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Consensus analysis via weighted gene co-expression network analysis (WGCNA) 
reveals genes participating in early phase of acute respiratory distress syndrome 
(ARDS) induced by sepsis
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ABSTRACT
The understanding of mechanism during conversion from sepsis to sepsis-related ARDS remains 
limited. In this study, we collected gene expression matrix from the Gene Expression Omnibus 
(GEO) database and constructed networks using weighted gene co-expression network analysis 
(WGCNA) to identify the consensus and opposite modules between sepsis and sepsis-induced 
ARDS and obtained 27 consensus modules associated with sepsis and sepsis-related ARDS, 
including one model (160 genes) with opposite correlation and 1 sepsis-ARDS specific model 
with 34 genes. Differentially expressed genes analysis, functional enrichment and protein-protein 
interactions analyses of candidate genes were performed; 15 of these genes showed different 
expressions in sepsis-induced ARDS patients, compared with sepsis patients; genes were enriched 
in processes associated with ribosome, tissue mechanics and extracellular matrix. Feature selec
tion analysis revealed that three genes, TLCD4, PRSS30P, and ZNF493, showed moderate perfor
mance in identifying sepsis-induced ARDS from sepsis. Ribosome-related genes indicate crucial 
roles in the development of sepsis-induced ARDS.
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1. Introduction

Sepsis is a severe infectious condition that can 
result in immune system responses and organ 
dysfunction [1]. Acute respiratory distress syn
drome (ARDS) is a major lung injury in intensive 
care unit (ICU) patients with a high mortality rate 
[2]. This adverse outcome is often due to an 
inflammatory response that influences fluid leak
age and leukocyte recruitment into air spaces, thus 
causing hypoxemia [3]. Among the factors that 
contribute to the development of ARDS, sepsis is 
the most common cause. Sepsis-induced ARDS 
has a higher overall disease severity, poorer recov
ery from a lung injury, lower successful extubation 
rates, and a higher mortality rate compared with 
non-sepsis-induced ARDS [4].

There are numerous publications related to sep
sis and sepsis-related ARDS. Increased expression 
of several genes in neutrophil-related pathways 
may be involved in the early pathogenesis of sep
sis-induced ARDS [5]. Experimental data suggests 
that intravenous vitamin C may alleviate the 
inflammation and vascular injury related to sepsis 
and ARDS [2]. Multipotent mesenchymal stem 
(stromal) cells might decrease lung injury and 
enhance lung repair in sepsis and ARDS [6]. The 
correlation analysis showed that omega-3 fatty 
acids could reduce the death rate of sepsis and 
sepsis-induced ARDS [7]. Plasma angiopoietin-2, 
a vascular permeability marker, may be involved in 
ARDS development and can be used to treat sep
sis-related ARDS [8]. MYC and STAT3 may be the 
critical regulatory genes for the underlying dys
function of sepsis-induced ARDS [9]. Studies on 
molecular biomarkers used for identifying ARDS 
from sepsis and genes related to incipient sepsis 
patients developing ARDS, however, are limited.

Weighted gene co-expression network analysis 
(WGCNA) is an effective method to identify the 
significant modules and hub genes associated with 
phenotypes [10]. It is a data reduction method, 
which can classify genes into a model based on 
pairwise correlations due to their similar expres
sion profiles [11,12]. WGCNA is a comprehensive 
collection of R functions for conducting diverse 
aspects of weighted correlation network analysis. 
It has been used extensively in sepsis. It was used 
to explore the probable regulatory relationships of 

N6-methyladenosine in sepsis [13]. WGCNA was 
performed to identify the putative biomarkers in 
sepsis co-expression gene modules [14–16].

In this study, we constructed networks with 
WGCNA, performed consensus analysis between 
sepsis patients and sepsis-related ARDS patients, 
and obtained 27 consensus modules related to sepsis 
and sepsis-induced ARDS. Differentially expressed 
genes were analyzed in the identified modules. 
Functional enrichment analysis and protein–protein 
interactions were conducted. The candidate genes 
were evaluated with support vector machine recur
sive feature elimination method (SVM-RFE). We 
observed the critical role of ribosomal genes in the 
development of sepsis-related ARDS; three genes 
indicated potential, though not great, in identifying 
sepsis-induced ARDS from sepsis.

2. Materials and methods

2.1 Data collection and quality control

To explore the genes related to sepsis-induced 
ARDS, we collected and integrated the expres
sion matrix GSE32707, which contained 58 sep
sis patients (30 for 0 days and 28 for 7 days after 
admission), 31 sepsis-induced ARDS samples (18 
for 0 days and 13 for 7 days), 21 SIRS (systemic 
inflammatory response syndrome) patients 
(0 days) and 34 control whole blood samples 
from the GEO database (https://www.ncbi.nlm. 
nih.gov/geo/). We annotated the expression 
matrix with its corresponding annotation file – 
GPL10558, Illumina HumanHT-12 V4.0 expres
sion beadchip. Considering the impact of 
inflammation facts, we chose sepsis and sepsis- 
induced ARDS patients with 0 days after admis
sion for this study. To validate our findings, we 
collected samples from another independent 
analysis – GSE66890, including 57 samples (29 
sepsis-related ARDS patients and 28 sepsis 
patients within 24 hours after admission) and 
annotated them with the expression matrix 
with their related annotation file – GPL6244, 
Affymetrix Human Gene 1.0 ST Array (tran
script (gene) version). We defined the average 
as the expression value of genes with multiple 
probes; normalized the matrix using the limma 
package with the ‘quantile’ method [17]; filtered 
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for genes with missing values; and constructed 
the hierarchical clustering tree to identify and 
trim the outliers.

2.2 WGCNA network construction

We utilized WGCNA to explore genes associated 
with sepsis-induced ARDS. In detail, the ‘Group’ 
(sepsis, sepsis-induced ARDS, and healthy con
trols) information for samples, without outliers, 
was collected as clinical traits for this analysis 
[10,18]. The soft-thresholding power network 
topology analysis was performed; the suitable 
power value was used to construct the network; 
we calculated and transformed adjacencies into 
consensus Topological Overlap Matrix (TOM); 
considering the diverse statistical properties 
between different data sets, we scaled and trans
formed the sepsis TOM to make it equivalent to 
that of sepsis-induced ARDS and obtained con
sensus modules between two diseases; we 
depicted a quantile-quantile plot to visualize the 
improvement before and after scaling; the con
sensus TOM was calculated with component- 
wise (‘parallel’) minimum of the TOMs for each 
set. To obtain large modules, the 
‘minModuleSize’ parameter, indicating the mini
mum module size of the modules, was set as 20. 
Genes with similar expression patterns were 
separated into different modules with the 
‘cutreeDynamic’ function; to evaluate and group 
the co-expression similarities of all modules, the 
eigengenes (MEs) were calculated, clustered, and 
mapped to the related consensus modules; then, 
modules with a correlation of 0.75 were merged 
with ‘mergeCloseModules’ function using default 
parameters. To identify significant modules 
related to clinical traits, the association of clinical 
information, Gene Significance (GS), and 
Module membership (MM) was evaluated. The 
correlation between clinical traits and expression 
of samples was calculated using the ‘cor’ func
tion; the P-value was calculated using the 
‘corPvalueStudent’ function. To evaluate specific 
modules related to sepsis-induced ARDS, we per
formed network construction and module detec
tion of sepsis-related ARDS and linked the 
detected modules of ARDS to the consensus 
modules.

2.3 Differentially expressed genes (DEGs) 
analysis

To explore expression patterns of candidate genes, 
we collected and established the expression matrix 
of candidate genes gained from WGCNA. The 
differentially expressed genes analysis (DEGA) 
was performed with the built matrix, normalized 
by limma package, and filtered with a hierarchical 
clustering tree. We constructed the contradicted 
matrix with clinical traits (sepsis and sepsis- 
induced ARDS) and analyzed DEGs with limma 
package; we defined the DEGs with the parameters 
(fold change ≠ 0 and p-value <0.05).

2.4 Functional analysis

The clusterProfiler, a comprehensive functional 
R package to understand the biological meaning, 
was utilized to perform functional enrichment 
analysis and visualization of candidate genes 
obtained from WGCNA [19]. The official gene 
symbols of the candidate genes were trans
formed into ‘ENTREZID’ and ‘UNIPROT’ 
according to annotation profile for human, for 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analy
sis; all genes used for WGCNA analysis were 
utilized as background; the cutoff point for 
p-value and q-value was set to 10(−4); ‘BH’ was 
used to adjust p-value; the minimal size of the 
annotated genes was 10. Significantly enriched 
terms of GO and KEGG were collected and 
visualized with bar plots.

2.5 Protein–protein interactions analysis

Candidate genes obtained from WGCNA were 
submitted to an online tool STRING (https:// 
string-db.org/) to explore the interactions 
among proteins. Then the Cytoscape software 
was used to depict and integrate the interaction 
network; ‘MCODE’, a plugin of Cytoscape was 
applied to predict gene clusters; critical genes 
were collected using the ‘Degree’ method based 
on the calculation and ranking of the interac
tions among proteins.
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2.6 Evaluation of candidate genes

To evaluate the potential of the candidate genes 
identified from WGCNA in distinguishing sepsis- 
induced ARDS patients and sepsis patients, we 
utilized support vector machine recursive feature 
elimination method (SVM-RFE), one of the most 
effective methods in filtering critical characters, to 
select crucial genes. Samples were divided into 
‘train’ and ‘test’ sets (1:1) randomly; support vec
tor machine (SVM) analysis was implemented 
with ‘e1071� package. Their potential was vali
dated with expression of patients on 7 days after 
admission in GSE32707 and another expression 
matrix, GSE66890.

2.7 Statistical methods

Consistency between arrays was performed with 
limma package; outliers were detected and 
removed with hierarchical cluster analysis in 
R software (https://www.r-project.org/). The cor
relation of models and clinical traits was calculated 
with ‘Pearson’ using R software; fold change, t-sta
tistics and statistical significance of genes were 
calculated with limma package.

3. Results

3.1 Consensus modules and genes associated 
with sepsis and sepsis-related ARDS

The potential outliers will influence downstream 
analysis and even mislead us with confusing 
results. To remove impacts of outgroup sample, 
we performed hierarchical cluster analysis. Based 
on the clustering tree, we observed three outliers – 
GSM812612 (control), GSM812638 (sepsis 
patients, 0 days), and GSM812696 (sepsis patients, 
0 days) (Figure 1a, 1b); we marked and discarded 
outliers – samples above the red line (Figure 1a, 
1b) – and plotted the tree, once again, to ensure 
that there were no outliers. A total of 79 samples 
(28 sepsis patients, 18 sepsis-induced ARDS 
patients, and 33 healthy controls) with 20,919 
genes were used in this study. We chose 7 as the 
suitable soft-thresholding power for each set in 
this analysis based on two criteria: the lowest 
power at which the scale-free topology fit index 
reaches 0.80; connectivity measurements decrease 

considerably (Figure 1c, 1d, 1e, 1f). We merged 
and obtained a total of 27 consensus gene co- 
expression modules (Supplementary File), with 
the number of genes ranging from 23 to 5973 
(Figure 2b, 1b); the gray module containing 430 
genes could not be assigned to any modules.

3.2 Relating consensus modules to sepsis and 
sepsis-related ARDS

The tables of module-trait relationships indicated 
the relation between the clinical traits (sepsis and 
control in Figure 2c, sepsis-related ARDS and con
trol in Figure 2d) and the consensus modules in 
each data set. Two relation tables exhibit some 
degree of similarity. To explain further, turquoise, 
steelblue, and indianred4 module showed signifi
cant relations to clinical traits in each matrix, 
although the actual correlations and p-values of 
two data sets differed slightly. Some modules, 
such as the violet module, presented the opposite 
correlation with clinical traits. The similarity and 
difference were integrated and depicted in the 
comparable tables (Figure 2e). We kept the lower 
absolute value in two sets with the same sign of 
correlations, and zero (NA) for those with the 
opposite trend. From the comparable table, we 
found that the violet module containing 160 
genes was significantly related to sepsis and sepsis- 
induced ARDS with the opposite trend. Fifteen of 
them (KMO, RPS27A, SPNS2, TUBA1B, BASP1, 
FBRSL1, AATK, PLK5, LRRC75A, TLCD4, IP6K3, 
DPY19L2P2, LRRN2, BTLA, and ALOX15) showed 
different expression in sepsis with ARDS com
pared to sepsis alone.

3.3 Functional enrichment of genes in the 
opposite module

We obtained 160 genes significantly (P < 0.05) 
associated with sepsis and sepsis-induced ARDS 
with opposite signs (0.46 for sepsis and −0.42 for 
ARDS caused by sepsis). The candidate genes sig
nificantly (P < 10−4) enriched in 35 GO terms: 22 
in biological process (BP), 11 in cellular compo
nent (CC), and 2 in molecular function (MF); the 
terms in each category were depicted with bar 
plots (Figure 3). One KEGG term – Ribosome 
(hsa03010) containing 24 genes (RPL4, RPL3, 

1164 Q. FANG ET AL.

https://www.r-project.org/


Figure 1. Identifying outliers and defining soft-thresholding power. (a) and (b) show the hierarchical clustering tree of two samples 
matrix; the red line indicates the cut position; samples above the red line will be discarded. (c-f) show the decision of power value; c, 
the scale-free fit index (y-axis) under different power (x-axis); (d) to (f), the median, mean, and max connectivity (y-axis) drops with 
the increase of the soft-thresholding power (x-axis). the plots indicate that the power of 7 is the suitable value because the 
connectivity measures decline steeply with the increase of power.
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Figure 2. Network construction of consensus modules. (a) shows the clustering tree of module eigengenes; red line (0.25) 
represents that the correlation is 0.75 and modules under the line will be merged. (b), the clustering tree of genes (top), primary 
modules (middle), and merged modules (bottom); (c-e) relationships of consensus module eigengenes and clinical traits in sepsis, 
sepsis-induced ARDS, and across sepsis and sepsis-induced ARDS (se/ARDS) data. the numbers in the box indicate the correlation 
(top) and its P-value (bottom) of module eigengenes (rows) and clinical traits (columns). missing (NA) entries represent that the 
failure of formation of consensus because the correlations in sepsis and se/ARDS are opposite.
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Figure 3. Bar plots for functional enrichment of genes in the opposite module. Top 10 GO terms in biological process (BP), cellular 
component (CC), and molecular function (MF) were depicted via bar plot.

Figure 4. Protein-protein interactions of genes in the opposite module. (a) The image of PPI of genes in the opposite module. (b) 
The predicted genes cluster based on MCODE of cytoscape. (c) Top 10 hub genes predicted with ‘degree’ method of cytoscape.

BIOENGINEERED 1167



RPL32, RPL10, RPS8, RPL12, RPL11, RPL13A, 
RPL23A, RPL6, RPS15, RPS4X, RPS14, RPL7A, 
RPS25, RPS28, RPS15A, RPS16, RPS27, RPL18A, 
RPS18, RPL27A, RPS2, and RPS27A) – was signif
icantly enriched (P < 10−4).

3.4 Protein–protein interactions of genes in the 
opposite module

The interactions among protein genes provide 
a perceptive of genes working together. The inter
actions obtained from the STRING database indi
cated that the potential genes cluster were in the 
opposite module (Figure 4a). The genes in the 
predicted genes cluster by Cytoscape software 
were visualized with yellow color (Figure 4b). 
Ten hub genes were predicted and depicted by 
Cytoscape, as showed in the chart (Figure 4c).

3.5 Detecting specific modules associated with 
sepsis-induced ARDS

Genes in specific modules associated with sepsis- 
induced ARDS usually play a crucial role in the 
development of ARDS. From the color-coded table 
(Figure 5), we observed that most modules in sepsis- 
induced ARDS had counterparts in the consensus 

module. This indicated the similarity and consensus 
of the genes in response to sepsis and sepsis-related 
ARDS. Interestingly, we found that 34 genes in the 
sepsis-induced sepsis (se/ARDS) set-specific module 
located in the grey consensus module.

3.6 PPI and functional analysis of the specific 
module related to ARDS with sepsis

The PPI of candidate genes was analyzed and depicted 
by the STRING database (Figure 6a); the result of PPI 
was integrated with Cytoscape. The PPI indicated one 
key gene, ADAMTS3, played a crucial role with the 
most interactions during the first period of patients 
transferring from sepsis to sepsis-induced ARDS. No 
significantly enriched GO or KEGG terms was found 
with P < 10−4.

3.7 Potential molecular biomarkers for sepsis 
and sepsis ARDS

To select significant features of sepsis with ARDS, 
features were detected in ‘train’ set with SVM-RFE 
method using 194 genes (160 in the opposite model 
and 34 in the specific model) and validated with the 
‘test’ set; the model of 3 genes (TLCD4, PRSS30P, 
and ZNF493) and seven genes (TLCD4, PRSS30P, 

Figure 5. Correspondence of sepsis-induced (se/ARDS) set-specific and the se/ARDS-sepsis consensus modules. each row of the table 
refers to one se/ARDS set-specific module, each column to one consensus module. numbers indicate gene counts in the intersection 
of consensus modules. the significance of overlap is color-coded; the stronger the red color, the more significant the overlap is. the 
table represents that most se/ARDS set-specific modules are observed in consensus modules.
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ZNF493, AGO2, SLC37A3, SLC2A1, and RPL11) 
showed moderate performance in the ‘test’ group 
with AUC of 0.67 (Figure 6b). Eight outliers in 
GSE32707 were identified and cut using a cluster 
tree; 33 samples, 10 patients with sepsis and ARDS 
and 23 patients with sepsis alone, were used for 
validation (Figure 7a). Two outliers – 
GSM1633784 (ARDS with sepsis) and 
GSM1633799 (ARDS with sepsis) – were recog
nized, labeled, and discarded in GSE66890 with 

the cluster tree; fifty-five samples including 28 sep
sis patients and 27 sepsis with ARDS were collected 
for the validation process (Figure 7b). The model of 
the top three genes (TLCD4, PRSS30P, and 
ZNF493) showed acceptable discrimination in sam
ples on 7 days after admission with AUC of 0.63; 
however, we didn’t observe the consistent perfor
mance of 7 genes (Figure 7c). Three of the top 10 
genes, including the first gene, TLCD4, were not 
detected in GSE66890; therefore, we performed 

Figure 6. PPI in specific module and SVM-RFE analysis. (a) The PPI of candidate genes; nodes represent genes, edges to interactions. 
(b) AUC of model conducted with features in ‘test’ and ‘train’ sets was depicted.

Figure 7. Validation of selected features. (a) and (b) represent the cluster tree of samples of samples on 7 days after admission in 
GSE32707 and GSE66890; samples above the red line will be trimmed. (c) The validation of SVM-RFE with samples (7 days after 
admission) in GSE32707.
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validation in GSE66890 using the 2nd to 8th of 
genes; they failed to identify patients with sepsis 
and ARDS in GSE66890.

4. Discussion

With limited management of sepsis during the 
past years, it is essential to further elucidate the 
underlying mechanisms of sepsis and sepsis- 
induced ARDS to explore the new therapeutic 
approaches. In this research, we identified the 
opposite and specific modules related to sepsis 
and sepsis-induced ARDS via WGCNA. Fifteen 
genes (KMO, RPS27A, SPNS2, TUBA1B, BASP1, 
FBRSL1, AATK, PLK5, LRRC75A, TLCD4, IP6K3, 
DPY19L2P2, LRRN2, BTLA, and ALOX15) in 
opposite model significantly differentially 
expressed in patients with sepsis and ARDS com
pared to those with sepsis alone. Functional 
enrichment analysis of genes in the module that 
were oppositely correlated with sepsis and sepsis- 
induced ARDS showed that the ribosome-related 
pathway was significantly enriched (Figure 3). This 
result is consistent with the previous study in 
sepsis [20]. ADAMTS3 was found to be the most 
active gene in the PPI network in the first periods 
of patients transferring from sepsis to sepsis 
induced ARDS (Figure 6a). The adamalysin- 
thrombospondin (ADAMTS) proteinases are 
a relatively new branch of the metzincin family 
that contains metalloproteinase, disintegrin, and 
thrombospondin motifs [21]. It functions in extra
cellular matrix processing, organogenesis, and 
hemostasis [22]. ADAMTS was considered as 
a potential biomarker for distinguishing sepsis 
and sepsis-related ARDS patients, though with 
poor performance, in the previous research [23]. 
In our analysis, we didn’t observe significant dif
ference of ADAMTS expression in patients with 
sepsis and ARDS and sepsis alone, indicating the 
limited potential of ADAMTS as biomarker for 
sepsis-related ARDS and sepsis.

We performed feature selection analysis and 
found that combination of three genes (TLCD4, 
PRSS30P, and ZNF493) and seven genes 
(TLCD4, PRSS30P, ZNF493, AGO2, SLC37A3, 
SLC2A1, and RPL11) showed moderate perfor
mance in identifying patients with sepsis and 
ARDS within 1 day after admission (Figure 6b). 

We noticed the presence of ribosome-related 
genes, including RPL11 and RPS27, in the top 
20 features. Ribosome, a kind of conserved 
macromolecular machine, functions as 
a crucial component in catalyzing protein 
synthesis; several publications reviewed the sig
nificant relation of the ribosome and people’s 
health and diseases [24,25]. Vary and his cow
orkers found that the formation of 40S initia
tion complex was significantly decreased in 
patients with sepsis compared with healthy peo
ple [26]. A recent publication observed 
a significant enrichment of DEGs in ribosome- 
related pathway with multiple gene expression 
profiles [20]. We found the significant enrich
ment of genes in opposite model in ribosome- 
related terms and ribosomal genes with critical 
contribution in identifying patients with sepsis 
and ARDS form people with sepsis alone, indi
cating the significance of analyzing the mechan
ism of ribosome-related pathways in the 
conversion from sepsis to sepsis-related ARDS. 
Seven days after admission, the first three genes 
were consistent in identifying patients with sep
sis and ARDS (Figure 7c). However, this poten
tial was not observed when we used another 
validation data – GSE66890. Though the top 
three genes showed relatively stable perfor
mance in patients within 24 hours and 7 days 
after admission, the performance was signifi
cantly various between two groups (Figure 6b, 
Figure 7c), which indicates the variety of sepsis 
and sepsis-related ARDS; more expression 
experiments need to be done for potential bio
marker exploration.

5. Conclusion

In conclusion, we constructed networks 
between sepsis patients and sepsis-related 
ARDS patients with WGCNA. Function analy
sis of candidate genes and feature selection 
analysis revealed the crucial role of ribosome- 
related genes in the development of sepsis and 
sepsis-related ARDS. Three genes–TLCD4, 
PRSS30P, and ZNF493 indicated moderate per
formance in distinguishing sepsis-induced 
ARDS from sepsis.
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