gd10.5-gd11.5. (a) PCA plots of metabolomics data and (b) tissue weights in 
litters arising from Lipt1WT/N44S intercrosses. (c) Relevant metabolites in 
placentas of the indicated genotypes. (d-e) Placental uptake (left) and embryo 
transfer (right) of [U-13C]glucose (d) and [U-13C]glutamine (e). (f) Expression of 
placental markers. (g) Labeling from [U-13C]glucose in placentas of various 

Lipt1 genotypes. Statistical significance was determined using two-way 
repeated measures ANOVA followed by the Sidak’s multiple comparisons 
adjustment (b), Student’s t-tests (c) or Mann-Whitney tests (d-g) followed by 
Holm-Sidak’s multiple comparisons adjustment. All data represent mean ± s.d. 
Statistical tests were two-sided.
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Extended Data Fig. 6 | LIPT1 deficiency hinders organogenesis and 
erythropoiesis. (a) Somite counts in embryos from litters arising from Lipt1WT/

N44S intercrosses at gd9.5. (b) Brightfield whole mount images, scale 
bar = 500μm (1,1’); Dorsal Aortae stained with Connexin 40, scale bar = 100μm 
(2,2’); PE staining of whole hearts, scale bar = 300μm (3,3’); H&E staining of 
hearts, scale bar = 50μM (4,4’). All images from gd9.5 embryos. (c-d) Gd10.5 
whole embryo cells stained with antibodies against the erythroid lineage 

markers CD71 and TER119 (c) and myeloid/erythroid progenitor markers, cKIT 
and CD41 (d). Flow cytometry was performed in 24 individual embryos (Healthy 
n = 11, Mutant n = 7) White blood cell (WBC) (e) and platelet (f) counts from a 
LIPT1-deficient patient. Statistical significance was determined using 
Student’s t-tests followed by Holm-Sidak’s multiple comparisons adjustment. 
All data represent mean ± s.d. Statistical tests were two-sided.
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Extended Data Fig. 7 | Flow cytometry gating strategies. (a) Single cell 
suspensions from whole embryos were gated by forward and side scatter area 
(P1) then by forward scatter height and width (P2), then by side scatter height 
and width (P3). Cells had been stained with DAPI and live cells were gated as 

DAPI negative (P4), and then by CD117 (cKIT) negative (P5). Fetal erythrocytes 
were identified as CD71+/TER119+ (red box – P5:Q2), and myeloid/erythroid 
progenitors were gated as CD71-/TER119- (blue box - P5:Q3) and also gated as 
cKIT+/CD41+ (P6).
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