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Abstract: Citrus sudden death-associated virus (CSDaV) is a monopartite positive-sense single-stranded
RNA virus that was suggested to be associated with citrus sudden death (CSD) disease in Brazil.
Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV
isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of
partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding
for the methyltransferase, the multi-domain region (MDR), the helicase, the RNA-dependent RNA
polymerase and the coat protein, showed that the MDR coding region was the most diverse region
assessed here, and a possible association between this region and virus adaption to different host or
plant tissues is considered. Overall, the nucleotide diversity (π) was low for CSDaV isolates, but the
phylogenetic analyses revealed the predominance of two main groups, one of which showed a higher
association with CSD-symptomatic plants. Isolates obtained from CSD-symptomatic plants, compared
to those obtained from asymptomatic plants, showed higher nucleotide diversity, nonsynonymous
and synonymous substitution rates and number of amino acid changes on the coding regions located
closer to the 5’ end region of the genomic RNA. This work provides new insights into the genetic
diversity of the CSDaV, giving support for further epidemiological studies.
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1. Introduction

Citrus sudden death-associated virus (CSDaV) is a member of the genus Marafivirus in the family
Tymoviridae, and has shown a strong association with Citrus sudden death (CSD), an important citrus
disease in Brazil [1]. CSDaV virions are isometric particles of ≈30 nm in diameter, composed of
a monopartite, positive-sense, single-stranded RNA genome of approximately 6.8 kb with a high
cytosine content (37.4%) and encompassing two ORFs [1,2]. A large ORF (ORF1) encodes a 240 kDa
polyprotein (p240) which contains conserved signatures of domains involved with replication and
virion structure, including the methyltransferase (MT), the papain-like protease (PRO), the helicase
(He), the RNA-dependent RNA polymerase (RdRP) domains and two subunits of the coat protein (CP)
of 21 and 22 kDa in size, respectively [1]. Moreover, a multi-domain region that contains numerous
predicted single domains is detected in ORF1 (between the MT and PRO domains), but the function of
this region in CSDaV is unknown. The small ORF (ORF 2) at the 3’ end region encodes a 16 kDa putative
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protein (p16) that has shown 42% identity with the N-terminal portion of a putative movement protein
(p31) from Grapevine fleck virus (GFkV), a member of the genus Maculavirus in the family Tymoviridae [1].

The first report of CSD was in 1999, affecting sweet oranges (Citrus sinensis L. Osb.) grafted on
Rangpur lime rootstock (Citrus limonia L. Osb.), the main non-irrigated rootstock used in Brazil [3].
Since then, CSD has caused death or eradication of four million orange trees in Minas Gerais and
São Paulo states [4]. Recently, CSD-symptoms have been also detected in sweet oranges grafted on
other rootstocks (e.g., Citrus volkameriana, Citrus jambiri and Citrus pennivisiculata Lush) [5]. Citrus
plants affected by CSD show general decline symptoms characterized by pale green coloration of leaves,
different levels of defoliation, death of the root system, and a characteristic development of yellow
stain in the phloem of the rootstock [6], which is the main diagnostic symptom of this disease [3,6].
However, these affected plants had an incubation period of at least 2 years before symptoms were
detected [1,6], which may result in delay of management of the disease. Although the etiology of CSD
has not been definitively determined, Maccheroni et al. [1] reported a significant correlation at 99.7%
between CSD symptoms and the presence of CSDaV, and suggested that it is probably spread by an
aphid vector. The presence of CSDaV as a part of a multiple virus infections or co-infections has been
reported in other hosts as well, such as in Pinot Noir grapevine [7], in Nectarine [8] and in grapevine
Syrah showing decline symptoms [9]. Such co-infections are also considered for plants showing CSD
symptoms [1,4,10].

Only two CSDaV isolates have been characterized so far, and their complete genome sequences
are available in GenBank (accession No. AY884005 and DQ185573). However, the structure of CSDaV
populations has not been studied and the evolutionary forces that may shape this structure are still
unknown. To better understand the relationship between CSDaV and CSD, we studied the genetic
structure and molecular variability among CSDaV isolates obtained from CSD-affected areas, and
compared them with reference isolates by analyzing the partial nucleotide sequences of five coding
regions including those for MT, the multi-domain region (named here as MDR), the He, the RdRP
and the CP. As a result, we showed that the MDR region was the most diverse region assessed here.
We identified the predominance of two main phylogenetic groups, one of which showed a higher
association with CSD-symptomatic plants. CSDaV isolates from CSD-symptomatic plants showed
higher nucleotide diversity, nonsynonymous and synonymous substitution rates and number of amino
acid changes on the coding regions located closer to the 5’ end region of the genomic RNA. These
results provide relevant information for further epidemiological studies.

2. Materials and Methods

2.1. Plant Collection

The CSDaV population was assessed from different citrus plants: different cultivars of sweet
orange grafted on different rootstocks, susceptible and tolerant to CSD. A total of 31 plants was sampled:
fifteen trees were asymptomatic and 16 trees had clear CSD symptoms (i.e., occurrence of yellow stain
in the rootstock bark), including a tree grafted on Sunki mandarin of China, which is supposed to be
tolerant to CSD, and trees grafted on CSD-susceptible rootstock (Rangpur lime), but intergrafted with
tolerant rootstocks (Trifoliate orange and Cleopatra mandarin). Genotypes and symptom information
are summarized in Table 1. All selected trees were monitored since 2003 in CSD-affected areas located
in the municipalities of Colombia (northern Sao Paulo State) and Comendador Gomes (southwestern
Minas Gerais state), Brazil. CSD-symptomatic plants showed the first symptoms in 2006. All citrus
plants were approximately five years old at the time of collection in 2007. Collected samples were
frozen in liquid nitrogen and stored at −80 ◦C prior to analysis.
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Table 1. Citrus plants used to assess the population of CSDaV. Canopy and rootstock genotypes of
each plant are shown. Type of plant tissue and number of collected plants are indicated.

Canopy (C. sinensis) Rootstock Collected
Tissue

Number
of Plants

Asymptomatic
plants

Natal Rangpur lime (C. limonia) Leaves 1
Valencia Swingle citrumelo (P. trifoliate x C. paradisi) Leaves 3
Hamlin Rangpur lime (C. limonia) Leaves 3
Pera Rio Gou Tou (unidentified Citrus hybrid) Leaves 1
Valencia Cleopatra mandarin (C. reshni) Leaves 2
Valencia Trifoliate orange (P. trifoliata) Leaves 3
Hamlin Cleopatra mandarin (C. reshni) Leaves 1
Hamlin Cleopatra mandarin (C. reshni) Roots 1

Symptomatic
plants

Valencia Volkamerian lemon (C. volkameriana) Leaves 1
Natal Rangpur lime (C. limonia) Leaves 2

Hamlin Rangpur lime (C. limonia) Leaves 2
Hamlin Volkamerian lemon (C. volkameriana) Leaves 1

Valencia Rangpur lime (C. limonia) and Trifoliate
orange (P. trifoliata) as interstock Leaves 2

Pera Rio Rangpur lime (C. limonia) Leaves 3

Hamlin Rangpur lime (C. limonia) and Cleopatra
mandarin (C. reshni) as interstock Leaves 2

Hamlin Rangpur lime (C. limonia) Roots 2
Valencia Sunki mandarin of China (C. sunki) Leaves 1

Total = 31 plants

2.2. RNA Extraction and RT-PCR Amplification

Total RNA was extracted from all samples using the RNeasy Plant Mini kit (Qiagen, Valencia, CA,
USA) according to the manufacturer’s instructions. A set of primers (Table 2) was designed to amplify
nucleotide sequences, which corresponded partially to the five domains: the methyltransferase (MT),
the multi-domain region (MDR), the helicase (He), the RNA-dependent RNA polymerase (RdRP) and
the coat protein (CP) coding regions based on the CSDaV reference genomes (GenBank accession no.
AY884005 and DQ185573) (Figure 1). cDNAs were synthesized in a 20 µL volume of 1× Reaction
Buffer, containing 0.5 mM dNTPs mix, 200 U of RevertAid H Minus M-MuLV Reverse Transcriptase
(Thermo Scientific, Waltham, MA, USA), and 5 µM of a random hexamer primer. PCR reactions were
performed in 25 µL volume, containing 1× High Fidelity PCR Buffer (Invitrogen, Carlsbad, CA, USA),
0.2 mM dNTP mix, 2 mM MgSO4, 0.02 U of Platinum Taq DNA Polymerase High Fidelity (Invitrogen)
and 10 mM of each forward and reverse primers. The following PCR conditions were used: 94 ◦C
for 2 min; 35 cycles each of 94 ◦C for 15 s, 55 ◦C (for all pair of primers) for 30 s and 68 ◦C for 1 min.
The resulted PCR products were separated by electrophoresis in a 1% agarose gel and detected by
ethidium bromide staining. Bands were cut from the gel and the PCR products were purified using a
QIAquick gel extraction kit (Qiagen).
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conserved domains are represented by grey boxes. Red bars indicate the genomic regions analyzed in
this study.
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Table 2. Primer sequences designed based on five genomic regions of CSDaV genome.

Genomic Region Primer Sequences (5’–3’) Annealing Nucleotide Position

MT
Forward-CGTCAAACTCCCNCTGAC 351–368

Reverse-GATCANNAGAGAGTGGACTG 1094–1113

MDR
Forward-CTCCCTCTCCATCTGCAAGC 1566–1585
Reverse-ATANTCNNTGGAGGGGTCA 2375–2393

He
Forward-AGATNTTGGCNCTNGANTC 3305–3323
Reverse-ANTCNGAGAACATTCNGTTG 4092–4111

RdRP
Forward-CATCAAGAGAANCANGANCC 4636–4355

Reverse-TGAGACCATAGTGGGAGTGT 5414–5433

CP
Forward-GCCATCTACACCACACTCTC 5857–5876
Reverse-TTGGANTAGACGGAGTAGGA 6568–6587

2.3. Cloning and Sequencing

The purified PCR products were cloned into pGEM-T vector (Promega, Madison, WI, USA) using
T4 DNA ligase (Promega) according to the manufacturer’s instructions, followed by transformation
into Escherichia coli DH5α competent cells [11]. Ten recombinant colonies were selected on screening
media and confirmed by colony PCRs. Plasmid DNAs were extracted using the PureYield plasmid
miniprep system kit (Promega) following the manufacturer’s instructions and were bi-directionally
sequenced using an Applied Biosystems 3730 DNA Analyzer.

2.4. Nucleotide Sequence Analysis

CSDaV reference sequences, identified as AY884005 (CSDaV) and DQ185573 (CSDaV strain p15)
were downloaded from GenBank [12] and included in this analysis as representatives of CSDaV.
Multiple nucleotide sequence alignments for each genomic region were obtained using the
CLUSTAL W [13], and manually edited in the program MEGA 6.06 [14]. Neighbor joining phylogenetic
trees were inferred with 1000 bootstraps in the MEGA 6.06 program and the generated trees were
edited using FigTree version 1.4.2 [15]. A set of sequences for each genomic region of CSDaV were
assessed using DnaSP software version 5.1 [16] to estimate genetic diversity and other population
genetic parameters.

Recombination events among CSDaV isolates were examined using phylogenetic analysis and
the boot-scan method in the SimPlot program [17]. Evidence of recombination was considered when
70% of permuted trees supported a particular grouping of sequences. The window width and the step
size were set to 200 and 20 bp, respectively. The degree of selective constraints imposed on different
regions of CSDaV genome was estimated with MEGA 6.06 program by analyzing the nonsynonymous
and synonymous substitutions ratios (dN/dS = ω) using the Kumar method and bootstrap with
500 replicates [18]. Fixed effects likelihood (FEL), random effects likelihood (REL), and single likelihood
ancestor counting (SLAC) tests, all included in the Hyphy package [19], were performed to determine
the site specific selection pressure for the coding regions. For SLAC and FEL, the cut-off p-value
was defined as 0.1 and for REL, a Bayes factor of 50 was selected as the cut-off value. Only positive
selections determined by at least two methods were accepted [20].

3. Results

3.1. Genetic Diversity of CSDaV Population

The presence of CSDaV was confirmed immediately after plants collection in both symptomatic
and asymptomatic plants, including trees grafted on the CSD tolerant rootstocks, such as Cleopatra and
Sunki mandarins, Swingle citrumelo and Poncirus trifoliata. Two step RT-PCRs with specific degenerate
primers sets (Table 2) generated amplicons with 762, 827, 806, 797, 730 bp in length for the five regions
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of CSDaV genomic RNA including those encoding for the MT, the MDR, the He, the RdRp and the
CP, respectively [21]. Figures S1 and S2 and Tables S1 and S2 in the supplemental material show all
conserved domains detected from conserved domain search using the CSDaV reference genomes as
queries in the NCBI Conserved Domain Database (CDD). A total of 31 CSDaV isolates were obtained
(Table 3) and the number of sequences for each region is illustrated in Table 4. Nucleotide diversities
were estimated based on the number of segregating sites (θw) and the average number of nucleotide
differences per site between sequences (π). Overall, the genetic diversity for CSDaV isolates evaluated
in this study was low ranging from 0.01013 (the CP fragment) to 0.04185 (the He fragment) (Table 4)
with a mean genetic diversity of 0.026118.

Table 3. List of CSDaV sequences obtained in this work. Accession numbers in the GenBank database
for the different genomic regions of each isolates are indicated.

Isolate Identification * Viral Genomic Region GenBank Accession No.

VAVK1D
MT KX753236

MDR KX753259
CP KX753328

CR2D MDR KX753263

HAVK11D
MT KX753252

MDR KX753260
CP KX753326

NACR12D

MT KX753233
MDR KX753261
RdRP KX753309

CP KX753327

PRCR19D

MT KX753245
MDR KX753262
RdRP KX753306

CP KX753330

PRGTC20S
MT KX753254

MDR KX753264
CP KX753321

VASW23S

MT KX753248
MDR KX753265

He KX753296
RdRP KX753316

CP KX753340

PRCR24D

MT KX753234
MDR KX753266

He KX753292
RdRP KX753313

CP KX753336

HACL26D

MT KX753243
MDR KX753267
RdRP KX753307

CP KX753323

CR8D 1

MT KX753257
MDR KX753268

He KX753297
RdRP KX753318

CP KX753342
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Table 3. Cont.

Isolate Identification * Viral Genomic Region GenBank Accession No.

VASW30S

MT KX753256
MDR KX753269

He KX753293
RdRP KX753299

CP KX753324

VASW31S

MT KX753242
MDR KX753270
RdRP KX753298

CP KX753319

HACL38S

MT KX753244
MDR KX753271
RdRP KX753301

CP KX753320

VATR39S

MT KX753255
MDR KX753272
RdRP KX753305

CP KX753322

HACR42S

MT KX753241
MDR KX753273
RdRP KX753302

CP KX753333

CLBR43S 2

MT KX753251
MDR KX753274

He KX753294
RdRP KX753317

CP KX753334

VACL44S
MT KX753247

MDR KX753275
CP KX753341

VATR45S
MT KX753239

MDR KX753276
CP KX753332

VATR47D

MT KX753253
MDR KX753277

He KX753291
RdRP KX753314

CP KX753343

SKCH5D 3
MT KX753237

MDR KX753278
RdRP KX753310

VATR50S

MT KX753249
MDR KX753279
RdRP KX753312

CP KX753329

VATR51D

MT KX753258
MDR KX753280
RdRP KX753304

CP KX753325

HACL52D
MDR KX753281
RdRP KX753315
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Table 3. Cont.

Isolate Identification * Viral Genomic Region GenBank Accession No.

HACR55S
MDR KX753282

CP KX753331

HACR56D
MT KX753235

MDR KX753283

HACR58D
MT KX753250

MDR KX753284

NACR6D
MT KX753232

MDR KX753285

VACL25S

MT KX753238
MDR KX753286

He KX753289
RdRP KX753300

CP KX753337

NACR22S

MT KX753246
MDR KX753287

He KX753295
RdRP KX753308

CP KX753339

HACR41S

MT KX753240
MDR KX753288

He KX753290
RdRP KX753303

CP KX753338

PRCR16D
MT KX753231

RdRP KX753311
CP KX753335

* Isolates were designated based on the citrus genotype from where the CSDaV isolates were obtained. First two
letters identify the type of canopy (VA: Valencia; HA: Hamlin; PR: Pera Rio and NA: Natal), followed by
the type of rootstock or interstock (VK: Volkameriano lemon; CR: Rangpur lime; GTC: Goutou; SW: Swingle
citrumelo; CL: Cleopatra mandarin; TR: Trifoliate orange), the sample number and the symptom information
(S: asymptomatic plant and D: symptomatic plant). 1 Isolate from Rangpur lime rootstock tissues; 2 Isolate from
Cleopatra mandarin rootstock tissues; 3 Isolate from leaves of Valencia grafted on Sunki mandarin of China.

Table 4. Population genetic parameters estimated for five coding regions of CSDaV isolates using the
DnaSP and MEGA programs.

Genomic
Regions

Number of Final
Sequences S η π θw dN dS ω

(dN/dS)

MT 28 82 84 0.01815 0.0346 0.005 ± 0.002 0.054 ± 0.010 0.093
MDR 30 180 214 0.04091 0.07212 0.023 ± 0.004 0.097 ± 0.012 0.237

He 9 81 83 0.04185 0.05613 0.006 ± 0.002 0.153 ± 0.020 0.039
RdRP 21 70 72 0.01955 0.02895 0.001 ± 0.001 0.068 ± 0.009 0.015

CP 25 26 27 0.01013 0.01897 0.003 ± 0.001 0.026 ± 0.007 0.115

S: Total number of segregating sites; η: Total number of mutations; π: Nucleotide diversity, average pairwise
nucleotide difference per site; θw: Mutation rate estimated from S; dN: The average number of pairwise
differences per synonymous site; dS: The average number of pairwise differences per non-synonymous site.
dS and dN were estimated by the Kumar method.

3.2. Phylogenetic Relationships of CSDaV Isolates

The sequences of four representative viruses from the genera Tymovirus (Turnip yellow mosaic
vírus—TYMV, NC_004063), Maculavirus (Grapevine fleck virus—GFkV, NC_003347) and Marafivirus
(Maize rayado fino virus—MRFV, NC_002786; and Oat blue dwarf vírus—OBDV, NC_001793) of the family
Tymoviridae were obtained from GenBank and used as outgroups in the phylogenetic analysis of all
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regions except the MDR segment because this region of CSDaV did not show any homology with any
genomic region of four Tymoviridae representatives. Because six isolates were detected as possible
recombinants based on the topology of phylogenetic trees (see details in the recombination analysis
section), the final trees were constructed after removing these recombinants. In general, the topology of
the MT (Figure 2a), the MDR (Figure 2b), the He (Figure 2c) and the RdRP (Figure 2d) trees was similar
and showed the presence of two main groups of CSDaV isolates assessed in this study with high
supporting bootstrap values equal or higher than 83%. The intra-group diversity was best illustrated
in the MDR tree (Figure 2b). The topology of the CP tree was different, in which all CSDaV isolates
formed a single un-resolved polytomy clade with a supporting bootstrap value of 99% (Figure 2e).
For all phylogenetic trees, with the exception of the CP, the main groups were clustered separately
from the two CSDaV reference sequences. Divergence between CSDaV reference sequences (AY884005
and DQ185573 isolates) was observed in the MDR, He and RdRP trees (Figure 2b–d).Viruses 2016, 8, 330  8 of 16 
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Figure 2. Bootstrap majority rule (70%) consensus trees reconstructed by the neighbor joining method
for five genomic regions of CSDaV isolates including field collected and reference sequences. Bootstrap
support values (1000 iterations) of main branches are indicated. (a) MT segment; (b) MDR segment;
(c) He segment; (d) RdRP segment; (e) CP segment. CSDaV groups are highlighted by different colors:
Group I = green; Group II = red. The CSDaV reference isolates are represented in blue. The outgroups
are represented in black. Isolates from asymptomatic plants are identified by letter S at the end of their
identification names. Isolates from symptomatic plants are identified by letter D at the end of their
identification names.
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3.3. Comparison of Genetic Diversity between Isolates from Asymptomatic and Symptomatic Plants

Based on the MT, the MDR, the He and the RdRP phylogenetic trees, group I of the CSDaV
isolates was formed by the majority of isolates from asymptomatic plants, whereas group II contained
the majority of isolates from symptomatic plants (Figure 2 and Table 5). To further strengthen these
results, CSDaV consensus sequences were obtained from transcriptome sequencing, conducted for
both symptomatic and asymptomatic plants by using Illumina next generation sequencing (NGS)
technology [22]. The coding regions studied here were accessed in these consensus sequences and
included in the phylogenetic analysis. Based on the MT, the MDR, the He and the RdRP, the consensus
sequence obtained from the asymptomatic library clustered close to the reference isolates, whereas
the consensus sequence obtained from the symptomatic library was grouped in group II (Figure S3),
which strongly supports the results presented above.

Table 5. Number of CSDaV sequences from symptomatic and asymptomatic plants between the two
main phylogenetic groups assessed in this study.

Number of Isolates from Symptomatic Plants/Number of Isolates from Asymptomatic Plants

Group I * Group II **

MT 5/10 8/1
MDR 6/9 7/2

He 0/3 2/1
RdRP 3/7 5/1

* Group I is highlighted in green in the phylogenetic trees (Figure 2); ** Group II is highlighted in red in the
phylogenetic trees (Figure 2).

Compared to isolates from asymptomatic plants, the nucleotide diversities estimated only for
isolates obtained from symptomatic plants were higher at about 2.2, 1.5, 1.1, 1.1 and 0.9 times for the
MT, MDR, He, RdRP and CP regions, respectively (Table 6). The dN/dS ratio values were higher for
the MDR region for isolates from both symptomatic and asymptomatic plants. However, this estimated
value for the isolates from symptomatic plants was 1.4 times higher than the ratio estimated for the
isolates from asymptomatic plants (Table 6). The deduced amino acid sequences from each CSDaV
genomic region showed silent mutations between isolates from symptomatic and asymptomatic plants
(Table 7).

Table 6. Comparison of the population genetic parameters estimated for five coding regions of
CSDaV isolates from symptomatic (Symp.) and asymptomatic (Asymp.) plants using the DnaSP and
MEGA programs.

Symptoms Number of Sequences π θw dN dS ω

MT
Symp. 13 0.01726 0.02117 0.007 ± 0.002 0.044 ± 0.011 0.159091

Asymp. 11 0.00770 0.01402 0.002 ± 0.001 0.020 ± 0.005 0.100000

MDR
Symp. 13 0.03441 0.04143 0.026 ± 0.005 0.057 ± 0.011 0.456140

Asymp. 11 0.02268 0.02601 0.014 ± 0.004 0.042 ± 0.009 0.333333

He
Symp. 2 0.00942 0.00942 0.002 ± 0.002 0.023 ± 0.012 0.086957

Asymp. 4 0.00879 0.00924 0.003 ± 0.002 0.023 ± 0.008 0.130435

RdRP
Symp. 8 0.00856 0.00861 0.001 ± 0.001 0.026 ± 0.008 0.038462

Asymp. 8 0.00787 0.00918 0.001 ± 0.001 0.024 ± 0.007 0.041667

CP
Symp. 9 0.00781 0.00912 0.003 ± 0.001 0.019 ± 0.008 0.157895

Asymp. 11 0.00862 0.01317 0.004 ± 0.002 0.018 ± 0.006 0.222222

π: Nucleotide diversity, average pairwise nucleotide difference per site; θw: Mutation rate estimated from
the total number of segregating sites; dN: The average number of pairwise differences per synonymous site;
dS: The average number of pairwise differences per non-synonymous site. dS and dN were estimated by the
Kumar method.
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Table 7. Amino acid changes in five CSDaV genomic regions in isolates obtained from symptomatic
citrus plants compared to isolates obtained from asymptomatic citrus plants.

Domain Number of Amino
Acid Changes

Total Number of
Amino Acid Position of Amino Acid Changes (Asymp→Symp)

MT 8 202 13 (I→T); 57 (P→Q); 113 (Q→R); 144 (L→V); 152 (S→*);
157 (R→ K); 171 (A→V) and 199 (T→I)

MDR 10 209 13 (G→D); 14 (P→R); 22 (L→A); 29 (I→T); 103 (F→S);
109 (F→S); 110 (Q→P; 187 (S→L); 197 (H→R) and 209 (Q→R)

He 4 176 28 (V→A); 62 (L→P); 72 (T→I) and 120 (M→I)

RdRP 4 223 37 (P→L); 136 (A→V); 155 (N→ S) and 200 (L→P)

CP 1 120 55 (Q→R)

3.4. Recombination Analysis

Based on the phylogenetic trees constructed with all, including the possible recombinants CSDaV
isolates (Figure S4), six isolates, named CR8D, CLBR43S, VASW23S, HACL38S, HACL52D and
HACR55S showed some phylogenetic incompatibilities and evidence of recombination events. The two
root isolates (CLBR43S and CR8D) clustered in the same clade according to the RdRP and the CP
phylogenetic trees (Figure S4d,e), while they were placed separately based on the MT, the MDR and
the He trees (Figure S4a–c). Isolate VASW23S grouped separately in MT and the RdRP phylogenetic
trees (Figure S4a,d), but it clustered with the main groups in the MDR, the He and the CP trees
(Figure S4b,c,e). Isolates HACL38S, HACL52D and HACR55S were not compared in all regions of
the genome analyzed here because we were not able to obtain PCR products for all segments, and
they were excluded from the recombination analysis. We selected nine representative isolates from
this study including three suggested recombinants and six isolates representing the two main groups
of CSDaV, and two CSDaV reference sequences to concatenate their nucleotide sequences of the MT,
the MDR, the He, the RdRP and the CP segments. Concatenated sequences were further analyzed
using SimPlot. Both phylogenetic and Bootscan methods included in Simplot identified recombination
signals as well as their possible parental sequences when VASW23S, CR8D and CLBR43S isolates were
used as queries (Figures 3 and 4). Phylogenetic analysis of the concatenated sequences detected several
recombination hotspots when different isolates were used as queries: positions 600 and 1322 when
VASW23S isolate was used as the query (Figure 3a), positions 603, 1203 and 2458 when CR8D isolate
was used as the query (Figure 3b) and positions 170 and 609 when CLBR43S isolate was used as the
query (Figure 3c). On the other hand, Bootscan analyses demonstrated that the MDR and He segments
of VASW23S isolate come from PRCR24D-like and VASW30S-like isolates, respectively (Figure 4a).
For the CR8D isolate, a recombination event was detected by the Bootscan algorithm in which the
MDR and He segments of CR8D were generated from two different origins: AY884005 and DQ185573
reference isolates, respectively (Figure 4b). When Bootscan analysis was performed using CLBR43S
isolate as the query, we detected four recombination hotspots in which two of them were placed
close to positions 170 and 619 (already shown by phylogenetic analysis), and two other hotspots were
detected at positions 1271 and 1850 (Figures 3c and 4c). Furthermore, Bootscan results confirmed that
the MDR and He segments of CLBR43S were generated from two CSDaV reference isolates (Figure 3c)
and the region from the MT segment was likely driven by recombination events between a DQ185573
reference-like isolate and CR8D-like isolate. The RdRP and the CP segments from CLBR43S isolate
showed phylogenetically inconsistent regions with some similarity with the CR8D isolate and the
AY884005 reference isolate (Figure 4c).
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Figure 3. Phylogenetic relationship with potential recombinant CSDaV isolates as the query sequences
based on concatenated nucleotide sequences of the MT, MDR, He, RdRP and CP genomic regions
using Simplot. Three CSDaV isolates, VASW23S (a), CR8D (b) and CLBR43S (c), were used as query
sequences and two CSDaV isolates were used as reference sequences. The Y-axis illustrates variation in
identity percentage. Analyses were done using a sliding window of 200 bp and a step size of 20 bp.
Red vertical dashed line shows the proposed recombination break point. Sequences compared with the
query sequence are indicated in the legend.
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Figure 4. Bootscan analyses with potential recombinant CSDaV isolates as the query sequences based
on concatenated nucleotide sequences of the MT, MDR, He, RdRP and CP genomic regions using
Simplot. Three CSDaV isolates, VASW23S (a), CR8D (b) and CLBR43S (c), were used as query sequences
and two CSDaV isolates were used as reference sequences. The Y-axis illustrates variation in percentage
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Viruses 2016, 8, 330 13 of 17

Only the two root isolates detected as recombinants showed a close phylogenetic relationship
to one of the CSDaV reference isolates: CR8D isolate in the MDR, the He and the RdRP trees and
CLBR43S isolate in the RdRP tree (Figure S4). However, these isolates were phylogenetically distant
from the main groups of CSDaV isolates assessed in this study. According to the MT, MDR, He and
RdRP phylogenetic trees, isolate CLBR43S, obtained from tissues of Cleopatra mandarin rootstock,
was found in a separate clade which was phylogenetically distant from the two main groups of CSDaV
isolates (Figure S4). Similar results were found for isolate CR8D, obtained from a Rangpur lime
rootstock, according to MDR, He and RdRP phylogenetic trees (Figure S4). Both of those separations
were well-supported.

3.5. Selective Pressure for Different Genomic Regions of CSDaV

Evidence of positive selection was not found in any region of the genome for the CSDaV isolates
included in this study. The meanω (dN/dS) value for all genomic regions analyzed here was less than
1.0, indicating that all segments were subjected to negative or purifying selection. Among regions, the
MT, He, RdRP and CP regions showed lowω ratios, while this ratio was higher for the MDR region
(Table 4). Moreover, complementary maximum-likelihood methods (SLAC, FEL and REL) detected
positively selected sites only for the MDR segment. Site 20 in the MDR segment was considered to be
significant under positive selection by two methods: FEL (dN − dS = 19.1017 and p-value = 0.042) and
REL methods (dN − dS = 5.2268 and Bayes Factor = 23853.7) (A→T).

4. Discussion

We provided for the first time a snapshot of the genetic structure and variability among Brazilian
CSDaV isolates collected from both symptomatic and asymptomatic citrus trees grown in fields affected
by CSD disease. To date, only two CSDaV genome sequences were fully described, showing 11%
nucleotide diversity between them [23] (GenBank accession no. AY884005 and DQ185573). Both of
these well-described CSDaV isolates were obtained from Rangpur lime tissues as rootstock of sweet
orange trees collected from the same citrus region assessed in this study [1,24], which is relevant since
we can study the evolution of this virus in this CSD-affected area. In the current study, sequence
analyses of five regions of the CSDaV genome representing almost 42% of the whole genome of
31 isolates, sampled from different hosts/plant tissues, showed a low genetic diversity. It is not
a surprising finding because genetic stability has been considered as a rule in natural plant virus
populations [23] and similar low genetic diversity was previously reported for many other RNA plant
viruses [20,25–31]. It has been shown that systemic infections and other events such as host change
and transmission can impose bottlenecks, the most common effects of genetic drift, which have been
inferred from the low genetic diversity of plant virus populations [32,33] and which might be the
reason for the low genetic diversity among the CSDaV isolates.

The low nucleotide variability observed for the CP, the MT and the RdRP regions of CSDaV
genome included in this study suggests that selective pressures in these segments are high to maintain
nucleotide and amino acid conservation probably for biological functions [34]. It has been shown
that the coat protein (CP) plays critical roles in virus packaging and stability, and interactions with
plant host [34]. Similarly, the MT and the RdRP domains play key roles in viral replication, involving
mRNA capping and enhanced stability of viral genomes (methyltransferase) [35]; and transcription
and replication of RNA virus genomes (RdRP) [36]. On the other hand, the MDR and He regions
demonstrated higher nucleotide variability. The MDR segment showed the highest genetic diversity
among all studied regions here, and it was the only region that had one site detected as being under
positive selection. The MDR segment represents a multi-domain region that contains numerous
predicted single domains related to different activities. Interestingly, the MDR was the unique
multi-domain region found along the CSDaV genome and was the single region that we could
not align with other reference members of the family Tymoviridae. It seems that this region is unique
and associated with CSDaV isolates and could be related with some processes of virus adaption [37] to
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a different host or plant tissues. However, at this time, there is no information about the function(s)
of this multi-domain, and then further studies are needed to evaluate the real role of this region in
CSDaV. Probably because the pair of primers designed for the He region was highly degenerate, we
were not able to amplify the He segment in several samples assessed here and it may be possible that
the low number of isolates (nine) has influenced the results. From this work, it is clear that there is
a genetic diversity between the CSDaV isolates assessed here and the CSDaV references previously
reported. The only isolates that showed close phylogenetic relationships with the CSDaV reference
isolates were those isolated from the citrus roots, which were also detected as recombinants in this
work, pointing the CSDaV reference sequences as the possible parents. Since we know that the CSDaV
reference isolates were isolated from rootstock tissues of citrus trees as well [1,24], these results also
provide some evidence of the heterogeneous distribution of virus variants at different locations (leaves
and roots) within hosts. Other studies have already reported that the diversity of virus populations
is different between old and young tissues, suggesting the tree could reflect the chronology of the
appearance of virus diversity [38].

Phylogenetic analyses showed two new genetic clades for the CSDaV isolates included in this
investigation, and one of them showed higher association with symptomatic trees. Higher nucleotide
diversity, dN/dS ratio values and number of amino acid changes were found for isolates from
symptomatic plants in coding regions located closer to the 5’ end region of the CSDaV genome
(MT and MDR), whereas coding regions located closer to the 3’ end region showed more conservation.
It is important to say that these isolates belonging to these two new genetic clades were all isolated
from the citrus leaves, which have been shown to have CSDaV variants, compared to the CSDaV
isolates from the roots (this work and the references isolates). It is possible that the CSDaV isolates
infecting rootstock tissues were subjected to some positive selection pressures, mainly on the coding
regions closer to the 5’ end region, to be able to infect tissues in the citrus canopy, culminating with two
different variants of CSDaV, where one of them might be more efficient in infecting CSD-susceptible
plants and/or more severe in developing CSD symptoms. Other factors, such as the susceptibility
of the citrus rootstock and climate (drought and higher temperature), seem to contribute to the
development of the CSD. The confirmed presence of CSDaV in trees grafted on symptomatic and
asymptomatic susceptible rootstocks, and symptomatic and asymptomatic tolerant rootstocks, suggest
that CSDaV is able to infect a wide host range in CSD-affected regions, but the symptoms are not
always developed. The results obtained here do not discard the possibility of a mixed or co-infection of
the CSDaV and other virus(es), which was already proposed as a cause of CSD [1]. CSDaV and other
members of the genus Marafivirus have been frequently associated in mixed or co-infections in other
pathosystems. CSDaV was found to be part of a multiple virus infection in Pinot Noir grapevine [7]
and in grapevine Syrah showing decline symptoms [9]. Recently, Villamor et al. [8] found CSDaV
infecting California nectarines showing stem-pitting symptoms and also revealed the presence of a
new virus of the genus Marafivirus, which shared 70% of nucleotide sequence similarities to CSDaV,
co-infecting these plants. All these results obtained in this investigation could together provide new
insights into the role of CSDaV in symptom development in plants affected by CSD and contribute to
further epidemiological studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/8/12/330/s1,
Figure S1: Graphical summary showing the conserved domains detected from conserved domain search using
the CSDaV AY884005 reference sequence as query in the NCBI Conserved Domain Database (CDD), Figure S2:
Graphical summary showing the conserved domains detected from conserved domain search using the CSDaV
DQ185573 reference sequence as query in the NCBI Conserved Domain Database (CDD), Figure S3: Bootstrap
majority rule (70%) consensus trees reconstructed by the neighbor joining method for five genomic regions
of CSDaV isolates including the consensus sequences from transcriptome sequencing of the symptomatic and
asymptomatic plants by using Illumina platform, Figure S4: Bootstrap majority rule (70%) consensus trees
reconstructed by the neighbor joining method for five genomic regions of CSDaV isolates including possible
recombinant isolates, field collected and reference sequences, Table S1: Description of domains detected from
conserved domain search using the CSDaV AY884005 reference sequence as query. The interval and E-value of
each identified domain are shown, Table S2: Description of domains detected from conserved domain search
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using the CSDaV DQ185573 reference sequence as query. The interval and E-value of each identified domain
are shown.
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