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Abstract

Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’’ principle:
coexpressed genes are likely to be functionally associated.

Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is
based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures
of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups
(RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally
characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally
characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new
candidate disease genes for many OMIM phenotypes of unknown molecular origin.

Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of
different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression
data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic
diseases of unknown molecular basis.
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Introduction

Among the open problems of molecular biology the functional

annotation of the human genome and the identification of genes

involved in genetic diseases are especially important. Expression data

on a genomic scale have been available for several years thanks to

various experimental techniques, and are widely believed to contain a

wealth of information relevant to the solution of such problems.

Functional annotation based on expression data is usually

founded on the ‘‘guilt by association’’ principle: since there is a

strong correlation between coexpression and functional related-

ness, a gene found to be coexpressed with several others involved

in a given biological process can be predicted to be involved in the

same process [1–3]. Recent systematic studies have demonstrated

the soundness of the approach [4,5].

Typically the analysis proceeds in three steps: (1) definition of a

quantitative measure of dissimilarity between expression profiles, (2)

identification of groups of coexpressed genes, e.g. using clustering

algorithms (3) functional analysis of these groups using a controlled

annotation vocabulary such as the Gene Ontology (GO) [6,7].

In this work we analyze human normal tissues expression data with

a procedure combining data obtained with different experimental

techniques, and interpreted with different definitions of coexpression,

into a unified framework. Thanks to a stringent definition of

functional characterization this approach allows the generation of a

large set of high-confidence predictions in terms of functional

annotation and the identification of new candidate disease genes.

The distinctive features of our approach are:

N Integration of different datasets and measures of coexpression.

The working hypothesis behind this strategy is that different

experimental techniques and different definitions of dissimi-

larity measures explore different aspects of coexpression, and

therefore can be combined to maximize the useful information

obtained.

N Use of a rank-based procedure to generate groups of

coexpressed genes (Ranked Coexpression Groups - RCG),

without clustering algorithms.

N Use of the majority rule to determine the functional

characterization of the RCGs. Such highly stringent criterion
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allows the generation of high-confidence functional predictions

on the genes included in the functionally characterized RCGs.

The Ranked Coexpression Groups were generated from

publicly available expression data on human normal tissues

obtained with Affymetrix microarrays and SAGE; for the

microarray data we used Euclidean distance and Pearson linear

dissimilarity, while for SAGE we also used two measures of

coexpression based on the Poisson distribution and originally

introduced in [8] in a different context.

The RCGs determined to be functionally characterized by the

majority rule were then used for two purposes:

1. to generate high-confidence functional predictions for the

genes included in the functionally characterized RCGs

2. to identify promising new candidate disease genes for OMIM

[9] phenotypes of unknown molecular basis, but for which one

or more genetic loci have been identified. These predictions are

based on the co-occurrence in functionally characterized

RCGs of genes known to cause similar phenotypes

Results and Discussion

Ranked Coexpression Groups
In this work we considered gene expression data derived from

human normal tissues with Affymetrix microarrays and with

SAGE, but the techniques we employed are readily generalized to

any high-throughput gene expression platform. Given a set of

expression data and a quantitative measure of coexpression, for

each gene in the dataset we defined a Ranked Coexpression

Group as the gene itself together with the k genes most closely

coexpressed with it.

Therefore from a gene expression dataset and a quantitative

measure of coexpression we generated a number of RCGs equal to

the number of genes in the dataset, each containing k+1 genes.

Contrary to the clusters generated by most clustering algorithms,

the RCGs can overlap each other.

Generating putative functional annotations
We defined a RCG to be functionally characterized if the

majority of the genes it contains share a functional annotation (GO

term). If a RCG was found to be functionally characterized by a

GO term, we assigned the same term to all the genes in the RCG

which were not annotated to it: in this way we produced a set of

predicted functional annotations.

The parameter k controls the sensitivity and specificity of the

method: with increasing k one obtains less predictions with a

smaller percentage of false positives (PFP, defined in the Methods)

in the functional predictions. We chose the smallest value of k

corresponding to an overall PFP of less than 1%, which turned out

to be k = 6.

Our definition of functional characterization differs from the

one most commonly used, in which a cluster of genes is considered

functionally characterized if a GO term is significantly overrep-

resented among its member genes. Using the purely statistical

definition, a GO term can turn out to be significantly

overrepresented even if a relatively small fraction of the genes

are annotated to it. In this case annotating the other genes to the

term would probably generate a large fraction of false positives.

Our majority rule ensures a higher level of confidence for the

predicted annotations.

By limiting ourselves to Gene Ontology terms whose total

prevalence in all the genes included in the expression dataset is

lower than a given threshold M, we can make the majority rules

imply statistical overrepresentation. For example the probesets of

the Affymetrix data set we use can be associated to 18099 unique

genes: since we only consider GO terms whose prevalence among

these genes is #M = 300, the situation of least statistical

significance is that of a RCG with 4 out of 7 genes annotated to

a term with total prevalence of 300, which corresponds to a P-

value of 2.5 1026 (one-sided exact Fisher test). The converse is not

true, since for example a GO term whose total prevalence is 2,

found twice in a RCG, would be statistically overrepresented with

P-value 1.35 1027 but would not be selected by the majority rule.

Datasets and measures of coexpression
We used human normal tissue gene expression data obtained

with Affymetrix and SAGE platforms. The Affymetrix data were

produced by the authors of Ref.[10] and deposited in the GEO

repository [11,12] under accession GSE3526 [13]. 353 microarray

experiments were performed on ten post-mortem donors,

representing 65 tissues including 20 distinct sites of the central

nervous system. On these data we used Euclidean distance and

Pearson linear dissimilarity as measures of coexpression.

The SAGE data were obtained from the CGAP web site [14],

limiting the download to the 66 libraries labeled as ‘‘normal

tissue’’. On the SAGE data we used Pearson linear dissimilarity,

Euclidean distance, and two different Poisson-based coexpression

measures introduced in Ref.[8], originally to define a similarity

measure between promoters based on counts of transcription

factor binding sites.

Each dataset/coexpression measure gave its own set of RCGs

and the corresponding predicted annotations. Table 1 shows the

number of predicted annotations obtained with the various

combinations, together with an estimate of the PFP obtained as

explained in the Methods section.

It would be possible to conclude from these data that, for

example, Pearson dissimilarity is the best predictor of functional

relatedness both for Affymetrix and SAGE data. However it

should be noted that:

N The signal to noise ratio is rather small for each dataset/

measure combination separately, as shown by the PFP values

shown in Table 1; and

N The overlap between the predicted annotations obtained with

different combinations is rather limited (Table 2). For example

the predictions obtained from microarray data and Euclidean

distance are definitely not a subset of the more numerous ones

obtained with Pearson dissimilarity.

Table 1. Predicted annotations.

dataset measure annotations PFP(%)

AFFY P 1882 0.26

AFFY E 925 0.61

SAGE P 738 1.26

SAGE E 374 2.53

SAGE D 414 2.33

SAGE O 539 1.70

Number of non-redundant predicted annotations obtained with the various
dataset/measure combinations, and the corresponding PFP. The coexpression
measures are: E: Euclidean; P: Pearson; D: Poisson ‘‘distinct’’; O: Poisson
‘‘overrepresentation’’.
doi:10.1371/journal.pone.0002439.t001
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These facts indicate that different combinations are able to

usefully explore different aspects of coexpression: therefore the

most effective strategy is to consider the union of all such

predictions.

In particular, the small overlap between the predictions

obtained with Affymetrix and SAGE data is in agreement with

the results of Ref. [15]. In that paper it is shown, more generally,

that the overlap between pairs of coexpressed genes from

Affymetrix and SAGE experiments is significant but small. Our

results show however that data from both platform can be used to

obtain good quality functional prediction if a very stringent

selection is performed, such as the one defined by the majority rule

applied to RCGs.

Ref. [15] also provides a study of the ‘‘GO correlation’’ (fraction

of pairs of coexpressed genes sharing their most specific GO

annotation) as a function of the cutoff in Pearson correlation

coefficient used to define coexpression. For example, they observe

a very strong enrichment in GO correlation when the cutoff is set

at values of 0.8 or higher. For comparison, the average Pearson

correlation in all our Affymetrix (SAGE) RCGs is 0.785 (0.711),

while for functionally characterized ones it is 0.868 (0.836).

The result of our analysis is thus the union of the predicted

annotations produced by each combination, a total of 4058 non-

redundant associations between a gene and a GO term involving

2440 human genes and 255 GO terms (non-redundant means that

when the same gene was annotated to a term and to a descendant

of the same term in the GO graph, only the latter annotation was

retained). The PFP for this set of predictions can be estimated as

the weighted average of the PFPs of the single combinations to be

0.987%. The functional predictions are reported in Supporting

Information Text S1.

High-confidence annotations
While the PFP gives a general statistical measure of the

reliability of our predictions, it is possible to extract a high-

confidence subset of predicted annotations by estimating the

precision associated to each individual GO term through a leave-

one-out procedure.

First we produced, for each GO term, a list of recalled

annotations, that is a list of genes that are known to be associated

to the GO term and would be associated to the same term by the

method if the known association were to be ignored. Then, as in

[4], we defined the precision as the ratio between the number of

recalled associations and the total number of recalled and

predicted associations between annotated genes and the GO term.

We generated a list of GO terms with precision $50% for each

dataset/measure combination. Putting together the corresponding

functional predictions and eliminating redundancies, we ended up

with 758 high-confidence annotations involving 510 genes and 50

GO terms (Supporting Information Text S2)

Comparison with a SVM-based approach
In Ref. [4] a method based on a Support Vector Machine

(SVM) was introduced to solve the same problem, i.e. to generate

genome-wide predicted functional annotations based on normal-

tissue expression data. The authors produced a list of 3730

putative annotations with a precision of 50% or better. After

removing redundancies and selecting, as in our case, only the GO

terms with total prevalence of 300 or less, we are left with 1750

putative annotations, to be compared to the 758 high-confidence

annotations we obtained.

Such a difference could in principle be due to higher

effectiveness of the SVM method compared to the majority rule,

or to differences in the primary data used in the analysis, or both.

Therefore we decided to use our algorithm on the data used in [4],

with the known GO annotations provided in the supplementary

material of the same work. We proceeded exactly as described

before, using Pearson dissimilarity and Euclidean distance, and we

obtained a total of 1990 high-confidence annotations (Supporting

Information Text S3). Therefore, at least on this expression

dataset, the performance of the majority rule method is similar to

the SVM. Interestingly, 292 of our 1990 predictions are in

common with the SVM predictions. Such moderate degree of

overlap suggests that the two methods can explore different aspects

of the same expression data, and can therefore be considered as

complementary.

However our method has two main advantages over the use of

SVMs or other complex machine learning algorithms: first, it is

simple to implement and does not require much computational

power; and second, the RCGs, and in particular the functionally

characterized ones, can be further mined to obtain insight on

other biological problems. For example, in the next section we

show how RCGs can be used to predict new candidate disease

genes.

Using RCGs to find candidate disease genes
Since the RCGs could successfully be used to predict functional

annotations we asked whether they could also be useful in finding

new candidate disease genes. First, we verified that genes whose

mutations are known to cause similar phenotypes tend to appear

together in RCGs more often than expected by chance. We used

the similarity score between OMIM phenotypes developed in [16],

and we defined as similar two phenotypes with a similarity score

$0.4, as suggested in [16].

For each dataset/measure combination we counted the fraction of

RCGs containing at least two genes associated to similar phenotypes,

and compared it to the same fraction obtained after randomization of

the gene names. The results are shown in Fig. 1. All dataset/measure

combinations showed a significant enrichment of disease-associated

RCGs compared to randomized RCGs. Moreover, this enrichment

was much larger for functionally characterized RCGs compared to all

RCGs (as expected, since functional annotation and involvment in

genetic diseases are correlated).

These results suggest that RCGs, and especially functionally

characterized ones, can be used to predict new candidate genes for

those phenotypes for which only a genomic locus, and not an

individual gene, is known. We considered a gene to be a candidate

for a phenotype if

(a) its genomic location fell within a locus known to be

associated to the phenotype; and

Table 2. Overlap.

AFFY P AFFY E SAGE P SAGE E SAGE D SAGE O

AFFY P 1882 168 38 20 11 21

AFFY E 925 16 13 6 15

SAGE P 738 58 46 65

SAGE E 374 45 69

SAGE D 414 201

SAGE O 539

Overlap between the predicted annotations found by the various dataset/
measure combinations. E: Euclidean, P: Pearson, D: Poisson-distinct, O: Poisson-
overrepresentation.
doi:10.1371/journal.pone.0002439.t002
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(b) the gene belonged to a functionally characterized RCG

containing at least two genes known to cause similar

phenotypes.

We obtained a total of 53 candidate disease genes for 33 orphan

loci (Table 3 and Supporting Information Text S4). A survey of

the corresponding OMIM records and the literature revealed that

18 of our candidates could have been selected as very likely on the

basis of the available evidence, because they are known to be

involved in phenotypes very similar to those associated to the

orphan loci. Seven of these cases have been already excluded, on a

purely clinical basis, because a mutation was found in a different

gene or because of a negative mutation screening. Nevertheless,

since mutations are usually searched for only within the annotated

exons, we believe that the decision to definitively rule out the

involvement of such genes should be taken cautiously. In these

cases, our results can be considered as further, independent

evidence which may justify the search for mutations in the

regulatory regions of the genes or the re-evaluation of possible

synonymous changes which may have been discovered in patients,

since they could in principle cause aberrant splicings [17,18].

In all of the other cases, our results represent completely new

and extremely focused working hypotheses about the possible

genetic origin and molecular basis of the mapped phenotype, of

which we report some remarkable examples.

Rosselli-Gulienetti (RG) syndrome (OMIM ID 225000) is a very

rare form of ectodermal dysplasia, associated with craniofacial

abnormalities such as cleft palate and lip, whose molecular basis is

completely unknown. Owing to phenotypic similarity with

Desmosterolosis (602398) and Smith-Lemli-Opitz Syndrome

(270400), our analysis provided Lathosterol 5-desaturase (SC5DL)

as a candidate for this disorder. Although missense mutations in

SC5DL are known to result in lathosterolosis, the complete

inactivation of the gene in mice led to a malformative syndrome

characterized by craniofacial defects, including cleft palate and

micrognathia, and limb patterning abnormalities [19]. These

malformations were consistent with impaired hedgehog signaling

and appeared to be a consequence of decreased cholesterol rather

than increased lathosterol [19]. Taken together, these facts

strongly suggest that null SC5DL mutations could cause RG

syndrome in humans.

Idiopathic basal ganglia calcification (IBGC1 - OMIM ID

213600) is a disorder of unknown origin mapped to Chr. 14q, a

locus that comprises 1250 potential candidates. Our analysis

suggests that this disorder is caused by mitochondrial disfunction,

and strongly restricts the field of likely candidate genes.

The candidate that we provide for autosomal nonlamellar and

nonerythrodermic ichthyosis (OMIM ID 604781) is CYP4F22, a

cytochrome P450 family member of unknown function that we

functionally associated with epidermal development. This result is

particularly interesting in the light of recent results showing that

another member of the family is implicated in a different form of

ichthyosis [20].

Finally, one of the predicted disease/gene associations strongly

suggests that our method could be of help in the identification of

genes involved in highly prevalent clinical phenotypes. Indeed, a

Quantitative Trait Locus for abdominal obesity (OMIM ID

605552) has been mapped on 3q27. The candidate that we

provide for this locus is ABCF3, an ATP-binding cassette-

containing gene of unknown function. Interestingly, on the basis

of our predicted annotation, this gene could be involved in the

synthesis of C21-steroid hormones, thus providing a strong

rationale for its potential involvement and for searching variants

of its sequence in obesity.

Conclusions
We have investigated publicly available gene expression data to

predict the function of human genes based on the guilt-by-

association principle. A new method based on small groups of

tightly coexpressed genes and the majority rule to obtain

functional predictions was used on various combinations of

datasets and measures of coexpression.

Even if it would be possible to rank these combinations by their

effectiveness in producing putative annotations, we showed that

the most effective approach is to integrate their results, since each

Figure 1. Enrichment of RCGs in genes involved in similar phenotypes. For each dataset/coexpresison measure combination we show the
fraction of RCGs associated to an OMIM phenotype as described in the text. The fraction is shown for functionally characterized RCGs (grey), all RCGs
(purple), and randomized RCGs (orange). The coexpression measures are: E: Euclidean; P: Pearson; D: Poisson ‘‘distinct’’; O: Poisson
‘‘overrepresentation’’.
doi:10.1371/journal.pone.0002439.g001
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dataset/measure combination provides a high signal to noise ratio,

while the overlap between the results of the different combinations

is limited.

While the method is simple and its implementation does not

require large computational power, we showed that it performs

similarly to a published method based on support vector machines.

The Ranked Coexpression Groups on which the method is based

can be used to gain insight into biological problems other than

functional annotation: as an example we used them to identify new

candidate disease genes.

Our main results are

N a set of 4058 non–redundant functional predictions, including

a subset of 758 high-confidence predictions; and

N a set of 53 candidate disease genes associated to 33 OMIM loci

with unknown molecular basis.

These results emphasize the crucial role that high-throughput

gene expression data can play in solving the outstanding problems

of molecular biology.

Methods

Expression data: microarray
Human normal tissue gene expression data generated by the

authors of Ref.[10] were downloaded from the Gene Expression

Omnibus [11,12]. The data were log-transformed and replicate

experiments corresponding to the same tissue were averaged, to

compensate for the highly variable number of replicate experi-

ments available for the 65 tissues considered.

The association between probesets and genes was obtained from

Ensembl [21,22], version 45. Logarithmic expression data for

probesets corresponding to the same Ensembl gene id were

averaged, while probesets not associated to any Ensembl id were

Table 3. Predicted disease genes.

Gene Phenotype Status

PCOLCE Ehlers-Danlos syndrome, type VIII A

KCNQ2 Electroencephalogram, low-voltage B*[24]

CACNA1H Microphthalmia, isolated, with cataract 1 A

MYF6 Scapuloperoneal myopathy A

COL2A1 Spondylometaphyseal dysplasia, Kozlowski type B#[25]

PSMB5 Basal ganglia calcification, idiopathic, 1 A

NEDD8 Basal ganglia calcification, idiopathic, 1 A

C14orf2 Basal ganglia calcification, idiopathic, 1 A

ENSG00000196992 Basal
ganglia

calcification,
idiopathic, 1

A

RSHL3 Craniometaphyseal dysplasia, autosomal recessive A

SC5DL Rosselli-Gulienetti syndrome A

DKFZp762E1312 Holoprosencephaly A

TULP1 Spinocerebellar ataxia, autosomal recessive 3 A

NRSN1 Spinocerebellar ataxia, autosomal recessive 3 A

OPN1MW Microphthalmia, isolated, with coloboma 1 B

OPN1MW2 Microphthalmia, isolated, with coloboma 1 B

CACNA1F Albinism, ocular, type II B#[26]

OPN1LW Colorblindness, blue-mono-cone-monochromatic
type

B

OPN1MW Colorblindness, blue-mono-cone-monochromatic
type

B

OPN1MW2 Colorblindness, blue-mono-cone-monochromatic
type

B

NRK Megalocornea A

MYL2 Spinal muscular atrophy, distal, congenital
nonprogressive

A

TDG Spinal muscular atrophy, distal, congenital
nonprogressive

A

CAMK1D Refsum disease with increased pipecolic acidemia A

AIPL1 Cone-rod dystrophy 5 C$[27]

LOC257039 Glaucoma 1, open angle A

BFSP2 Glaucoma 1, open angle A

SLC35A1 Retinitis pigmentosa 25 A

IMPG1 Cone-rod dystrophy 7 A

ELOVL4 Cone-rod dystrophy 7 B$[28]

CNGA1 Stargardt disease 4 C

SAA4 Hyperlipidemia, combined, 2 A

CYP4F22 Ichthyosis, nonlamellar and nonerythrodermic,
congenital, autosomal

A

ACTA1 Muscular dystrophy, congenital, 1b B

CABC1 Muscular dystrophy, congenital, 1b A

APOA5 High density lipoprotein deficiency, 3 B

APOA4 High density lipoprotein deficiency, 3 B

BFSP1 Cataract, posterior polar, 3 B

PCP4L1 Cone-rod dystrophy, 8 A

ABCF3 Abdominal obesity-metabolic syndrome A

FOXE1 Cataract, autosomal recessive, early-onset, pulverulentA

MYOT Myopathy, distal 2 B%[29]

LOC493869 Myopathy, distal 2 A

CMYA5 Myopathy, distal 2 A

Gene Phenotype Status

KRT1 Exfoliative ichthyosis, autosomal recessive B

KRT75 Exfoliative ichthyosis, autosomal recessive A

KRT2 Exfoliative ichthyosis, autosomal recessive B

KRT5 Exfoliative ichthyosis, autosomal recessive B

KRT77 Exfoliative ichthyosis, autosomal recessive A

KRT6A Exfoliative ichthyosis, autosomal recessive A

FLNC Muscular dystrophy, limb-girdle, type 1f A

CRYBB1 Myopia 6 A

CRYBA4 Myopia 6 A

The gene name is the official HUGO name where available, or the Ensembl ID.
The third column summarizes the available information about the association of
candidates with the disease. In particular, genes annotated with A have to our
knowledge not been associated to the disease or to similar phenotypes, genes
annotated with B are involved in MIM phenotypes with phenomap scores of 0.4
or higher, genes annotated with C have been associated to similar phenotypes,
but display a phenomap score lower than 0.4. Moreover, genes annotated with
# represent the actual disease gene, because mutations have been found in
patients (but the association with the disease is not reported by Ensembl,
version 45); genes annotated with * have been excluded on clinical basis; genes
annotated with $ can be excluded because mutations have been found in a
different gene; genes annotated % are at the moment excluded because they
have been screened but mutations have not been found. In all cases labeled by
special characters we also provide a reference to the corresponding supporting
evidence. More details are available in Supporting Information Text S4.
doi:10.1371/journal.pone.0002439.t003

Table 3. Cont.
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discarded. We thus obtained an expression matrix with 18099

rows (Ensembl gene ids) and 65 columns (tissues), which was used

to construct the RCGs.

Expression data: SAGE
We used the SAGE library finder [23] to select all short-tag

libraries with normal tissue histology, obtaining 66 libraries, and

we downloaded the corresponding tag frequencies. An integer-

valued expression matrix was obtained by summing the tag counts

for all tags corresponding to the same Ensembl id. The translation

from tag to Ensembl id was performed using the tag-Unigene id

correspondence provided in the SAGE ftp site. We thus obtained

an expression matrix with 14031 rows and 66 columns, which was

used to construct the RCGs.

GO annotation
GO annotations for Ensembl gene ids were obtained from

Ensembl, version 45. Annotations with the ‘‘IEP’’ evidence code

were discarded as they refer to annotations inferred from

expression profiles, that is based on approaches similar to the

one used in this work.

Measures of coexpression
Given two genes in one of our expression matrices we used

different quantitative measures of coexpression to construct

independent sets of RCGs. Let X and Y be two genes, and their

expression values for the N columns of the matrix (tissues). The

expression data are real numbers for microarray data and integer

counts for SAGE.

The Pearson linear dissimilarity is defined as

dP X ,Yð Þ~ 1{r X ,Yð Þ
2

where r is the Pearson correlation coefficient. This measure of

coexpression was used for both microarray and SAGE data.

The Euclidean distance is

dE X ,Yð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i~1

xi{yið Þ2
vuut

Also this measure was applied to both microarray and SAGE data.

However the SAGE data were first normalized by dividing each

tag count by the total number of tags counted in the library.

We also used, on SAGE data, two measures of coexpression

based on the null hypothesis of Poissonian distribution of the tag

counts. These were proposed in Ref.[8] in a different context,

namely as a measure of similarity between promoter regions based

on transcription factor binding site counts. In particular we used

the two ‘‘dissimilarity metrics’’ introduced in Ref. [8].

They are both based on the null model in which the gene

expression levels for the i-th SAGE library follow a Poisson

distribution with expectation value given by the average gene

expression in the library.

The ‘‘dissimilarity-distinct’’ measure is defined by

dD X ,Yð Þ~ 1

N

XN

i~1

F xi,mið Þ{F yi,mið Þj j

where F(x,m) is the Poisson distribution function, i.e. the probability

of observing #x occurrences if the expected number of

occurrences is m:

F x,mð Þ~e{m
Xx

k~0

mk

k!

Therefore dD(X,Y) gets from each library a contribution equal to

the area under the Poisson curve between xi and yi.

The ‘‘dissimilarity-overrepresentation’’ measure is based on the

idea of overrepresentation of a gene in a library. If the expression

level of gene X in the i-th library is xi, its overrepresentation is

measured by the Poissonian probability of having at least xi

occurrences:

1{F xi{1,mið Þ

dO(X, Y) gets from each library a contribution equal to the

difference in overrepresentation between X and Y in the library:

dO X ,Yð Þ~ 1

N

XN

i~1

F xi{1,mið Þ{F yi{1,mið Þj j

While the equations defining dD and dO look rather similar, it turns

out a posteriori that the RCGs and putative annotations they

produce are significantly different (see Table 2).

Other Poisson-based similarity measures are defined in [8],

which however are not suitable for the generation of RCGs since,

in practice, large number of genes turn out to have the same

coexpression with any given gene, so as to make the definition of

small RCGs problematic.

Estimating the percentage of false positives and
choosing k

For each combination of expression data and coexpression

measure we estimated the percentage of false positives (PFP)

among the putative gene annotations using randomized RCGs: we

randomized the gene names 100 times independently and

recorded the number of putative annotations obtained from each

set of randomized RCGs. The PFP for a given data/measure

combination is the ratio between the average number of predicted

annotations obtained from the randomized RCGs and the number

obtained from the true RCGs. The overall PFP is computed as the

average over the PFPs of the various combinations, each weighted

by the corresponding number of predicted annotations. When

increasing the value of k one systematically obtains less predictions

and a lower PFP. We decided to use the smallest k giving an

overall PFP less than 1%, which turned out to be k = 6. For

comparison, the PFP for k = 4 was 8.0%.

Identification of candidate disease genes
To verify the enrichment of RCGs in pairs of genes involved in

similar phenotypes we downloaded from Ensembl a list of

associations between human genes and phenotypes known to be

caused by their mutations. We defined two OMIM phenotypes to

be similar if their MimMiner [16] similarity score was $0.4. We

then computed the number of functionally characterized RCGs

including at least two genes associated to similar phenotypes and

compared it to the same number (a) for all RCGs and (b) averaged

over 100 randomized RCGs to produce Figure 1.

A list of 850 OMIM phenotypes with unknown molecular basis,

but for which one or more genomic loci have been identified, was

obtained from the OMIM site [9] on July 2nd, 2007. For the 602

such phenotypes for which MimMiner scores were available we
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identified the functionally characterized RCGs containing at least

two genes experimentally associated to similar phenotypes. Genes

in such RCGs, which were also located inside one of the genomic

loci associated to the phenotype of unknown molecular basis were

considered as candidate genes for the phenotype.
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