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Abstract—Kynurenic acid (KYNA) is one of the end products of tryptophan metabolism. The aim of
this study was to analyse plasma KYNA concentration in septic shock patients (SSP) with acute
kidney injury (AKI) undergoing continuous veno-venous haemofiltration (CVVH). Changes in KY-
NA content were compared to alterations in the levels of procalcitonin (PCT), C-reactive protein and
lactate. Adult SSP with AKI were examined. Measurements were conducted at seven time points:
before beginning CVVH and at 6, 12, 24, 48, 72 and 96 h after the beginning of CVVH. Based on
clinical outcomes, the data were analysed separately for survivors and non-survivors. Twenty-seven
patients were studied. CVVH was associated with reduced plasma KYNA concentration only in
survivors. Plasma KYNA concentration correlated with the levels of lactate and PCT only in survi-
vors. (1) CVVH reduced plasma KYNA concentration only in survivors; (2) lack of this reduction
may predict fatal outcomes in SSP.

KEY WORDS: kynurenic acid; inflammatory markers; continuous veno-venous haemofiltration; septic shock;
acute kidney injury.

BACKGROUND

The kynurenine pathway represents a major route for
the peripheral metabolism of tryptophan. The process is
initiated by tryptophan-2,3-dioxygenase (TDO) and
indoleamine-2,3-dioxygenase (IDO). Currently, investiga-
tors focus their attention mainly on the role of IDO, which
is an inducible enzyme found in cells that are involved in

immune reactions [1]. It has been found that IDO is
activated during bacterial or viral infection, in autoimmune
disease and after severe trauma [2–4]. Circulating cyto-
kines stimulate IDO expression and activity [4, 5].
Interestingly, increased concentrations of tryptophan me-
tabolites, such as quinolinic acid and kynurenic acid
(KYNA), depend on the severity of infection [2].

KYNA is a broad-spectrum antagonist of the
ionotropic glutamate receptor and of the α7 nicotinic
receptor. The role of KYNA in different brain pathologies
has been widely described, whereas its peripheral function
is not understood as well. The synthesis of KYNA has been
documented in the heart, liver and vascular endothelium
[6–8]. Importantly, kynurenine metabolites were recently
implicated in the pathophysiologies of various acute and
chronic diseases, including inflammation (via inhibition of
T cell and natural killer function, inhibition of granulocyte
activation and tumour necrosis factor alpha (TNFα)
production), sepsis and trauma [2, 9–15].

Septic shock is a major cause of death in critically ill
patients who are treated in intensive care units (ICUs).
The mortality rate of patients in septic shock remains high
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and ranges between 30 and 50 % [16, 17]. It is associated
with increased levels of pro-inflammatory and anti-
inflammatory mediators, which cause endothelial injury
and multi-organ failure. Diagnosis of the systemic
inflammatory response to infection is based mainly on
clinical status and biochemical markers including leuko-
cytosis and increases in plasma levels of procalcitonin
(PCT), C-reactive protein (CRP) and lactate. However,
currently, there is no gold standard for the diagnosis of
severe inflammatory responses. The measurement of
plasma PCT concentration seems to be the most reliable
diagnostic marker [18].

Acute kidney injury (AKI) is frequently associated
with septic shock. Despite improvements in the treatment
of AKI in septic shock patients, mortality rates remain
high. Conventional daily haemodialysis is routinely used
to treat AKI, but continuous veno-venous haemofiltration
(CVVH) is increasingly popular [19, 20]. Slow and
continuous fluid removal, cardiovascular stability and
easily controlled biochemical disturbances are the main
advantages of CVVH [20]. Several studies have docu-
mented significantly decreased plasma concentrations of
the proinflammatory cytokines CRP and PCT during
CVVH [21, 22]. Nevertheless, a decline in the levels of
these mediators was not shown to be a reliable predictor
of clinical outcome. Some authors have suggested that
metabolites of tryptophan could be useful in the predic-
tion of the outcomes of septic shock [9, 23–25].

It has been shown that the physiological plasma
concentration of KYNA ranges between 25 and 35 nmol/L
and increases to micromolar concentrations during inflam-
matory responses and cytokine release [26, 27]. Therefore,
the aim of our study was to analyse the effect of CVVH on
plasma KYNA concentrations in patients with AKI who
were treated for septic shock. Moreover, changes in plasma
KYNA concentrations were analysed in parallel to changes
in plasma PCT, CRP and lactate levels.

PATIENTS AND METHODS

Ethics

This prospective observational study was conducted
in the First Clinic of Intensive Therapy at the Medical
University of Lublin, Poland. The study was conducted in
accordance with the intensive care unit (ICU) protocol,
the Declaration of Helsinki and applicable regulatory
requirements as approved by the Institutional Review
Board and the local institutional ethics committee.

Informed consent was obtained from the legal represen-
tatives of patients because all patients were sedated and
on mechanical ventilation (MV).

Patient Selection

Adult patients treated with CVVH due to AKI related
to septic shock were enrolled. Sepsis was defined as the
suspicion of infection plus the systemic response to it (such
as tachypnea, tachycardia and hyperthermia or hypother-
mia). Septic shock was defined as sepsis with evidence of
altered organ perfusion associated with hypotension [28].
The diagnosis of AKI was based on RIFLE criteria [29]
that included: (1) decrease in diuresis despite fluid and/or
diuretic therapy to 0.3 ml/kg/h or less (i.e., oliguria or
anuria), (2) decrease in glomerular filtration rate (GFR)>
75 % and (3) increase in serum potassium concentration
above 5.5 mmol/L combined with a threefold increase in
serum creatinine level. Pregnant women, patients below
the age of 18 years, patients with haematological,
neoplastic, severe endocrine and metabolic disorders,
transplant recipients, HIV-infected patients and those
receiving immunosuppressive or steroid drugs or with a
do-not-resuscitate order and life expectancy of less than
one month were excluded from this study.

Data Collection

For the entire duration of the ICU stay, relevant
demographic, clinical and laboratory data were registered
in an electronic database along with daily assessments of
fluid balance, sepsis-related organ failure assessment
(SOFA) scores, MV settings and advanced haemo-
dynamic monitoring variables (obtained with a Swan-
Ganz catheter). These data were supplemented by
mortality on day 28.

The severity of illness upon ICU admission was
described by the acute physiology and chronic health
evaluation (APACHE-II) score. For the Glasgow coma
score, the best value (before the use of sedation) was used
as all the patients were sedated and intubated.

Monitoring and Treatment Techniques

Before starting CVVH, a Swan-Ganz catheter
(Arrow Int., Reading, PA, USA) was inserted via the left
internal jugular vein. Its position was confirmed by chest
X-ray examination. Pulmonary and systemic haemo-
dynamic parameters were measured during the examina-
tion period. Fluid administration, vasopressor use and
respiratory settings were titrated to obtain adequate
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oxygen saturation of haemoglobin in mixed-venous blood
(SvO2>70%) to keep the rate of oxygen delivery balanced
against consumption (keeping haematocrit levels above
30%). All patients receivedmineralocorticosteroid therapy
(intravenous hydrocortisone infusion at a daily dose of
300 mg). Antibiotic therapy was based on bacteriological
results. Systemic arterial blood pressures were measured
continuously in the radial artery.

Post-dilution CVVHwas performed with a Prismaflex
(Gambro, AB, Lund, Sweden) CVVH monitor. A percuta-
neous double-lumen catheter (Arrow Int., Reading, Penn-
sylvania, USA)was inserted into the femoral or jugular vein
using the standard Seldinger technique. Blood was extra-
corporeally circulated at a rate of 200 to 250 ml/min
through a polysulfone membrane ST 150 (Gambro, AB,
Lund, Sweden). High-volume CVVHwas performed (70 to
75 ml/kg body weight) during the first 6 h of therapy,
followed by low-volume CVVH (35 ml/kg body weight)
throughout the remainder of the treatment. Fluid removal at
a constant rate of 150 to 200 ml/h was started 6 h after the
initiation of CVVH. The ultrafiltration (UF) volume was
measured hourly and was balanced according to
haemodynamic status. Anticoagulation was achieved using
the criteria described by Ostermann and colleagues [30].
The APTTwas measured every 4 h. The filter was changed
after 48 h or when an excessive increase in transmembrane
pressure prevented ultrafiltration.

All patients with gastrointestinal dysfunction grade
III or IV [31] received total parenteral nutrition using
SMOF Kabiven solution (Fresenius Kabi, Uppsala,
Sweden). The mean delivery of calories ranged from 30
to 35 kcal/kg body weight per day. In patients with
detectable bowel sounds, the enteral feeding was
supplemented with Nutrison Multi Fibre (Nutricia, UK)
to reach the target caloric energy supply per day.

Study Protocol and Primary Endpoint

Measurements were taken before CVVH (0 h), and 6,
12, 24, 48, 72 and 96 h after the beginning of CVVH.
Based on clinical outcomes, patients were allocated into
two groups: patients who survived CVVH treatment
(survivors) and patients who died during CVVH, but after
96 h from the beginning of CVVH (non-survivors).

Determination of Studied Parameters

Plasma KYNA concentration was measured
fluorometrically. Briefly, blood plasma was deproteinated
with 50 % trichloroacetic acid and centrifuged. The
supernatant was applied to cation-exchange resin (Dowex

50W+, Sigma). KYNA was eluted, subjected to HPLC
(Hewlett Packard 1050 HPLC system: ESA catecholamine
HR-30, 3 μm, C18 reverse-phase column) and quantified
fluorometrically (Hewlett Packard 1046A fluorescence
detector: excitation 344 nm, emission 398 nm). KYNA
concentrations were expressed in nM. [32, 33].

Plasma CRP concentration was measured according
to the immunoturbidimetric method with latex (ADVIA
1650 analyser, Siemens, USA). Values higher than 5 mg/L
were considered clinically important. Plasma PCT concen-
tration was measured using the electrochemiluminescence
(ECLIA) method (Cobas e601 analyser, Roche, France).
Values greater than 2 ng/mL were considered clinically
important. Plasma lactate concentrations were measured
with the Cobas b221 analyser (Roche, France). Values
greater than 1 mmol/L were considered clinically
significant.

STATISTICS

Means and standard deviations (SD) were calculated
for parametric data. The value at time point 0 was regarded
as the baseline. Categorical variables were compared using
the χ2 and Fisher's exact test and Yates' correction was
applied. Student's unpaired t test was used to analyse
variables with normal distribution. Non-parametric data
were analysed statistically using the Wilcoxon signed-rank
test and the Kruskal–Wallis ANOVA test for initial
detection of differences. Dunnett's post hoc and
Spearman's rank correlation tests were used for inter-
point and inter-group comparisons. Additionally, the
Spearman's rank correlation test was used for the overall
analysis. A P value of P<0.05 was considered to be
significant. A preliminary estimate of sample size was
based on expected differences in plasma KYNA
concentrations between baseline and 96 h. With a type I
error of 0.05 and a type II error of 0.2, the required sample
size was 19–23 patients. The dropout rate was estimated at
10 %; thus, a minimum of 26 patients was examined. The
sample size was determined using Statistica 9 software.
The power of all statistical tests was determined using
G*Power software(1−β).

RESULTS

Forty septic shock patients with AKI were studied;
of these, 12 patients were excluded: six patients died
during the study period, and their data were thus
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incomplete; one patient required massive fluid resuscita-
tion due to severe coagulation disorders following
bleeding and died at day 5 following ICU admission;
three required emergency laparotomies due to intra-
abdominal bleeding (two of them died during CVVH);
one patient was excluded due to very large haemolysis
during sample preparation; and one was excluded because
his legal representatives withdrew consent for blood
collection. Therefore, this study was completed for 28
patients; 17 male and 11 female aged 60±12 years
(Table 1). Fourteen patients were treated for severe
pneumonia due to bacterial infection (Pseudomonas
aeruginosa, Klebsiella pneumoniae, Acinetobacter
baumannii, Streptococcus pneumoniae,Candida glabrata),
six for peritonitis (Enterococcus faecalis, Escherichia coli,
Candida albicans, Stenotrophomonas maltophilia), three
for urinary tract infection (Staphylococcus haemolyticus,
Escherichia coli) and one patient was treated after
hysterectomy due to pyometra (Enterococcus faecalis,
Candida albicans). One patient was treated for sepsis
related to an oral abscess (Coagulase-negative staphylo-
coccus, Candida albicans), one patient was treated for a
purulent spinal infection (Acinetobacter baumannii, Staph-

ylococcus aureus) and one patient was treated for a purulent
crotch infection (Proteus mirabilis, Enterococcus faecalis).
The choice of antimicrobial therapy was determined after
the culture and sensitivity analysis (Table 2). In all patients,
it was administered intravenously.

The mean duration of CVVH was 11.30±1.67 days
and was similar in both groups. Nineteen patients survived
CVVH treatment (survivors group); however, one patient
died at day 24 after ICU admission and two others died at
days 26 and 27, respectively. Nine patients died during
CVVH (32.1 %), but only after the 96-h study period (non-
survivors group). At 28 days, mortality was 52.5 % for the
entire group of patients enrolled in the present study.

The critical gastrointestinal dysfunction (III or IV
degree) was diagnosed in all participants at the day of
admission into ICU. During 96 h of treatment with
CVVH, the gastrointestinal function did not improve in
non-survivors, whereas the bowel sounds were detected
in 74 % of survivors and the enteral feeding was
supplemented at the third to fourth day of treatment.

The median value of plasma KYNA concentration was
73.5 nM ([14.28, 131.13]; quartiles 1 and 3, respectively) in
survivors and 40.59 nM (15.73, 302.99) in non-survivors,

Table 1. Patient Demographics and Some Laboratory Data

Study population Survivors Non-survivors P value

Age 60±12 58±13 65±10 NS
Male 17 11 5 –
Female 11 7 4 –
APACHE II 24.64±5.23 22.53±4.06 29.11±4.73 P<0.05
SOFA 10.64±2.56 9.47±2.01 13.22±1.3 P<0.001
WBC (×103 cell/μL)0 18.6±9.02 17.83±9.24 20.22±8.85 NS
WBC (×103 cell/μL)96 18.79±13.26 14.61±8.87 27.62±16.95 P<0.01
ALT0 (U/L) 99.17±128.76 73.05±115.17 154.33±145.14 NS
ALT96 (U/L) 101.5±139.58 45.84±47.75 219±194.24 P<0.05
AST0 (U/L) 263.11±613.06 291.16±638.63 335.89±580.14 NS
AST96 (U/L) 146.43±243.78 56±68.76 337.33±359.87 P<0.05
Creatinine0 (mg/dL) 3.49±1.7 3.35±1.7 3.79±1.59 NS
Creatinine96 (mg/dL) 1.6±0.85 1.38±0.63 2.1±1.1 P<0.001
eGFR0 (mL/min/1.72 m2) 24.72±8.13 24.14±8.52 25.97±7.8 NS
eGFR96 (mL/min/1.72 m2) 103.69±48.44 134.1±21.33 39.54±10.58 P<0.001
Dobutamine0 9.68±3.16 9.11±2.86 10.89±3.72 NS
Dobutamine96 7.04±2.17 6.33±1.83 8.44±2.29 P<0.05
Norepinephrine0 0.78±0.31 0.73±0.29 0.97±0.29 P<0.05
Norepinephrine96 0.5±0.29 0.38±0.24 0.73±0.27 P<0.01

The mean APACHE II and SOFA scores were higher in non-survivors than in survivors. Patients who died required similar mean doses of dobutamine
(microgramme per kilogramme of body weight per minute) and higher doses of norepinephrine (microgramme per kilogramme of body weight per
minute) at the day of admission into ICU (Dobutamine0 and Norepinephrine0 ). Moreover, the doses in survivors after 96 h of CVVH were significantly
higher than those in non-survivors (Dobutamine96 and Norepinephrine96 ). The mean quantifications of plasma WBC concentration, ALT and AST
activities as well as creatinine and eGFR (estimated glomerular filtration rate) were similar in survivors and non-survivors before the start of CVVH
(WBC0 , ALT0 and AST0 , Creatinine0 and eGFR0 , respectively). After 96 h of CVVH, quantifications of plasma WBC, ALT and ASTactivities as well
as Creatinine and eGFR were higher in non-survivors than in survivors (WBC96 , ALT96 and AST96 , Creatinine96 and eGFR96 , respectively)
NS—non significant
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respectively. In survivors, plasma KYNA concentrations
decreased starting at 24 h of CVVH, whereas in non-
survivors, they increased at 12 and 48 h of CVVH (Table 3).
Concentrations did not change compared to baseline values
at the remaining time points (Table 3). Plasma KYNA
concentrations were significantly higher in non-survivors at
48, 72 and 96 h after the beginning of CVVH compared
with those in survivors (Table 3, Fig. 1).

The median value of plasma PCT concentration was
significantly lower in survivors than in non-survivors at
time point 0 (8.89 ng/L [6.72, 23.3] in survivors vs.
51.99 ng/L [29.55, 66.78] in non-survivors). CVVH led
to decreased plasma PCT concentration in both groups;
however, a higher decline was noted in survivors (Fig. 1,

Table 4). Importantly, clinically significant elevation of
plasma PCT concentrations was observed throughout the
study in non-survivors.

The median value of CRP prior to CVVH was
198.40 mg/L [159.95, 210.81] and 321.90 mg/L [205.03,
386.24] in survivors and non-survivors, respectively. In
both groups, CVVH led to decreased plasma concentra-
tions; however, lower values were noted in survivors after
72 h of CVVH (Fig. 1, Table 5).

The baseline value of plasma lactate concentration
was significantly lower in survivors than in non-survivors
during the entire study period (5.20 mM [4, 8.4] vs.
9.45 mM [8.78, 11.23] in survivors and non-survivors,
respectively). Similar to what was observed for PCT and

Table 2. The Microbial Pathogens and Antimicrobial Therapy

Pathogen Antimicrobial agent

Pneumonia Pseudomonas aeruginosa Meropenem, Amikacin
Klebsiella pneumoniae Ceftazidime
Acinetobacter baumannii Meropenem
Streptococcus pneumoniae Ceftriakson
Candida glabrata Caspofungin

Peritonitis Enterococcus faecalis Vancomycin
Escherichia coli Ciprofloxacin
Candida albicans Fluconazol
Stenotrophomonas maltophilia Co-trimoxazole

Urinary tract infection Staphylococcus haemolyticus (MRCNS) Teicoplanin
Escherichia coli Ciprofloxacin, Amikacin

Oral abscess Coagulase-negative staphylococcus (MRCNS) Vancomycin
Candida albicans Fluconazol

Purulent spinal infection Acinetobacter baumannii Meropenem
Staphylococcus aureus (MRSA) Vancomycin

Purulent crotch infection Proteus mirabilis Ceftazidim
Enterococcus faecalis Linezolid

Table 3. Changes in Plasma KYNA Concentrations (in Nanomole) in Survivors and Non-Survivors

Patients Value

Time points

0 h 6 h 12 h 24 h 48 h 72 h 96 h

Survivors Quartile 1 14.28 3.76 4.92 5.12 4.2 3.34 3.94
Median 73.5 32.55 48.58 31.53** 17.67*** 22.2*** 20.36***
Quartile 3 131.13 128.62 123.71 83.8 70.2 58.02 66.71

Non-survivors Quartile 1 15.73 28.36 43.29 50.31 42.25 37.80 47.31
Median 40.59 51.62 51.68* 62.93 70.32* 113.24 62.21
Quartile 3 302.99 365.17 437.96 352.43 478.65 443.40 250.52

Intergroup differences Survivors vs non-survivors – – – – P<0.05 P<0.05 P<0.05

Survivors (n=18) and non-survivors (n=9). Time points: before CVVH (0 h), 6 h after the beginning of CVVH at fluid replacement rates of 70 to 75 ml/
kg body weight per min without net UF, 12 h after the beginning of CVVH at fluid replacement rates of 35 ml/kg body weight per min with UF ranging
between 150 and 200 ml/h, 24, 48, 72 and 96 h after the beginning of CVVH
*P<0.05; **P<0.01; ***P<0.001 compared to the baseline value
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CRP, CVVH led to decreased plasma lactate concentra-
tions in survivors and non-survivors (Fig. 1); however,
the decline was greater in survivors than in non-survivors
(Table 6).

There were significant correlations between KYNA
and lactate concentrations in the studied population
(P<0.001, r=0.54) as well as in survivors (P<0.001,
r=0.5). KYNA concentration also showed a slight
correlation with PCT concentration in the studied popu-
lation (P<0.001, r=0.36) and in survivors (P<0.001,
r=0.33). In studied population, plasma KYNA concen-
trations poorly correlated with plasma alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST)
(P<0.001, r=0.33 and P<0.001, r=0.3). Plasma KYNA
concentration correlated with ALT (P<0.001, r=0.45) and
AST (P<0.001, r=0.44) in non-survivors. There was no
correlation between plasmaKYNA and CRP concentrations.

Changes in some haemodynamic variables measured
by Swan–Ganz catheter were presented in Table 7.

DISCUSSION

We found that the concentration of KYNA in the
plasma of septic patients with good clinical outcomes
decreased gradually over the course of CVVH. Similarly,
the levels of CRP, PCT and lactate decreased gradually
during CVVH in this group of patients. In contrast, the
concentration of KYNA in the plasma of septic patients
with poor clinical results did not decrease over the course
of CVVH. In fact, an increase in KYNA concentration
was observed. At the same time, the concentrations of
CRP, PCT and lactate decreased during CVVH in this
group of patients. Plasma KYNA concentration correlat-
ed with lactate and PCT only in patients with good
outcomes and with ALT and AST in patients with poor
clinical outcomes. No correlations were identified be-
tween KYNA and CRP, PCT or lactate in septic patients
with poor clinical outcomes.

Numerous authors have described an increase in
plasma kynurenine concentration and IDO activity in
sepsis and in septic shock patients [2, 9, 24, 25].
Moreover, the activity of IDO, which was calculated
from the ratio of kynurenine to tryptophan, has been
suggested as a marker in the diagnosis of sepsis, septic
shock or other diseases. Its activity and the resulting
higher levels of kynurenine have been correlated with the
severity of sepsis/septic shock, and their persistently
elevated values have been noted in non-survivors (i.e.,
they increased during the initial four days in non-survivor
patients) [2, 24, 25]. Tryptophan degradation was also
higher after major trauma in non-survivor patients
compared to survivors [9]. Some investigators have
postulated that the maximum kynurenine/tryptophan ratio

Table 4. Changes in Plasma Procalcitonin Concentrations (in Nanogramme per Millilitre) in Survivors and Non-survivors

Patients Value

Time points

0 h 6 h 12 h 24 h 48 h 72 h 96 h

Survivors Quartile 1 6.72 3.84 2.9 2.39 1.52 0.94 0.66
Median 8.89 5.66** 4.53*** 4.5*** 3.21*** 1.96*** 1.46***
Quartile 3 28.3 13.82 6.93 7.57 6.27 3.55 2.43

Non-survivors Quartile 1 29.55 23.47 13.34 7.48 5.25 4.55 4.51
Median 51.99 33.19* 16.96* 14.31* 14.23* 10.71* 11.8*
Quartile 3 66.78 58.13 34.73 29.98 20.08 19.4 20.27

Intergroup differences Survivors vs. non-survivors P<0.05 P<0.05 P<0.01 P<0.01 P<0.05 P<0.01 P<0.001

Time points: before CVVH (0 h), 6 h after the beginning of CVVH at fluid replacement rates of 70 to 75 ml/kg body weight per min without net UF, 12 h
after the beginning of CVVH at fluid replacement rates of 35 ml/kg body weight per min with UF ranging between 150 and 200 ml/h, 24, 48, 72 and 96 h
after the beginning of CVVH
*P<0.05; **P<0.01; ***P<0.001 compared to the baseline value

Fig. 1. The percentage changes in plasma KYNA, procalcitonin, CRP
and lactate concentrations in survivors and non-survivors. The mean of
the baseline value was considered to be 100. Time points: Baseline, 6 h
after the beginning of CVVH at fluid replacement rates of 70 to 75 ml/kg
body weight per min without net UF, 12 h after the beginning of CVVH
at fluid replacement rates of 35 ml/kg body weight per min with UF
ranging between 150 and 200 ml/h, 24, 48, 72 and 96 h after the begi-
nning of CVVH. In survivors, the percentage values of plasma KYNA
concentrations decreased at 6, 12, 24, 48, 72 and 96 h (85, 81, 72, 61, 40
and 35 % of the baseline value, respectively). In non-survivors, the pe-
rcentage values of plasma KYNA concentrations decreased to 99 % at
6 h of baseline value and increased at 12, 24, 48, 72 and 96 h of baseline
value (138, 121, 170, 167 and 148 % of the baseline value, respectively).

R
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was detectable from 1 to 4 days after positive blood
culture in septic patients, was stratified by causative
bacteria and decreased on recovery. In addition, they
observed the highest kynurenine/tryptophan ratios in
patients with β-haemolytic streptococcal bacteraemia
and the lowest ratios in those with E. coli bacteraemia.
The ratio was also significantly higher in septic patients
treated for pneumonia compared with those treated for
urinary tract infections [23].

Kynurenine is synthesised metabolically from trypto-
phan. The activation of TDO and IDO following infection
decreases the concentration of tryptophan in plasma and
increases that of kynurenine [5, 34]. The stimulation of
IDO increases tryptophan catabolism and contributes to the
synthesis of the several tryptophan metabolites [11].
Kynurenine is an intermediate metabolite on the
kynurenine pathway. It is mainly metabolised by two
enzymes, kynurenine-3-hydroxylase and kynureninase.

The resulting metabolites are 3-hydroxykynurenine,
anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid
and nicotinamide adenine dinucleotide (NAD+). It is
important to note that this process progresses both in vivo
and in vitro. Therefore, the precise measurement of plasma
kynurenine concentrations in collected samples requires
deactivation of the processes described above. In contrast to
kynurenine, KYNA is not metabolised and is stable in
solution. A precise and efficient method of separation has
been developed using Dowex resin. Moreover, a sensitive
chromatographic method has also been developed that
enables the determination of KYNA concentrations in
femtomolar concentrations. Therefore, measurement of
KYNA content may be a good candidate for a laboratory
indicator of sepsis.

The plasma KYNA concentration depends on
tryptophan and KYNA supplementation, the activity of
kynurenine enzymes and the rate of KYNA elimination.

Table 6. Changes in Plasma Lactate Concentrations (in Millimolar) in Survivors and Non-Survivors

Patients Value

Time points

0 h 6 h 12 h 24 h 48 h 72 h 96 h

Survivors Quartile 1 4 3.3 2.2 1.7 1.25 0.95 0.65
Median 5.2 3.6** 3*** 2.1*** 1.4*** 1.1*** 0.9***
Quartile 3 8.4 6.6 3.75 2.55 1.75 1.2 1.25

Non-survivors Quartile 1 8.78 7.48 5.53 4.3 3.03 3.05 3.25
Median 9.45 7.6* 7.7 5.5* 3.9* 3.55** 3.85*
Quartile 3 11.23 9.18 9.3 6.55 4.7 4.1 4.53

Intergroup differences Survivors vs. non-survivors P<0.05 P<0.05 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001

Time points: before CVVH (0 h), 6 h after the beginning of CVVH at fluid replacement rates of 70 to 75 ml/kg body weight per min without net UF, 12 h
after the beginning of CVVH at fluid replacement rates of 35 ml/kg body weight per min with UF ranging between 150 and 200 ml/h, 24, 48, 72 and 96 h
after the beginning of CVVH
*P<0.05; **P<0.01; ***P<0.001 compared to the baseline value

Table 5. Changes in Plasma CRP Concentrations (in Milligramme per Litre) in Survivors and Non-survivors

Patients Value

Time points

0 h 6 h 12 h 24 h 48 h 72 h 96 h

Survivors Quartile 1 159.95 134.69 128.2 133.15 98.99 73.23 49.27
Median 198.4 171.57** 187.3* 154.3** 118.22*** 96.69*** 75.6***
Quartile 3 210.81 198.35 204.71 200.62 135.06 110.8 89.34

Non-survivors Quartile 1 205.03 165.23 152.04 109.29 95.66 146 130.4
Median 321.9 219.42* 230.8* 128.07* 131.6* 181.2* 203.09*
Quartile 3 386.24 289.47 256.16 148.94 163.37 204.04 270.67

Intergroup differences Survivors vs. non-survivors – – – – – P<0.01 P<0.01

Time points: before CVVH (0 h), 6 h after the beginning of CVVH at fluid replacement rates of 70 to 75 ml/kg body weight per min without net UF, 12 h
after the beginning of CVVH at fluid replacement rates of 35 ml/kg body weight per min with UF ranging between 150 and 200 ml/h, 24, 48, 72 and 96 h
after the beginning of CVVH
*P<0.05; **P<0.01; ***P<0.001 compared to the baseline value
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Nutritional habits were strictly controlled during
CVVH therapy. During the first few days, all patients
received total parenteral nutrition containing 4.5 pmol/mL
of KYNA (data not shown) and 1.5 g of tryptophan (Smof
Kabiven). It is noteworthy that more than 90 % of plasma
tryptophan is metabolised via the kynurenine pathway [35].
When abdominal sounds were detectable, enteral protein
nutrition was started. The KYNA content in Nutrison Multi
Fibre is 12.5 pmol/L. In all cases, the nutritional prepara-
tions were administered continuously, which maintained
constant amounts of KYNA and its precursors. Interesting-
ly, treatment with KYNA, which is N-methyl-D-aspartate
receptor antagonist decreased obstruction-caused intestinal
hypermotility in dogs and 2,4,6-trinitrobenzensulfonic acid-
induced colitis in rats [14, 36]. Moreover, some experimen-
tal studies documented, that treatment with KYNA signif-
icantly reduced the level of inflammatory mediators, such as
TNFα and interleukine 6 [36, 37]. On the other hand,
circulating cytokines promote kynurenine metabolism and
subsequent generation of tryptophan metabolites, including
KYNA [2, 3, 5, 38]. Therefore, we can speculate that
persistent plasma KYNA concentration results from elevat-
ed level of proinflammatory cytokines (despite CVVH) and
persisted inflammation in non-survivors; however, this
hypothesis requires further studies.

Endogenous KYNA is synthesised from kynurenine
by kynurenine aminotransferases [13, 39]. KYNA is not
further metabolised in mammals and is eliminated in urine
[35]. AKI that follows septic shock may strongly
determine the concentration of plasma KYNA because
plasma KYNA concentration depends on the rate of its
elimination through urine [27, 40, 41]. However, the rate
of KYNA elimination during CVVH has not been
documented. Indeed, the plasma KYNA/tryptophan ratio
has been considered as a sensitive biomarker for the
assessment of renal function and an increase in plasma
KYNA concentration has predicted incidence of AKI [42,
43]. In patients with chronic renal diseases, increased
plasma concentrations of tryptophan metabolites were
reduced by renal replacement therapy [27, 42–44].
Intermittent blood purification-haemodialysis reduced
plasma kynurenine and quinolinic acid by 30 and 75 %,
respectively [41]. Moreover, high concentrations of both
metabolites prior to haemodialysis were likely to result
from the induction of TDO activity, despite the fact that
the IDO activity increased rapidly in response to immune
stimulation [13–15, 23, 25, 35, 41, 44]. It can be assumed
that in our patients KYNAwas eliminated continuously. It
can also be assumed that the rate of elimination was
constant and did not depend on kidney function. Thus, in

the clinical situation studied here, the changes in plasma
KYNA concentration depended mainly on the rate of
KYNA synthesis. Therefore, a hypothesis may be
proposed that the levels of KYNA fell due to its
exhaustion in patients that survived septicaemia. This
may indicate a beneficial effect of KYNA and should be
addressed in appropriate animal models of septicaemia.
Although this hypothesis does not address the reasons for
the lack of decline of KYNA levels in fatal outcomes of
septicaemia, it is still important to elucidate how KYNA
and its analogs can benefit septic patients.

During CVVH, plasma KYNA concentrations de-
creased in survivor patients, whereas they were practically
unchanged in non-survivor patients. It is worth stressing
that other inflammatory markers, such as CRP, PCT and
lactate, decreased in survivors as well as non-survivors
following CVVH. Moreover, decreasing plasma KYNA
concentration correlated with lactate and PCT in survivors
only. It is important to note that KYNA was the only
indicator for which plasma concentration was practically
unchanged. Although the reason for the high content of
KYNA in non-survivor patients is unknown, the prognos-
tic value of this finding is not to be underestimated. The
small sample of non-survivors significantly limited the
power of statistical analysis. Therefore, our preliminary
results should be verified in further studies.

CONCLUSIONS

In conclusion, our study documented that CVVH
significantly reduced plasma KYNA concentrations in
septic shock patients. Surprisingly, such an effect was noted
only in survivors, whereas plasma KYNA concentration
was practically unchanged in non-survivors. Furthermore,
decreasing plasma KYNA concentration correlated with
plasma PCT and lactate concentrations. Based on our
findings, we can suggest that plasma KYNA, together with
CRP, PCT and lactate concentrations, may be useful as an
indicator of inflammatory processes. However, larger
clinical studies are necessary to demonstrate more strongly
the prognostic value of KYNA in septic shock patients.
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