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Abstract: Nowadays, “green” is a hot topic almost everywhere, from retailers to universities to
industries; and achieving a green status has become a universal aim. However, polymers are
commonly considered not to be “green”, being associated with massive energy consumption and
severe pollution problems (for example, the “Plastic Soup”) as a public stereotype. To achieve
green polymers, three elements should be entailed: (1) green raw materials, catalysts and solvents;
(2) eco-friendly synthesis processes; and (3) sustainable polymers with a low carbon footprint,
for example, (bio)degradable polymers or polymers which can be recycled or disposed with a
gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many
advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts
are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are
clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore,
synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides
an opportunity for achieving green polymers and a future sustainable polymer industry, which will
eventually play an essential role for realizing and maintaining a biobased and sustainable society.

Keywords: enzymatic polymerization; biobased polyesters; biobased polyamides; biobased
monomer; lipase; renewable resources

1. Polymers: From Petrol-Based to Biobased and Beyond

Polymers are one of the most important materials that are being exploited and developed by
mankind, which play an essential and ubiquitous role in our modern life. They are large molecules or
macromolecules that are composed of many small molecular fragments known as repeating units. They
are in widespread use as plastics, rubbers, fibers, coatings, adhesives, foams and specialty polymers [1].

According to their origin, polymers can be classified as natural polymers or synthetic polymers.
Natural polymers occur in nature via in vivo reactions, where biocatalysts, normally enzymes, are
inevitably involved. Natural polymers can be found in all living organisms: plants, animals and
human beings. Examples of natural polymers include lignocellulose, starch, protein, DNA, RNA and
polyhydroxyalkanoates (PHAs), just to name a few. Normally, the structures of natural polymers are
well-defined, with some exceptions like lignocellulose.

Synthetic polymers are commonly produced via polymerization of petrol-based chemicals having
simple structures. Chemical catalysts, especially metal catalysts, are normally used in the preparation of
synthetic polymers. Because of the booming of petrochemical industry and the concomitant availability
of cheap petroleum oils, as well as the well establishment and advancement of polymerization
techniques, numerous synthetic polymers have been developed, for example, phenol-formaldehyde
resins, polyolefins, polyvinyl chloride, polystyrene, polyesters and polyamides, and so on. Synthetic

Polymers 2016, 8, 243; doi:10.3390/polym8070243 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/journal/polymers


Polymers 2016, 8, 243 2 of 53

polymers which include the large group known as plastics, became prominent since the early 20th
century; and plastics are widely used as bottles, bags, boxes, textile fibers, films, and so on.

Currently, there is a huge demand for polymers. The global production of plastics increased from
225 million tons in 2004 to 311 million tons in 2014 (Scheme 1) [2]; and the global polymer production
is expected to reach 400 million tons in 2020 [3]. This huge polymer consumption leads to a massive
demand for fossil resources for the polymer industry, which however brings some severe problems.
On the one hand, fossil resources are depleting resources with limited storage; and their formation
requires millions of years. There is a great concern that fossil resources will be exhausted within several
hundred years. On the other hand, hazardous waste and emissions are generated along with the
consumption of fossil resources, which induce severe environmental problems such as global warming
and pollutions like smog and haze which are breaking out frequently, for instance in China nowadays.
Driven by the growing environmental concerns, it is necessary and appealing to develop sustainable
polymers for reducing the current dependence on fossil resources and decreasing the production of
pollutants. As a matter of fact, laws have been approved by the European Union to reduce the usage
of environmentally abusive materials, and to trigger more efforts to find eco-friendly materials based
on renewable resources [4,5].
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Scheme 1. Global production of plastics from 2004 to 2014 [2].

Biobased polymers are pointed out to be the most promising alternatives [5–16], which are
defined as “sustainable materials for which at least a portion of the polymer consists of materials that
are produced from renewable raw materials” [17]. Generally speaking, biobased polymers can be
produced via three routes [8,11]: (1) pristine natural polymers, or chemical or physical modifications
of natural polymers; (2) manufactured biobased polymers from a mixture of biobased molecules
with similar functionalities that are converted from biomass feedstocks; and (3) synthesis of biobased
polymers via polymerization of biobased monomers with tailored chemical structures.

Some natural polymers such as natural rubber, cotton, starch and PHAs, are useful materials;
however, they are limited in variety, and their properties and applications are also limited as they
are determined by their chemical structure. Considering the rich abundance of biomass feedstocks
in nature, it is of great interest to produce biobased polymeric materials by chemical or physical
modifications of natural polymers, or from biobased molecules that are converted from biomass
feedstocks. Actually human beings already used the former approach long time ago during the 1800s.
Many commercially important polymers are prepared via this approach, for example, vulcanized
natural rubber, gun cotton (nitrocellulose), cellulose esters and cellulose ethers. However, chemical
and physical modifications of natural polymers are often subject to the poor solubility and process
difficulty of natural polymers, as well as, unwanted impurities within the network of natural polymers
which are hard to remove. On the other hand, conversion of biomass feedstocks to end-products is a
promising pathway for the production of high tonnage consumer polymeric products such as paper,
paints, resins and foams [11]. For instance, oleochemicals can be converted from vegetable oils and
fats, which are biobased building blocks for the production of thermoset resins and polyurethanes.
However, the obtained biobased polymeric materials often possess diverse chemical structures; and
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it is nearly impossible to produce biobased polymers with identical structures as the petrol-based
counterparts, due to the use of biomolecule mixtures. Besides, some unwanted structures or impurities
might be inherited from the biomolecule mixtures, which might greatly influence the properties and
applications of the final polymeric materials.

Utilization of biobased monomers with tailored structures in polymer synthesis is the most
promising approach towards biobased polymers, which can result in not only sustainable alternatives
to petrol-based counterparts with similar or identical structures, but also in novel green polymers
that cannot be produced from petrol-based monomers [5,8,9,14–16]. However, this is also the most
expensive approach of all three as aforementioned.

Benefiting from solar energy, numerous biobased monomers can be produced from yearly-based
biomass feedstocks via biocatalytic or chemo-catalytic processes, which provide a great opportunity
to access diverse biobased polymers [5,7–11,14–16,18–27]. Meanwhile, more and more biobased
monomers are already or will become commercially available in the market due to the fast development
of biotechnologies and their price will be competitive with that of the petrol-based chemicals [26,28–34].

Enzymatic polymerization is an emerging alternative approach for the production of polymeric
materials, which can compete against conventional chemical synthesis and physical modification
techniques [35–44]. Enzymatic polymerization also provides a great opportunity for accessing novel
macromolecules that are not accessible via conventional approaches. Moreover, with mild synthetic
conditions and renewable non-toxic enzyme catalysts, enzymatic polymerization is considered as
an effective way to reduce the dependence of fossil resources and to address the high material
consumption and pollution problems in the polymer industry.

At present, petrol-based monomers are still predominately used in enzymatic polymerizations.
By combining biobased monomers and enzymatic polymerizations in polymer synthesis, not only
the research field of enzymatic polymerization could be greatly accelerated but also the utilization
of renewable resources will be promoted. This will provide an essential contribution for achieving
sustainability for the polymer industry, which will eventually play an important role for realizing and
maintaining a sustainable society.

2. Polyesters

Polyesters are polymers in which the monomer units are linked together by ester groups.
Examples of polyesters include some naturally occurring polyesters like cutin, shellac, and poly
(hydroxybutyrate) (PHB), and many synthetic polyesters such as poly(butylene succinate) (PBS),
poly(lactic acid) (PLA), poly(ethylene terephthalate) (PET), polybutylene terephthalate (PBT) and
poly(4-hydroxybenzoate-co-6-hydroxynaphthalene-2-carboxylic acid) (Vectran®, Kuraray, Chiyoda-ku,
Tokyo, Japan). According to the chemical composition of the main chain, polyesters can be classified
as aliphatic, semi-aromatic and aromatic polyesters (Scheme 2).

Polymers 2016, 8, 243 3 of 52 

 

chemical structures; and it is nearly impossible to produce biobased polymers with identical 
structures as the petrol-based counterparts, due to the use of biomolecule mixtures. Besides, some 
unwanted structures or impurities might be inherited from the biomolecule mixtures, which might 
greatly influence the properties and applications of the final polymeric materials. 

Utilization of biobased monomers with tailored structures in polymer synthesis is the most 
promising approach towards biobased polymers, which can result in not only sustainable alternatives 
to petrol-based counterparts with similar or identical structures, but also in novel green polymers 
that cannot be produced from petrol-based monomers [5,8,9,14–16]. However, this is also the most 
expensive approach of all three as aforementioned. 

Benefiting from solar energy, numerous biobased monomers can be produced from yearly-based 
biomass feedstocks via biocatalytic or chemo-catalytic processes, which provide a great opportunity 
to access diverse biobased polymers [5,7–11,14–16,18–27]. Meanwhile, more and more biobased 
monomers are already or will become commercially available in the market due to the fast 
development of biotechnologies and their price will be competitive with that of the petrol-based 
chemicals [26,28–34].  

Enzymatic polymerization is an emerging alternative approach for the production of polymeric 
materials, which can compete against conventional chemical synthesis and physical modification 
techniques [35–44]. Enzymatic polymerization also provides a great opportunity for accessing novel 
macromolecules that are not accessible via conventional approaches. Moreover, with mild synthetic 
conditions and renewable non-toxic enzyme catalysts, enzymatic polymerization is considered as an 
effective way to reduce the dependence of fossil resources and to address the high material 
consumption and pollution problems in the polymer industry.  

At present, petrol-based monomers are still predominately used in enzymatic polymerizations. 
By combining biobased monomers and enzymatic polymerizations in polymer synthesis, not only 
the research field of enzymatic polymerization could be greatly accelerated but also the utilization of 
renewable resources will be promoted. This will provide an essential contribution for achieving 
sustainability for the polymer industry, which will eventually play an important role for realizing 
and maintaining a sustainable society. 

2. Polyesters 

Polyesters are polymers in which the monomer units are linked together by ester groups. 
Examples of polyesters include some naturally occurring polyesters like cutin, shellac, and poly 
(hydroxybutyrate) (PHB), and many synthetic polyesters such as poly(butylene succinate) (PBS), 
poly(lactic acid) (PLA), poly(ethylene terephthalate) (PET), polybutylene terephthalate (PBT) and 
poly(4-hydroxybenzoate-co-6-hydroxynaphthalene-2-carboxylic acid) (Vectran®, Kuraray, Chiyoda-
ku, Tokyo, Japan). According to the chemical composition of the main chain, polyesters can be 
classified as aliphatic, semi-aromatic and aromatic polyesters (Scheme 2).  

 
Scheme 2. General chemical structures of aliphatic, semi-aromatic and aromatic polyesters and 
polyamides. 

Scheme 2. General chemical structures of aliphatic, semi-aromatic and aromatic polyesters
and polyamides.



Polymers 2016, 8, 243 4 of 53

Most known aliphatic polyesters could be produced as biobased polymers [45,46], as the majority
of their starting monomers can be produced from biomass feedstocks. Aliphatic polyesters are
also (bio)degradable materials which can be recycled, disposed, composted or incinerated with
a low environmental impact [46,47]. Aliphatic polyesters are widely used as thermoplastics and
thermoset resins, with many commodity and specialty applications. Among them, PLA is the
most well-known aliphatic polyester, which can be used as fibers, food packaging materials and
durable goods, with a global demand of around 360 kilo tons in 2013 [48]. PBS is another important
commodity polyester which can be applied as packaging films and disposable cutlery, with a global
market of around 10–15 kilo tons per year [49]. In addition, aliphatic polyesters have found potential
applications in biomedical and pharmaceutical fields such as in sutures, bone screws, tissue engineering
scaffolds, and drug delivery systems, due to their biodegradability, biocompatibility and probable
bioresorbability [46,50–52].

Compared to aliphatic polyesters, semi-aromatic polyesters generally possess better thermal and
mechanical properties, which can be used as commodity plastics and thermal engineering plastics.
Examples of semi-aromatic polyesters are poly(trimethylene terephthalate) (PTT), PET, PBT, and
poly(ethylene naphthalate) (PEN). Among them, PET is the most commonly used semi-aromatic
polyester. It is the fourth-most-produced plastic [53], with a global supply of more than 19.8 million
tons in 2012 [54]. PET has been widely used as beverage bottles, food containers, fibers and fabrics,
packing films, photographic and recording tapes, engineering resins, and so on. It should be noted that
PET is commonly referred by its common name, polyester, in textile and fiber applications; whereas the
acronym “PET” or “PET resin” is used when applied as bottles, containers and packaging materials.

Aromatic polyesters are high performance thermoplastics, with high thermal stability and
chemical resistance, and excellent mechanical properties. Aromatic polyesters have found many
applications in the mechanical, chemical, electronic, aviation and automobile industries [55]. However,
aromatic polyesters generally possess a poor solubility even in aggressive solvents and are difficult
to process, caused by their extremely rigid structures [56]. Examples of aromatic polyesters are
poly(4-hydroxybenzoate-co-6-hydroxynaphthalene-2-carboxylate) (Vectra®, Celanese, Irving, TX,
USA; Vectran®, Kuraray, Chiyoda-ku, Tokyo, Japan), poly(4-hydroxybenzoate-co-4,41-biphenylene
terephthalate) (Xydar®, Solvay, Brussels, Belgium; Ekonol®, Saint-Gobain, Courbevoie, France) and
poly(6-hydroxynaphthalene-2-carboxylate-co-4-hydroxybenzoate-co-4,41-biphenylene terephthalate).

Besides, aromatic polyesters and some semi-aromatic copolymers such as
poly(2-chlorohydroquinone terephalate-co-l,4-cyclohexylenedimethylene terephthalate) and
poly(p-hydroxybenzoate-co-ethylene terephthalate) are liquid crystalline materials in which both liquid
crystalline and polymer properties are combined. These liquid crystalline polyesters are generally
characterized by a rod-like molecular structure, rigidness of the long axis, and strong dipoles [55].
Aromatic polyesters are good candidates for thermotropic main-chain polymers due to the highly rich
aromatic (mesogenic) fragments, and the low inter-chain forces because of the relatively low energy of
association of the ester groups.

Generally speaking, polyesters can be produced via two methods: (1) step-growth polycondensation
of diols and diacid/diesters, or hydroxyacids/hydroxyesters; and (2) ring-opening polymerization
of cyclic monomers (lactones, cyclic diesters and cyclic ketene acetals) and cyclic oligomers. Both
of these two methods have some merits and also suffer from some drawbacks. On the one hand,
the building blocks for step-growth polycondensation are generally easily obtained at a relatively
cheap price. However, elevated reaction temperatures (150–280 ˝C), long reaction times, high vacuum
condition, heavy metal catalysts and a precise stoichiometric balance between monomers are normally
required for polycondensation. In addition, side-reactions and volatilization of monomers may occur
at elevated temperatures or under high vacuum [50,57]. On the other hand, removal of by-products is
not required by ring-opening polymerization and, therefore, high molecular weight products can
be obtained under relatively mild conditions in a matter of minutes. Besides, side reactions can be
greatly suppressed during ring-opening polymerization. However, extra synthesis steps and heavy
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metal catalysts are often required for the preparation of the starting materials, cyclic monomers and
cyclic oligomers.

Moreover, polyesters can be also synthesized by other methods such as polyaddition of diepoxides
to diacids [58], and acyclic diene metathesis (ADMET) polymerization of diene monomers containing
ester bonds in the main chain [59].

At present, some biobased polyesters are already commercially available, including fully biobased
PLA, PHAs, and poly(ethylene furanoate) (PEF), partially biobased PBS, PET, PTT and poly(butylene
adipate-co-terephthalate) (PBAT), and so on (Table 1) [34,49,60–68]. However, polymers including
polyesters, polyamides and other types, are still mainly derived from petroleum oils. The production
capacity of biobased polymers represented only a 2% share of the total polymer production in 2013
and will increase to 4% by 2020 [3].

Table 1. A selected list of commercially available biobased polyesters and their manufacturers.

Biobased Polyester Biosourcing (%) a Manufacturer Trademark

PLA up to 100

NatureWorks (Minnetonka, MN, USA) Ingeo™, NatureWorks®

Synbra (Etten-Leur, The Netherlands) BioFoam®

Zhejiang Hisun Biomaterials Biological Engineering
(Taizhou, Zhejiang, China) REVODE 100 and 200 series

Nantong Jiuding Biological Engineering (Rugao, Jiangsu, China) -
Teijin (Chiyoda, Tokyo, Japan, Japan) BIOFRONT™

Mitsui Chemicals (Minato, Tokyo, Japan) LACEA®

Futerro (Celles, Belgium) Futerro®

Corbion Purac (Amsterdam, The Netherlands) LX175, L175, L130, L105, D070

PHAs 100

Metabolix (Cambridge, MA, USA) and ADM (Decatur, IL, USA) Mirel™
MHG (Bainbridge, GA, USA) Nodax™

Bio-on (San Giorgio di Piano, Bologna, Italy) MINERV-PHA™
Tianjin Green Biosciences (Tianjin, China) GreenBio

Kaneka (Tokyo, Japan) Kaneka PHBH
Tianan Biological Materials (Ningbo, Zhejiang, China) ENMAT™

PHB Industrial S/A (Serrana, Brazil) BIOCYCLE®

PBS 50
PTT MCC Biochem ( Chatuchak, Bangkok, Thailand) BioPBS™

Showa Denko K.K. (Tokyo, Japan) Bionolle™
Mitsubishi Chemical (Chiyoda-ku, Tokyo, Japan) GS Pla®

PEF 100 Avantium (Geleen, The Netherlands) -

PET up to 30 Coca Cola (Atlanta, GA, USA) PlantBottle™
Toyota Tsusho Corporation (Nagoya, Aichi Prefecture, Japan) GLOBIO®

PTT
37 DuPont (Wilmington, DE, USA) Sorona®

up to 35 Biomax®

PBAT 30–70
Novamont (Novara, Italy) Origo-Bi™

BASF (Ludwigshafen, Germany) Ecoflex® FS

Co-polyester 9–30 SK Chemicals (Seongnam-si, Gyeonggi-do, Korea) ECOZEN®

Co-polyester - DuPont (Wilmington, DE, USA) Biomax®

a Biosourcing (%): the percentage of carbon originating from biomass sources among the total organic carbon.

3. Polyamides

Polyamides are polymers in which the monomeric units are linked together by amide bonds.
Examples of polyamides include naturally occurring polyamides like proteins, and synthetic
polyamides such as polycaprolactam (nylon 6 or PA 6), poly(hexamethylene adipamide) (nylon
6,6 or PA 6,6), poly(hexamethylene terephathamide) (PA 6,T), and poly(p-phenylene terephathamide)
(PPTA, Kevlar®, DuPont, Wilmington, DE, USA). Similar to polyesters, polyamides can be classified to
three types: aliphatic, semi-aromatic and aromatic polyamides, depending on the chemical composition
of the main chain (Scheme 2).

Aliphatic polyamides, commercially known as nylons or nylon fibers, are highly valued
semi-crystalline thermoplastics that are widely used as synthetic fibers, construction materials, food
packing materials, engineering resins, and so on [69]. Currently, a variety of aliphatic polyamides
are commercially manufactured, including nylon 6 (PA 6), nylon 10 (PA 10), nylon 11 (PA11) and
nylon 12 (PA 12), and nylon 4,6 (PA 4,6), nylon 6,6 (PA 6,6), nylon 6,10 (PA 6,10) and nylon 6,12
(PA 6,12). Among them, nylon 6 is the largest produced aliphatic polyamide by far, with a global
production of 4.2 million tons in 2010; and nylon 6,6 ranked the second largest aliphatic polyamide
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in the market, with a global production of 2.1 million tons. Actually, nylon 6,6 is the first example of
aliphatic polyamides, which was firstly produced in the laboratory by Carothers and Hill at DuPont
in 1930. After that, this polyamide was prepared by DuPont as nylon 6,6 fiber on 28 February 1935,
and then produced at full-scale in July 1935. Regarding nylon 6, it was firstly developed by Schlack
at IG Farbenindustrie in 1938, for the purpose of reproducing the properties of nylon 6,6 without
violating the patents [70,71]. At present, 66% of nylon 6 production is used as fibers, 30% is applied as
engineering thermoplastics, and the rest 10% is consumed as films. For nylon 6,6, 55% of the current
production is used as fibers, and the remainder is applied as engineering thermoplastics. Other nylons
like nylon 4,10, nylon 6,12, nylon 10,10, nylon 11 and nylon 12 are commonly used as high performance
materials [72].

Semi-aromatic polyamides consist of both aliphatic and aromatic fragments in the polymer main
chain. Especially, polyphthalamides (PPAs), a type of semi-aromatic polyamides, are defined by ASTM
D5336 as “polyamides in which at least 55 mol % of the carboxylic acid portion of the repeating
unit in the polymer chain is comprised by a combination of terephthalic acid (TPA) and isophthalic
acid (IPA)” [73]. Compared to aliphatic polyamides, semi-aromatic polyamides are much stiffer,
rendering the polyamides with higher mechanical strength and better thermal resistance. In addition,
semi-aromatic polyamides possess many other merits such as high heat chemical/abrasion/corrosion
resistance, good dimensional stability, superior processing characteristics and direct bonding to
many elastomers. Semi-aromatic polyamides can be used as thermal engineering materials and
high performance materials, which have found various applications in many areas, for example, in
marine, automotive industry, oil industry, electronics, machinery, domestic appliances, medical devices,
personal care, and so on. Examples of semi-aromatic polyamides are PA 6,T, poly(nonamethylene
terephthalamide) (PA 9,T), and poly(decamethylene terephthalamide) (PA 10,T). They are commercially
produced by many companies such as DuPont (Zytel®HTN, PA 6,T), Solvay (Amodel®, PA 6,T),
EMS-GRIVORY (Grilamid®HT, PA 6,T), Mitsui (ARLEN®, PA 6,T/6,6), Kuraray (Genesta®, PA 9,T),
and Evonik (VESTAMID®HTplus, PA 6,T/X or PA 10,T/X) [72,74].

Aromatic polyamides are normally referred to wholly aromatic polyamides, or aramids in which
at least 85% of the amide linkages are directly attached to two aromatic groups [73,75,76]. Due to
the amide linkages and the rigid aromatic structures, the stiff rod-like aromatic polyamide chains
interact with each other by strong and highly directional hydrogen bonds and π-π stackings. Therefore,
aromatic polyamides possess outstanding thermal and mechanical resistance, and excellent chemically
inert property, but a poor solubility and processability. Aromatic polyamides are high performance
materials that are used as advantageous replacement for metals or ceramics, cut-resistant, flame
resistant and high-tensile strength synthetic fibers and coatings, bullet-proof body armor, protective
clothing, electrical insulation materials, sealing materials, composites, and so on. Examples of aromatic
polyamides are PPPTA and poly(m-phenylene isophthalamide) (PMPI). These two aramids are the most
well-known commercially available aromatic polyamides, with the trademark of Kevlar® (DuPont)
and Nomex® (DuPont), respectively. Besides, some aromatic polyamides display liquid crystalline
properties. For example, the solid-state PPPT (Kevlar®, DuPont, Wilmington, DE, USA) is an example
of main chain lyotropic liquid crystal polymers [55].

Similar to polyesters, polyamides can be generally synthesized via two methods: (1) step-growth
polycondensation of diacids/diesters with diamines, orω-amino acids/esters; and (2) ring-opening
polymerization of lactams. For example, nylon 6,6 is produced by polycondensation of adipic acid
and 1,6-hexanediamine, while nylon 6 is typically produced by ring-opening polymerization of
ε-caprolactam.

Regarding the equipment and the reaction conditions followed, the polymerization steps in
polyester and polyamide synthesis are similar [57]. However, with respect to the formation of high
molecular weight products, the polymerization of polyamides differs from that of polyesters to some
extent. Firstly, the chemical equilibrium is favored for the amide formation but is less favored for the
ester formation. Secondly, when dicarboxylic acids are used as starting materials, salts are formed in
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polyamide synthesis, but there is no salt formation in polyester synthesis. In this case, stoichiometric
equivalence can be much more easily achieved in polyamide synthesis. Thirdly, the amide interchange
reactions (transamidations) are much slower than the ester interchange reactions (transesterifications).

Currently, some biobased polyamides are already commercially available, including fully biobased
nylon 4,10, nylon 10,10 and nylon 11, and partially biobased nylon 6,10, nylon 10,12 and PA 10,T, and
so on (Table 2).

Table 2. A selected list of commercially available biobased polyamides and their manufacturers.

Biobased Polyamide Biosourcing (%) a Manufacturer Trademark

Nylon 4,10 (PA 4,10) 100 DSM (Heerlen, The Netherlands) EcoPaXX®

Nylon 6,10 (PA 6,10) 63

BASF (Ludwigshafen, Germany) Ultramid® S Balance
EMS-GRIVORY (Domat/Ems, Switzerland) Grilamid® 2S

Evonik (Essen, Germany) VESTAMID® Terra HS
Solvay (Rhodia) (Brussels, Belgium) Technyl® eXten

DuPont (Wilmington, DE, USA) Zytel® RS LC3030
Arkema (Colombes, France) Rilsan® S

Suzhou Hipro Polymers (Suzhou, Jiangsu, China) Hiprolon® 70

Nylon 10,10 (PA
10,10) 100

EMS-GRIVORY (Domat/Ems, Switzerland) Grilamid® 1S
Evonik (Essen, Germany) VESTAMID® Terra DS

DuPont (Wilmington, DE, USA) Zytel® RS LC1000
Arkema (Colombes, France) Rilsan® T

Suzhou Hipro Polymers (Suzhou, Jiangsu, China) Hiprolon® 200, Hiprolon®211

Nylon 10,12 (PA
10,12) 45

Evonik (Essen, Germany) VESTAMID® Terra DD
Suzhou Hipro Polymers (Suzhou, Jiangsu, China) Hiprolon® 400

Nylon 11 (PA 11) 100
Arkema (Colombes, France) Rilsan® PA11

Suzhou Hipro Polymers (Suzhou, Jiangsu, China) Hiprolon® 11

PA 10,T 50
EMS-GRIVORY (Domat/Ems, Switzerland) Grilamid® HT3

Evonik (Essen, Germany) VESTAMID® HTplus M3000

Polyphthalamide
(PPA) >70 Arkema (Colombes, France) Rilsan® HT

Transparent
polyamide 54 Arkema (Colombes, France) Rilsan® Clear G830 Rnew

Co-polyamide Tailored, up to 100 Arkema (Colombes, France) Platamid® Rnew

Polyamide High Bio-Content EMS-GRIVORY (Domat/Ems, Switzerland) Grilamid® TR

a Biosourcing (%): the percentage of carbon originating from biomass sources among the total organic carbon.

4. Biobased Monomers for Polyester and Polyamide Synthesis

Generally speaking, lactones, diacids and their ester and anhydride derivatives, diols, polyols,
and hydroxyacids and their esters are good building blocks for polyester synthesis, while lactams,
ω-amino acids and their esters, diacids and their derivatives, and diamines are suitable monomers for
polyamide synthesis. Herein, some predominate biobased monomers for polyester and polyamide
synthesis are outlined.

4.1. Biobased Lactones and Lactams

Lactones and lactams are abundant moieties in naturally occurring compounds with diversified
structures and varied ring sizes. Examples of naturally occurred lactones and lactams are tetronic acid,
5,6-dihydropyran-2-one, coumarin, α-alkylidene-γ-lactones and lactams, α-alkylidene-δ-lactones and
lactams, β-lactam, and so on. They are widely applied in the fine and functional perfumery and in the
pharmaceutical industry. However, few studies referred to the synthesis of polyesters and polyamides
from naturally occurring lactones and lactams, probably due to their complicated structures, limited
availability, and high price [77].

3-Hydroxybutyrolactone (3-HBL) is a biobased platform molecules listed in “DOE TOP 10” [18].
It is a chiral compound that can be used for the synthesis of pharmaceuticals, polymers and organic
solvents. However, the chemical synthesis of 3-HBL is quite difficult, with multiple steps [5,18,78].
Currently, (S)-3-HBL is commercially produced from L-malic acid via a continuous chemical synthesis
process under high pressure in a fixed-bed reactor using a ruthenium-based catalyst [79,80] This
process involves hazardous conditions, expensive catalysts, as well as multiple purification steps [78].
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Recently, Prather et al. [78,81] developed a biosynthesis pathway for 3-HBL in recombinant E. coli
(Escherichia coli) using glycolic acid or glucose as the starting material. However, the large-scale
biological production of 3-HBL is still challenging, which requires further studies.

Some other lactones, such as propiolactone, γ-butyrolactone, angelilactone, γ-valerolactone, and
furan-2(5H)-one, can be derived from renewable resources [18,82].

In addition, lactams can be converted from biomass feedstocks. Among them, ε-caprolactam is
an important raw material for the synthesis of nylon 6. At present, ε-caprolactam is produced via a
six-step chemical process using benzene and ammonia as starting materials. Recently Heeres et al. [83]
reported the conversion of biobased 5-(hydroxymethyl)furfural (HMF) to ε-caprolactam via four steps
(Scheme 3), two steps less than the traditional approach. In addition, Bouwman et al. [84] reported
the production of ε-caprolactam from biobased levulinic acid via a four-step process. Moreover,
synthesis of ε-caprolactam from sugar-derived lysine is developed [85,86]. It is also possible to
produce ε-caprolactam via fermentation of sugars and the relevant industrial process is currently
under development [31].

Polymers 2016, 8, 243 8 of 52 

 

synthesis process under high pressure in a fixed-bed reactor using a ruthenium-based catalyst [79,80] 
This process involves hazardous conditions, expensive catalysts, as well as multiple purification steps 
[78]. Recently, Prather et al. [78,81] developed a biosynthesis pathway for 3-HBL in recombinant E. 
coli (Escherichia coli) using glycolic acid or glucose as the starting material. However, the large-scale 
biological production of 3-HBL is still challenging, which requires further studies. 

Some other lactones, such as propiolactone, γ-butyrolactone, angelilactone, γ-valerolactone, and 
furan-2(5H)-one, can be derived from renewable resources [18,82]. 

In addition, lactams can be converted from biomass feedstocks. Among them, ε-caprolactam is 
an important raw material for the synthesis of nylon 6. At present, ε-caprolactam is produced via a 
six-step chemical process using benzene and ammonia as starting materials. Recently Heeres et al. 
[83] reported the conversion of biobased 5-(hydroxymethyl)furfural (HMF) to ε-caprolactam via four 
steps (Scheme 3), two steps less than the traditional approach. In addition, Bouwman et al. [84] 
reported the production of ε-caprolactam from biobased levulinic acid via a four-step process. 
Moreover, synthesis of ε-caprolactam from sugar-derived lysine is developed [85,86]. It is also 
possible to produce ε-caprolactam via fermentation of sugars and the relevant industrial process is 
currently under development [31]. 

 

Scheme 3. Synthesis of ε-caprolactam from biobased chemicals. 

4.2. Biobased Aliphatic Diacids 

Succinic acid is a naturally occurring dicarboxylic acid, which is predominantly produced 
commercially through petrochemical routes by catalytic hydrogenation of maleic acid or anhydride, 
with a global production of 30–50 kilo tons per year [87,88]. Succinic acid can be also produced by 
fermentation of carbohydrates or glycerol using engineered bacteria or yeast. The current bio-route 
for succinic acid is based on proprietary E. coli or yeast strains [88]. To lower the cost, other 
microorganisms and yeast have been developed, like Coryne-type bacteria, which shows a 
significantly higher productivity compared to E. coli. [33] Currently, four companies have built up 
commercial facilities for the production of biobased succinic acid: Reverdia, Succinity, Bioamber and 
Myriant [29]. 

Itaconic acid is an attractive unsaturated monomer that has already been produced industrially 
by sugar fermentation using Aspergillus terreus early in the 1960s [89,90]. The current production of 
itaconic acid is around 80 kilo tons per year, mainly in USA, China, Japan and France [91]. To reduce 
the cost and increase the sustainability, current studies mainly focus on strain improvement of 
microorganisms by mutagenesis, development of more cost-effective process methodologies, and the 
use of alternative cheap substrates such as cellulolytic biomass [91]. 

Adipic acid is one the most important commodity chemicals, which is mainly used for the 
production of nylon 6,6 [33,92]. The current global market for adipic acid is around 4 million tons per 
year [31]. At present, over 90% of adipic acid is manufactured industrially by oxidation of 
cyclohexanol or KA-oil (a mixture of cyclohexanol and cyclohexanone) using concentrated nitric acid 

Scheme 3. Synthesis of ε-caprolactam from biobased chemicals.

4.2. Biobased Aliphatic Diacids

Succinic acid is a naturally occurring dicarboxylic acid, which is predominantly produced
commercially through petrochemical routes by catalytic hydrogenation of maleic acid or anhydride,
with a global production of 30–50 kilo tons per year [87,88]. Succinic acid can be also produced by
fermentation of carbohydrates or glycerol using engineered bacteria or yeast. The current bio-route
for succinic acid is based on proprietary E. coli or yeast strains [88]. To lower the cost, other
microorganisms and yeast have been developed, like Coryne-type bacteria, which shows a significantly
higher productivity compared to E. coli. [33] Currently, four companies have built up commercial
facilities for the production of biobased succinic acid: Reverdia, Succinity, Bioamber and Myriant [29].

Itaconic acid is an attractive unsaturated monomer that has already been produced industrially by
sugar fermentation using Aspergillus terreus early in the 1960s [89,90]. The current production of itaconic
acid is around 80 kilo tons per year, mainly in USA, China, Japan and France [91]. To reduce the cost
and increase the sustainability, current studies mainly focus on strain improvement of microorganisms
by mutagenesis, development of more cost-effective process methodologies, and the use of alternative
cheap substrates such as cellulolytic biomass [91].

Adipic acid is one the most important commodity chemicals, which is mainly used for the
production of nylon 6,6 [33,92]. The current global market for adipic acid is around 4 million tons per
year [31]. At present, over 90% of adipic acid is manufactured industrially by oxidation of cyclohexanol
or KA-oil (a mixture of cyclohexanol and cyclohexanone) using concentrated nitric acid [92–95].
In recent years, two prospective biosynthetic pathways to biobased adipic acid have been developed
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and are under commercialization evaluation at the moment [31,33]: (1) chemo-catalytic conversion of
biologically derived precursors such as cis,cis-muconic acid or D-glucaric acid; and (2) direct biological
conversion of vegetable oils and sugars using yeast.

In addition, suberic acid, sebacic acid and dodecanedioic acid are also (potentially) biobased
monomers which can be converted from plant oils [31,96–98].

4.3. Biobased Aliphatic Diols and Polyols

1,3-Propanediol (1,3-PDO) is a commodity chemical used for the production of various polymers,
with an annual global demand of around 1 million tons [99]. At present, there are two chemical
processes for the industrial production of 1,3-PDO, starting from petrol-based acrylaldehyde or
ethylene oxide [100,101]. Nowadays biobased 1,3-PDO is commercially synthesized via fermentation
of D-glucose based on corn using a genetically engineered E. coli. [100] In addition, it is promising to
produce 1,3-PDO from biomass-derived glycerol using a bacterial fermentation process [99–103].

1,4-Butanediol (1,4-BDO) is widely used as a building block for polymer synthesis, with an annual
global market of over 2.5 million tons [104]. The industrial production of 1,4-BDO dominantly depends
on petrol-based chemicals such as maleic anhydride, acetylene, butane, propylene and butadiene.
Since late 2007, Genomatica (USA) started to develop a biological process for the synthesis of biobased
1,4-BDO from sugars using a genetically-modified strain of E. coli bacteria [99,104–106]. This process
has already been commercialized [31]. Alternatively, biobased 1,4-BDO can be produced by reduction
of sugar-derived succinic acid and this process is under commercialization preparation stage [31].

1,4:3,6-Dianhydrohexitols (DAHs) are sugar-derived aliphatic diols with rigid and chiral
structures [107]. It is of great interest to synthesize DAH-based polymers with high glass transition
temperatures (Tg) and/or with special optical properties [108]. According to the chirality, DAHs have
three possible stereoisomers: isosorbide, isomanide and isoidide (Scheme 4). Due to the different
positions of the hydroxyl groups, the reactivity of these isomers are different, showing the following
sequence: isomannide < isosorbide < isoidide [107,108]. Nowadays, only isosorbide is produced at
an industrial scale using sugars as the starting materials [26,107]; and Roquette (France) is a leading
producer. However, the purity and high price of the commercial isosorbide are two major concerns
when used for polyester synthesis.
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Other aliphatic diols such as 2,3-butanediol, 1,6-hexanediol, 1,8-octanediol and 1,10-decanediol,
are (potentially) biobased monomers [5,109,110].

Moreover, glycerol and D-sorbitol are abundant and inexpensive biobased aliphatic polyols.
Glycerol is obtained as a byproduct in the production of biodiesel from vegetable oils and fats [5,111],
while D-sorbitol is produced industrially on large scale by reduction of glucose derived from biomass
feedstocks [33].

Furthermore, sugars like glucose and sucrose, and sugar alcohols such as erythritol, xylitol and
sorbitol, are polyols with multi hydroxyl groups. They are naturally occurring compounds which can
be produced via fermentation of various sources of biomass feedstocks [112].
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4.4. Biobased Aliphatic Diamines

1,4-Butanediamine (1,4-BDA, putrescine) is naturally produced by decomposition of amino
acids in living and dead organisms, which is used for the production of engineering plastics and
high performance materials such as nylon 4,6, nylon 4,10 and PA 4,T. It is produced industrially via
chemical synthesis approaches starting from petrol-based 1,4-dichloro-2-butene or 1,4-dihalobutane, or
succinodinitrile [113,114]. It is also possible to synthesize biobased 1,4-BDA via chemical conversion of
biomass-derived succinic acid [18], or via fermentation of sugars using engineered E. coli strains [113].

1,5-Pentanediamine (1,5-PDA, cadaverine) is a naturally occurring compound which is produced
by hydrolysis of protein during the tissue putrefaction of animals, the same as 1,4-BDA. 1,5-PDA can
be used for the production of nylon 5,6 and nylon 5,10. The industrial production of 1,5-PDA is similar
to that of 1,4-BDA, using petrol-based 1,5-dichloropentane, glutarodinitrile, or glutaraldehyde as the
starting material [114]. Moreover, the biosynthesis of 1,5-PDA is well established, by decarboxylation
of lysine using several microorganisms [115,116]. It is also promising to produce biobased 1,5-PDA via
fermentation of sugars by metabolic engineering. Currently, biobased 1,5-PDA has been produced
in industrial scale by Cathay Industrial Biotech (Shanghai, China) [29]. In addition, Ajinomoto
(Tokyo, Japan) is working on the industrial production of biobased 1,5-PDA by decarbonating of lysine
via an enzymatic process.

1,6-Hexanediamine (1,6-HDA) is a raw material for synthesis of nylon 6,6, nylon 6,10 and PA
6,T, which is currently produced industrially from petrol-based butadiene or propylene. Recent
developments show that biobased 1,6-HDA can be produced by chemical-catalytic conversion of
adipic acid [117] or 1,6-hexanediol [110] derived from carbohydrates, or by a fermentation route [31].
The commercial production of biobased 1,6-HDA is already in preparation stage [31].

1,8-Octanediamine (1,8-ODA) can be potentially derived from biomass. It can be produced by
amination of suberic acid which can be converted from plant oils [118].

1,10-Decanediamine (1,10-DDA) can be chemically converted from sebacic acid derived from
castor oils. They are interesting biobased monomers for the synthesis of fully biobased nylon 10,10
which have already been commercially available in the market [31].

4.5. Biobased Aromatic Monomers

Lignin is the largest non-carbohydrate components of lignocellulosic biomass which is composed
by oxidative coupling of three phenylpropane components: p-coumaryl alcohol, coniferyl alcohol, and
sinapyl alcohol [119]. Due to the unique structures and chemical properties, lignin provides a broad
opportunity for the production of a wide variety of biobased chemicals, especially biobased aromatic
chemicals that so far cannot be accessible via chemical or biological modifications of other biomass
feedstocks (Scheme 5).

However, it remains a big challenge to develop an efficient approach for the recovery of aromatic
chemicals with tailored structures from lignin [120]. Currently, only vanillin can be produced
via a commercial process by oxidation of lignosulfonates, a byproduct from the sulfite pulping
industry [121–123]. Recently, new chemical and biotechnological approaches for the production
of vanillin are studied [23,120,124–126]. Starting from vanillin, many biobased aromatic monomers for
polyester synthesis can be produced, for example, vanillic acid, divanillyl diol, dimethyl divanillate,
and so on [127–131].

Terephthalic acid (TPA) is industrially produced by oxidation of p-xylene. It is used mainly
as a precursor for the production of aromatic polyesters and polyamides such as PET, PBT and
PPAs. The current global market size of TPA is around 30 million tons per year, and is expected to
increase to 60 million tons in 2020 [31]. Nowadays, several technologies to produce biobased TPA
and its precursors from renewable resources have been proposed (Scheme 6) [49,132–139]; and some
companies and research institutes are active in the development of biobased TPA [31,49,138] and full
biobased PET. Nevertheless, no commercial biobased TPA and fully biobased PET are current available
in the market.
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2,5-Furandicarboxylic acid (FDCA) is an interesting biobased rigid monomer, which is considered
as the most promising substitute to petrol-based TPA and IPA [5,14,140]. Currently, FDCA is readily
produced from biomass feedstocks, for example, by oxidation of HMF derived from various sources of
carbohydrates [18,24]. It is also possible to produce FDCA via a biocatalytic approach starting from
HMF (Scheme 7) [141]. At present, FDCA is industrially produced by Avantium (The Netherlands)
using an enabling chemical synthesis technology [14,31]; and the price is expected to be cheaper than
the biobased and petrol-based TPA [31,142].
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Other interesting biobased furan monomers for polyester or polyamide synthesis
include 2,5-bis(hydroxymethyl)furan (BHMF), 2,5-bis(aminomethyl)furan, 2,5-bis(hydroxymethyl)
-tetrahydrofuran and 2,5-bis(aminomethyl)tetrahydrofuran (Scheme 7) [5,18,24,143].Polymers 2016, 8, 243 12 of 52 
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4.6. Other Biobased Monomers

Lactic acid, one of the most well-known organic acids occurring naturally, can be found in
many carbohydrates, for example, in naturally and fermented food products, plant, human beings
and animals [144]. In most living organisms, lactic acid is also identified as a principal metabolic
intermediate. Lactic acid can be manufactured chemically or biologically in industry [144]. In the
chemical synthesis approach, lactic acid is prepared via hydrolysis of lactonitrile, a by-product of
acrylonitrile production, by concentrated hydrochloric or sulfuric acid. This process is simple, but
results in a racemic mixture of D- and L-lactic acid; and the production of lactic acid depends on the
acrylonitrile industry in this case [145]. On the other hand, lactic acid can be produced via fermentation
of sugars by bacteria. This microbial fermentation process involves the utilization of biomass feedstocks,
low reaction temperature, low energy consumption and can resulted in enantio-pure lactic acid by
selecting an appropriate microbial strain [145–147]. Currently, the global demand of lactic acid is
350 kilo ton per year, with a sustainable growth in the next decade; and more than 90% of lactic acid
is commercially produced via fermentation of glucose [59]. Alternatively, production of lactic acid
from biobased glycerol and its derivatives is feasibly; however, this route cannot compete with the
fermentation process because of the high cost.

3-Hydroxypropionic acid (3-HPA) is a valuable biobased platform building blocks listed in
“DOE TOP 10” and revised “DOE TOP 10” [18,22]. It can be produced via chemical approaches
staring from 1,3-PDO, 3-hydroxypropionaldehyde or acrylic acid, which are not cost-effective [5].
In recent years, promising biosynthetic pathways have been developed to produce biobased 3-HPA, for
example, via fermentation of sugars using genetically modified microorganisms [148–150]. Currently,
the commercial production of biobased 1,3-HPA is under preparation stage by several companies
including Perstorp, Opxbio-Dow chemical, BASF-Cargilland-Novozymes, and Metabolix [29].

Many long chain fatty acids and their derivatives can be produced from renewable resources such
as plant oils and fats [97,151–153], and they are good building blocks for polyester and polyamide
synthesis. Examples of long chain fatty acids include oleic acid, ricinoleic acid, erucic acid, vernolic
acid, and so on [9,154].

Moreover, there are many other biobased building blocks for polyester or polyamide synthesis,
such as ethylene glycol [31], polycarboxylic acids (citric acid, tartaric acid) [8], 11-amino-undecanoic
acid [31], and so on.
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5. Lipases

Lipases (triacylglycerol lipases, triacylglycerol acyl hydrolases, E.C. 3.1.1.3) are enzymes which
catalyze the hydrolysis of water-insoluble triglycerides with long-chain fatty acids to di-glycerides,
mono-glycerides and glycerol with release of free fatty acids in aqueous solution (Scheme 8). In organic
synthesis, lipases can be used to catalyze other reactions in non-aqueous media, for example,
esterification, transesterification, interesterification, amidation, transamidation, aminolysis, aldol
condensation and Michael addition [155–159].
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Generally, lipases possess high catalytic reactivity in nonpolar organic solvents with log P
(logarithm of partition coefficient) of more than 1.9 [160–162]. Examples of suitable organic solvents
for lipases are benzene (2), toluene (2.5), diphenyl ether (4.05), hydrocarbons like cyclohexane (3.2)
and n-hexane (3.5), and so on [163]. Lipases also function in some green solvents such as ionic liquids
and supercritical CO2 [164–168].

Despite their different sources and diverse structures, all lipases possess a very similar α/β
hydrolase fold (Scheme 9). The α/β hydrolase fold consists of a β-sheet core of five to eight parallel
strands (only the second β strand shows an antiparallel orientation to the others) connected on both
sides by α-helices, forming a α/β/α sandwich-like shape [169–172]. Lipases and other enzymes
including esterases, proteases, dehalogenases, epoxide hydrolases and peroxidases which exhibit
similar structural features, belong to the α/β hydrolase family [169,173].

It is generally acknowledged that the specificity, selectivity and catalytic reactivity of an enzyme
depend on its active site, the region that undergoes the binding of substrate molecules and the
occurrence of enzymatic reactions. The active site of an enzyme consists of amino acid residuals that
form temporary bonds with the substrate (binding site) and other amino acid residues that catalyze
the corresponding reaction of that substrate (catalytic site). As for lipases, the active site is situated
inside a pocket, which is located above the central β-sheet of the protein [174]. Although the active
sites of lipases have different shapes, sizes, depths of the pockets, and physicochemical characteristics
of their amino acids [175], the binding sites display highly homologous amino acid sequences [171];
and the active site of lipases consists of a highly conserved catalytic triad: a nucleophilic residue
(serine), a histidine base and a catalytic acidic residue (aspartic or glutamic acid, usually aspartic acid)
(Scheme 9). In addition, many lipases exhibit a lid, a surface loop that is a lipophilic α-helical domain
in the polypeptide chain and covers the active sites [171,176]. The lid controls the access of substrate
molecules to the catalytic center of lipase. In the presence of a lipid-water interface, the lid opens the
active center and thus the active site becomes accessible. In this case, a large hydrophobic surface of
the enzyme is revealed, which activates the enzyme. However, without the lipid-water interface, the
lid is in a closed confirmation. As a consequence, the active center is not accessible and the enzyme
is inactive.
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The general catalytic mechanism of lipases is illustrated in Scheme 10, which involves an acylation
step followed by a deacylation step [171,174]. At the acylation step, the hydroxyl group of the catalytic
serine is activated by transferring a proton among the aspartate, histidine, and serine residues of the
catalytic triad, rendering an increase of the nucleophilicity of the hydroxyl residue of the serine. After
that, the hydroxyl residue of the serine attacks the carbonyl group of the substrate (carboxylic ester or
carboxylic acid), forming the first tetrahedral intermediate with a negative charge on the oxygen of the
carbonyl group. The oxyanion hole is formed by hydrogen bonding between the amide groups of the
amino acid residuals of the enzyme and the carbonyl group oxygen of the substrate. By the formation
of at least two hydrogen bonds in the oxyanion hole, the charge distribution is stabilized and the state
energy of the tetrahedral intermediate is reduced. Then the alcohol component (R1–OH) is released
from the bond with the intermediate, while the “acidic component” of the substrate remains covalently
bound to the serine residue in the acyl-enzyme intermediate. When the enzyme is attacked by a
nucleophile (R2–OH), the deacylation step occurs. The product (a new carboxylic ester or carboxylic
acid) is then released, while the enzyme is regenerated. This nucleophile (R2–OH) can be water
(hydrolysis) or an alcohol (alcoholysis).
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To increase the stability towards organic solvents and to facilitate the recycling and reusing,
lipases are normally used in their immobilized forms [178–185]. The immobilized lipases may
show improved catalytic activity, specificity or selectivity. Similar to other enzymes, lipases can
be generally immobilized via three strategies [178]: (1) chemical or physical adsorptions onto an
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inert matrix; (2) entrapment within an inert matrix; and (3) immobilized as water-insoluble particles:
cross-linked enzyme aggregates (CLEAs), cross-linked enzyme crystals (CLECs), and protein-coated
microcrystals (PCMC).

Due to the broad substrate specificity, high selectivity, and high thermal stability and catalytic
reactivity, Candida antarctica lipase b (CALB), which was reclassified as Pseudozyma antarctica lipase b
(PALB) more recently [186], is the most popular biocatalyst which is extensively used in biocatalytic
synthesis of small molecules and polymers. CALB is a globular protein that is composed of 317 amino
acids (Scheme 11), having a molecular weight of 33 kDa. Similar to other lipases, CALB possesses
a Ser-His-Asp catalytic triad (Ser105, Asp187 and His224) in its active site and two oxyanion holes
(Thr40 and Gln106) [187], and the catalytic mechanism of CALB is the same as other lipases.
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However, the presence of the lid structure and the interfacial activation of CALB are still under
debate. Some literature suggested that the two α-helixes (α5 and α10) surrounding the active center of
CALB, the most mobile part of the structure, could work as the lid [188–191], and CALB is an interfacial
activated enzyme. A recent study indicated the hydrophobicity of the interface and the overall size of
the substrate determine the interfacial activation of CALB [190], Others suggested that CALB has no
lid covering the entrance of the active site [187] and displays no interfacial activation [192]. In addition,
CALB has a very limited available space in the pocket of active site compared to other lipases and this
explains its high selectivity [193].

CALB shows improved thermal stability and more stable performance in its immobilized form.
At present, several immobilized CALB formulations are commercially available, including Novozym®

435 (N435, Novozymes A/S, Copenhagen, Denmark), Chirazyme® L-2 (Roche Molecular Biochemicals,
Mannheim, Germany), LCAHNHE and LCAME (SPRIN S.p.A, Milano, Italy), and CalB immo Plus™
(c-LEcta, Leipzig, Germany, and Purolite, Bala Cynwyd, PA, USA) [194]. The immobilized CALB
formulations are currently frequently used in industry, for example, for the synthesis of pharmaceutical
chiral intermediates, and for the production of other value-added fine chemical compounds.

N435 is the primary immobilized CALB that is used both in the industrial area and academia
research. N435 functions as a hydrophobic biocatalyst, which consists of 10 wt % of CALB physically
absorbed within 90 wt % of Lewatit VP OC 1600 bead which is a macroporous DVB-crosslinked
methacrylate polymer resin [162,194,195]. The bead size of N435 ranges from 0.315 to 1.0 mm (>80%),
the effective size is around 0.32–0.45 mm, and the average pore diameter is 15 nm. N435 can work at
mild conditions and especially, can tolerate some extreme conditions such as elevated temperatures
(up to 150 ˝C) [196–198].
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6. Enzyme-Catalyzed Synthesis of Polyesters

Enzymatic polymerization is defined as “in vitro (in the test tubes) chemical synthesis of polymers
via a non-biosynthetic (non-metabolic) approach using an isolated enzyme as the catalyst” [36,199].

Due to the unique properties of enzymes, enzymatic polymerization inherits many merits such
as high specificity and selectivity towards monomer substrates, clean-process, energy saving, gentle
environmental footprint, nontoxic natural catalysts, and recyclable catalysts (after immobilization).
With these, enzymatic polymerization provides an opportunity to achieve “green polymer chemistry”.

At present, 4 enzyme classes, oxidoreductases, transferases, hydrolases and ligases, are identified
to induce or catalyze polymerizations (Table 3) [200]. Many polymers are successfully synthesized
via enzymatic polymerizations, for example, vinyl polymers [38,201], polysaccharides [202–205],
polyesters [42,44] and polyamides [206–208]. Among them, polyesters are the most extensively studied
polymers in enzymatic polymerization; and lipases are the most efficient biocatalysts for enzymatic
polymerization of polyesters [42].

Table 3. Enzymes and typical examples for their use in polymer synthesis, and typical polymers
synthesized via enzymatic polymerization [200].

Enzyme class Reaction catalyzed Typical enzymes Typical polymers

EC 1. Oxidoreductases Oxidation/Reduction
AH2 + B Ñ A + BH2

Peroxidase
Laccase

Polyanilines
Polyphenol
Polystyrenes
Poly(methyl
methacrylate)

EC 2. Transferases Group transfer
A-X + B Ñ A + B-X

PHA synthase
Hyaluronan synthase
Phosphorylase

Polyesters
Hyaluronan
Amylose

EC 3. Hydrolases
Hydrolysis by H2O
A-B + H2O Ñ AH +
BOH

Lipase
Cellulase
Hyaluronidase
Papain

Polyesters
Polyamides
Cellulose
(Oligo)peptides
Glycosaminoglycan

EC 6. Ligases
Bond formation
requiring triphosphate
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Cyanophycin synthetase Cyanophycin

Generally speaking, three polymerization modes can be proceeded for the lipase-catalyzed
polyester synthesis (Scheme 12): (1) step-growth polycondensation; (2) ring-opening polymerization;
and (3) a combination of ring-opening polymerization and polycondensation (ring-opening
addition-condensation polymerization). Among them, polycondensation and ring-opening
polymerization are the most common methods used for biocatalytic polyester synthesis.

Four modes of elemental reactions may occur during the lipase-catalyzed polyester
synthesis, inducing hydrolysis, esterification, transesterification (alcoholysis and acidolysis), and
interesterification (Scheme 13). These reactions are all reversible. Therefore, to facilitate the ester
formation, it is crucial to remove the remaining water and byproducts like alcohols from the reaction
mixture, for example, by adding absorbing and drying agents like molecular sieves, applying reduced
pressure, using azeotropic distillation conditions, and so on.

The first lipase-catalyzed polymerization was reported by Okumara et al. in 1984 [209].
They investigated the enzymatic polymerization of aliphatic diacids and diols by a lipase from
Aspergillus niger NRRL 337 (Scheme 14). However, only oligoesters with Mn’s of around 1000 g/mol
were obtained.
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The lipase-catalyzed ring-opening polymerization was firstly reported in 1993 by two independent
groups [210,211]. Gutman et al. [210] investigated the lipase-catalyzed ring-opening polymerization of
ε-caprolactone (ε-CL); and polycaprolactone (PCL) with a Mn of up to 4400 g/mol was successfully
produced in n-hexane (Scheme 15). At the same time, the enzymatic ring-opening polymerization
of lactones was performed in bulk by Kobayashi et al. [211], using different lipases as catalysts.
The enzymatic polymerization gave PCL and polyvalerolactone with Mn’s of up to 7700, and
1900 g/mol, respectively.
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In the late 1990s, the use of N435 in the enzymatic ring-opening polymerization of lactones
was introduced by Gross et al. [212] Since then, N435 became the working horse in biocatalytic
polyester synthesis.

After these pioneer works, various combinations of monomer substrates such as diacids/diesters
and diols, hydroxyacids/esters, and cyclic monomers like lactones, cyclic diesters and cyclic ketene
acetals, are studied for the lipase-catalyzed polymerization. The recent progress in this field is
comprehensively summarized in some review articles [35,36,40–42,44,213,214].

It should be pointed out that the large scale production of aliphatic polyesters via lipase-catalyzed
polymerization is feasible. As reported by Binns et al. [215], adipic acid and 1,6-HDO were
polymerized by N435 at a multi-kilogram scale, using a two-stage method (Scheme 16). The enzymatic
polymerization yielded poly(hexamethylene adipate) with a Mw of 16,400 g/mol. They also claimed
that the enzymatic production can be scaled up to the pilot plant level (2.0 tons) without undue
problems. Besides, poly(hexamethylene adipate) produced from the enzymatic polymerization
possesses a lower acid number, higher degree of crystallinity and super crystalline growth rate
compared to the conventional counterparts.
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Moreover, macrolides catalyzed by lipases showed higher polymerizability compared to smaller
ring-sized lactones [216]. This is probably because macrolides possess higher rates in the formation of
enzyme-activated monomers (acyl-enzyme intermediates). However, reverse tendency was observed
from anionic and metal (Zn) catalyzed-ring opening polymerization.

Although a great number of aliphatic polyesters are readily synthesized with high molecular
weights via lipase-catalyzed polymerization, only limited amount of semi-aromatic and aromatic
polyesters are enzymatically produced [217–227]. This could be mainly due to the high melting
temperature (Tm) of semi-aromatic and aromatic polyesters and their low solubility in the reaction
media, as well as, the lack of reactivity of aromatic monomers in enzymatic polyesterification [210,228].
However, by using cyclic aromatic oligomers in the lipase-catalyzed polymerization, high molecular
weight poly(alkylene terephthalate)s, poly (alkylene isophthalate)s and poly(benzenedimethanol
adipate)s were obtained, with Mw’s of up to 107,000 g/mol [229].

7. Enzyme-Catalyzed Synthesis of Polyamides

Lipases, proteases and other enzymes are capable of catalyzing the formation of amide bonds
and therefore, they are suitable enzymes for the in vitro polyamide synthesis [206]. In the following
discussion of this section, we focus on the lipase-catalyzed polymerization of synthetic polyamides.

Similar to the biocatalytic polyester synthesis, the lipase-catalyzed polyamide synthesis can
proceed via three basic modes: (1) step-growth polycondensation of diacid/diesters and diamines
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orω-amino carboxylic acids/esters; (2) ring-opening polymerization of lactams; and (3) a hybrid of
step-growth polycondensation and ring-opening polymerization.

Two basic modes of elemental reactions are commonly used in the biocatalytic polyamide
synthesis: directly amidation and transamidation (aminolysis) (Scheme 17).
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The lipase-catalyzed polymerization of polyamides has not been well studied [208]. This could
be attributed mainly to two reasons: (1) the high Tm of polyamides, and (2) the poor solubility of
polyamides in common organic solvents. On the one hand, polyamides like nylons and TPA-based
polyamides are semi-crystalline polymers which normally possess a high Tm above 100 ˝C. At such
elevated temperatures, the catalytic reactivity of lipases is significantly decreased due to the occurrence
of protein denaturation and deactivation. On the other hand, many polyamides can be only dissolved
in some aggressive solvents such as formic acid, concentrated H2SO4, and trifluoroacetic acid, in which
lipases cannot act.

Nevertheless, some oligoamides and polyamides are successfully produced via the
lipase-catalyzed polymerization [206–208]. Some typical examples are given below.

Cheng et al. [230,231] investigated the lipase-catalyzed polymerization of diamines and diesters
in bulk (Scheme 18), which resulted in aliphatic polyamides with Mw’s of around 3000–15,000 g/mol.
This is the first report showing that high molecular weight polyamides can be produced from
lipase-catalyzed polymerization.
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The CALB-catalyzed ring-opening polymerization of ε-caprolactam was reported by
Kong et al. [232]. They claimed that the enzymatic ring-opening polymerization gave nylon 6 with a
high Mw of 212,000 g/mol.

Aliphatic polyamides such as nylon 6,13, nylon 8,13 and nylon 12,13 were synthesized via the
N435-catalyzed ring-opening addition-condensation (Scheme 19) [197]. The Mn’s of the resulting
nylons were around 5600–8300 g/mol.
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In our group, enzymatic polymerization of polyamides is one of the focused research area.
For example, the enzymatic polymerization of 2-azetidinone was first studied in our laboratory
(Scheme 20) [233]. A different mechanism for the enzymatic ring-opening polymerization of
β-propiolactam was revealed and a catalytic cycle for the oligomerization of β-lactam that rationalizes
the activation of the monomers was proposed [234]. Moreover, aliphatic oligoamides [233,235,236],
semi-aromatic oligoamides [237], and poly(ester amide)s [238] are successfully prepared via
lipase-catalyzed polymerization in our laboratory.
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8. Lipase-Catalyzed Synthesis of Sustainable Polyesters and Polyamides from Biobased
Monomers

At present, most research on enzymatic polymerization still focused on the use of “traditional”
monomers derived from fossil resources. Due to the growing awareness of energy safety and
environmental pollution, and increased interest for the development of novel polymeric materials,
utilization of biobased monomers in enzymatic polymerization becomes an appealing topic both in
the academic and industrial fields. Currently, many (potentially) biobased polyesters and polyamides
are readily synthesized via enzymatic polymerization. In this section, the recent developments in the
field of the lipase-catalyzed synthesis of biobased polyesters and synthetic polyamides are discussed
in details.

8.1. Biobased Saturated Aliphatic Polyesters

8.1.1. Poly(lactic acid)

PLA is commonly produced by ring-opening polymerization of lactides or by direct
polycondensation of lactic acid, using chemical catalysts. It is also possible to synthesize PLA via
lipase-catalyzed ring-opening polymerization (Scheme 21).
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However, the direct enzymatic ring-opening polymerization of lactides generally resulted in
PLA with low molecular weights or low reaction yields, indicating that the enzymatic polymerization
efficiency was quite low. It was also found that the enzymatic polymerization of D,L-lactide resulted
in higher molecular weight products compared to D,D- and L,L-lactide [239–241]. Nevertheless,
after careful adjusting the reaction conditions, high molecular weight poly(D,D-lactide) (PDLA) can
be synthesized from the N435-catalyzed ring-opening polymerization, with a Mn, dispersity and
conversion of 12,000 g/mol, 1.1 and 60%, respectively [242]. In addition, poly(L,L-lactide) (PLLA)
can be produced from the N435-catalyzed ring-opening polymerization in supercritical CO2 [243].
Although the resulting PLLA possessed a high Mw (12,900 g/mol) and a good dispersity (around 1.2),
the reaction yield was quite low, less than 12%.

A new biocatalytic approach was developed for the efficient synthesis of high molecular weight
PLLA and PDLA, starting from an O-carboxylic anhydride derived from lactic acid (L- or D-lacOCA)
(Scheme 22) [244]. The Mn, dispersity and reaction yield of the resulting PLLA and PDLA were up
to 38,400 g/mol, ď1.4, and around 90%, respectively. In addition, the tested lipases showed slight
preference to L-lacOCA over D-lacOCA. Moreover, the molecular weights of the obtained PLLA can be
controllable by altering the concentration of N435 in the reaction media.Polymers 2016, 8, 243 21 of 52 
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Scheme 22. Immobilized lipase Amano PS-C II from Pseudomonas sp. (lipase PS) or N435-catalyzed
ring-opening polymerization of an O-carboxylic anhydride derived from lactic acid (L- or
D-lacOCA) [244].

By employing alcohol initiators containing different hydroxyl numbers (2, 4, 6, 8, and 22),
various linear and branched PLAs were synthesized via the Pseudomonas fluoresaens lipase-catalyzed
ring-opening polymerization of L,L-, D,D-, and D,L-lactide in bulk [245]. The enzymatic polymerization
yielded PLAs with Mn’s and dispersities of around 1500–36,700 g/mol, and 1.0–1.5, respectively.

Moreover, many PLA co-polyesters were successfully synthesized via
lipase-catalyzed co-polymerization, including poly(lactide-co-trimethylene carbonate) [246],
poly(lactide-co-glycolide) [247], and poly(lactide-co-alkylene dicarboxylate) [248] (Scheme 23).
The corresponding Mw‘s were around 12,000–21,000, 2200–20,600, and 10,000–38,000 g/mol,
respectively. Besides, the obtained co-polyesters can be optically active, due to the retention of the
chiral configuration of lactate units after the enzymatic polymerization [248].
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8.1.2. Poly(butylene succinate)

PBS is normally synthesized via polycondensation of succinic acid or succinic anhydride with
1,4-BDO at elevated temperatures, using a chemical catalyst [249]. It is also promising to synthesize
biobased PBS via enzymatic polymerization.

The lipase-catalyzed polycondensation of PBS was studied by Gross et al. [250], using a two-stage
method which is similar to those used for the industrial production but at much lower temperatures
(Scheme 24). The solvent-free enzymatic polycondensation with succinic acid gave oligomers.
However, by replacing succinic acid with diethyl succinate, the temperature varied two-stage method
in diphenyl ether resulted in PBS with a Mw of 38,000 g/mol and a dispersity of 1.39.Polymers 2016, 8, 243 22 of 52 
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To synthesize PBS with higher molecular weights, another two enzymatic strategies were
developed: (1) using cyclic oligomers [251]; and (2) co-polymerization of succinic acid and 1,4-BDO
with succinate anhydride [252]. By using cyclic butylene succinate oligomers in the N435-catalyzed
polymerization, PBS with a Mw of up to 130,000 g/mol and a dispersity of 1.6 was obtained. However,
under similar reaction conditions, the direct enzymatic polycondensation gave PBS with a lower
Mw (45,000 g/mol) and a broader dispersity (3.7) (Scheme 25). On the other hand, the enzymatic
co-polymerization of succinic acid and 1,4-BDO with succinate anhydride resulted in PBS with a Mw

of 73,000 g/mol and a dispersity of 1.7 (Scheme 26). However, although high molecular weight PBS
can be enzymatically produced via these two approaches, an extra synthesis step is required.
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8.1.3. Other Biobased Aliphatic Polyesters

Many other (potential) biobased aliphatic polyesters are synthesized via lipase-catalyzed
polycondensation. Some examples are discussed as follows.

The lipase-catalyzed solvent-free polycondensation of aliphatic diacids (C2–C12) and aliphatic
diols (C2–C12) was performed by Kobayashi et al. [253] The enzymatic polymerization yielded various
aliphatic polyesters with Mn’s and dispersities of around 1300–14,000 g/mol, and 1.1–2.3, respectively.

Biodegradable co-polyesters containing malic acid units were synthesized via the N435-catalyzed
polycondensation of adipic acid and 1,8-octanediol with L-malic acid, a natural occurring
monomer (Scheme 27) [254]. The solvent-free enzymatic polycondensation gave poly(octamethylene
adipate-co-malate), with Mw’s, dispersities and reaction yields of 4700–9500 g/mol, 1.50–1.92, and
88–96%, respectively.
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Scheme 27. Enzymatic synthesis of poly(octamethylene adipate-co-malate) using N435 as the
biocatalyst [254].

The lipase-catalyzed polymerization of aliphatic diacid ethyl esters (C2, C4 and C8) and diols (C4,
C6 and C8) were performed in bulk or by using β-cyclodextrin as the support architecture. Various
saturated aliphatic polyesters were produced, with Mw’s ranging from 5300 to 44,600 g/mol [255,256].

Recently, we succeeded in preparing a series of (potentially) biobased poly(butylene
dicarboxylate)s via the N435-catalyzed polycondensation of 1,4-butanediol and diacid ethyl esters
differing in chain length (C2, C3, C4, C6, C8 and C10) (Scheme 28) [257]. High molecular weight
poly(butylene dicarboxylate)s were obtained, with Mw’s of up to 94,000 g/mol. We found that
increasing the chain length of diacid ethyl ester from C2 to C4 resulted in poly(butylene dicarboxylate)s
of significant higher molecular weights; however, upon further increasing the chain length from C4
to C10, poly(butylene dicarboxylate)s with lower molecular weights were obtained. Meanwhile, the
enzymatic polymerization with diethyl succinate (C2) gave the lowest molecular weight products.
This suggested that CALB possesses a higher selectivity towards diacid ethyl esters with a >C2 chain
length; and CALB prefers diethyl adipate (C4) over the other tested counterparts.
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azelaic acid and 1,6-HDO with different functional end-cappers in supercritical CO2 [258]. The Mn,
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dispersity and reaction yield of the resulting telechelic poly(hexamethylene azelate)s were around
1500–2400 g/mol, 1.73–2.18, and 78%–88%, respectively. The obtained telechelic polyesters can be
further modified by cross-linking or by chain extension reactions.

8.2. Biobased Unsaturated Aliphatic Polyesters

Currently, the synthesis of biobased unsaturated polyesters, especially itaconate-based
unsaturated polyesters, has not been well studied. This is because the sensitive C=C bond can
be deteriorated easily under conventional polymerization conditions such as elevated temperatures
and metal catalysts. However, this problem can be easily overcome by using enzyme catalysts in
the polymerization, due to the mild synthetic conditions and the high catalytic specificity of the
enzyme catalysts.

However, the lipase-catalyzed direct polycondensation of itaconate and aliphatic diols with
short chain length generally resulted in oligomers. As reported by Gardossi et al., the solvent-free
polyesterification of dimethyl itaconate and 1,4-BDO catalyzed by CALB gave a mixture of oligomers
from dimer to pentamer [259,260]. Similarly, the N435-catalyzed polymerization of itaconic anhydride
with aliphatic diols (C4–C10) gave oligomers with Mn’s of around 150–390 g/mol, although itaconic
anhydride was completely consumed [261]. This is because the enzymatic polycondensation is
hampered by the low reactivity of itaconate due to the lower electrophilicity of the acyl carbon
(Cs, Scheme 29) adjacent to the vinyl group [259]. However, the low reactivity of itaconate in enzymatic
polymerization could be overcome by optimizing the reaction conditions: (1) improving the mass
transfer and the enzyme distribution in the reaction mixture; (2) increasing the enzyme loading;
(3) lowering the diol concentration; and (4) choosing more appropriate diols [259].
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Indeed, by using glycols with longer chain lengths or with a rigid structure, itaconate-based
homo-polyesters with relatively higher molecular weights were obtained from the lipase-catalyzed
polycondensation. As reported by Yousaf et al. [262], the N435-catalyzed polymerization of
itaconic acid with 1,4-cyclohexanedimethanol/poly(ethylene glycol) gave homo-polymers with a
Mw of 2600 and 8600 g/mol, respectively. On the contrary, the tin(II) 2-ethylhexanoate-catalyzed
polycondensation with itaconic acid gelled within hours.

In addition, itaconate-based co-polyesters with high molecular weights can be prepared via
lipase-catalyzed co-polymerization, as discussed below.

The N435-catalyzed co-polymerization of itaconic acid, adipic acid and 3-methyl-1,5-pentanediol
resulted in a co-polymer with a Mw of 19,000 g/mol [262].

Poly(12-hydroxystearate-co-butylene itaconate) with a Mw of 30,000 g/mol was obtained from the
lipase-catalyzed directly polycondensation of methyl 12-hydroxystearate, dimethyl itaconate and
1,4-BDO (Scheme 30) [263]. Moreover, the lipase-catalyzed ring-opening addition-condensation
polymerization of methyl 12-hydroxystearate and cyclic butylene itaconate dimer resulted in
poly(12-hydroxystearate-co-butylene itaconate) with a significantly higher Mw of 160,000 g/mol.
Furthermore, the NMR study indicated that the enzymatic polymerization catalyzed by different lipases
yielded poly(12-hydroxystearate-co-butylene itaconate) with different microstructures. As shown
in Scheme 30, no ester bond was formed between the hydroxyl group of 12-hydroxystearate and
the carboxyl group of itaconate when the polymerization was catalyzed by N435. However, by
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using immobilized Burkholderia cepacia lipase (lipase BC), an ester bond was formed between the
12-hydroxystearate and itaconate unit.
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Recently, we investigated the N435-catalyzed polymerization of fully biobased poly(butylene
succinate-co-itaconate) (PBSI) (Scheme 31) [264,265]. We found that the enzymatic polycondensation
of succinic acid, itaconic acid, and 1,4-butanediol only yielded oligomers, with Mw’s of around
500–1500 g/mol, despite different polymerization methods were used. By replacing the unactivated
dicarboxylic acids with alkyl diesters, a series of PBSIs with various molar compositions and significant
higher molecular weights were obtained, with Mw’s of up to 28,300 g/mol. In addition, we found that:
(1) the most suitable approach is azeotropic polymerization using the solvent mixture of cyclohexane
and toluene, which results in PBSIs with high molecular weights and desirable chemical compositions;
(2) high molecular weight PBSIs with <30 mol % of itaconate can be prepared by using the two-stage
enzymatic polymerization in diphenyl ether; and (3) the two-stage enzymatic melt polymerization
gives PBSIs with controllable chemical compositions but low molecular weights. Moreover, the
13C–NMR study revealed that different microstructures are present in PBSIs obtained from different
polymerization methods. The formation of I-B-I-3 microstructures is crucial for synthesizing high
molecular weight PBSIs with desired chemical compositions; and more I-B-I-3 microstructures can be
produced by CALB in the solvent mixture of cyclohexane and toluene under an azeotropic condition.

However, by replacing diethyl succinate (C2) with the other diacid ethyl esters with relatively
longer chain length (C3~C10), the two-stage enzymatic polymerization in diphenyl ether resulted in
series of unsaturated aliphatic polyesters with desired molar compositions and high Mw’s of up to
57,900 g/mol (Scheme 32) [257]. The molar percentage of itaconate in the unsaturated polyesters can be
tailored from 0% to 35% by adjusting the feed ratio of itaconate; and all C=C bonds were well preserved
in the resulting polyesters. We found that products with relatively lower molecular weights were
generally obtained from the enzymatic polymerization at a higher feed ratio of itaconate; however,
with diethyl dodecanedioate having the longest chain length (C10) among the tested diacid ethyl
esters, higher molecular weight products were obtained at higher feed ratios of itaconate. Moreover,
the obtained itaconate-based polyesters can be thermally cross-linked or photo-cured. By adjusting the
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diacid chain length and itaconate composition, the thermal and mechanical properties of the cured
polyesters can be tuned.
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8.3. Polyesters Derived from Long Chain Fatty Acids and their Derivatives

Long chain fatty acids may contain one or more C=C bonds within the backbones. The C=C
bonds can be further modified to form other functional groups such as epoxy, thiol, and hydroxyl
group [153,266], rendering fatty acid-based polyesters with diverse functionalities. Fatty acid-based
polyesters can be used as thermoset resins, coating materials and biomaterials for biomedical
applications, and so on [267–269].

The pioneer work on the enzymatic polymerization with long chain fatty acids was reported by
Matsumura et al. [270]. They investigated the lipase-catalyzed polymerization of ricinoleic acid/methyl
ricinoleate in bulk (Scheme 33). Among the tested lipases, immobilized lipase PC showed the highest
reactivity towards ricinoleic acid and methyl ricinoleate. The enzymatic polymerization with ricinoleic
acid resulted in polyricinoleate with a Mw of up to 8500 g/mol. However, by replacing ricinoleic acid
with methyl ricinoleate, polyricinoleate with a much higher Mw of up to 100,600 g/mol were produced.

Later, the N435-catalyzed synthesis of poly(12-hydroxydodecanoate-co-12-hydroxystearate) was
studied by the same research group (Scheme 34) [271]. The Mw, dispersity and reaction yield of
the resulting co-polyesters were around 92,300–118,200 g/mol, 2.8–3.3, and 83%–88%, respectively.
In addition, the molar percentage of 12-hydroxydodecanoate units in the final products can be tailored
from 0% to 100% by adjusting the feed ratio.
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On the other hand, cutin and suberin are lipophilic macromolecules which are natural 
substances found in cell walls of higher plants as structural components. Cutin covers all the aerial 
surfaces of plants in the plant cuticle, while suberin is the main constituent of cork cells. Their fatty 
acid derivatives, such as long chain ω-hydroxyalkanoic acids, and α,ω-alkanedioic acids, and 
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12-hydroxystearate [271].

Biobased functional polyesters can be produced via enzymtic polymerization with unsaturated
or epoxidized α,ω-carboxylic fatty acid derivatives [272,273]. The long chain unsaturated and
epoxidized ω-carboxy fatty acid derivatives can be synthesized via chemical [272] or biocatalytic
approaches [273]. The N435-catalyzed polycondensation of unsaturated or epoxidized ω-carboxy
fatty acid methyl esters (C18, C20 and C26) with alkane-α,ω-aliphatic diols (C3 and C4) resulted in
polyesters with Mw’s, dispersities and reaction yields of up to 11,600 g/mol, 1.2–2.6, and 49%–84%,
respectively (Scheme 35) [272]. In addition, the two-step biocatalytic approach gave biobased functional
polyesters with Mw’s and dispersities of around 25,000–76,000 g/mol, and around 2.0–3.1, respectively
(Scheme 36) [273].
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On the other hand, cutin and suberin are lipophilic macromolecules which are natural substances
found in cell walls of higher plants as structural components. Cutin covers all the aerial surfaces
of plants in the plant cuticle, while suberin is the main constituent of cork cells. Their fatty acid
derivatives, such as long chain ω-hydroxyalkanoic acids, and α,ω-alkanedioic acids, and substituted
ω-hydroxyalkanoic acids, are attractive biobased monomers for the synthesis of functional aliphatic
polyesters [152,274].

Iversen et al. [275] did pioneer work on the enzymatic synthesis of suberin-based polyesters
(Scheme 37). The N435-catalyzed polymerization with cis-9,10-epoxy-18-hydroxyoctadecanoic acid
in toluene resulted in epoxy-functionalized polyesters with the highest molecular weights. The Mw

and dispersity were 20,000 g/mol, and 2.2, respectively. In addition, even at a much shorter reaction
time of 3 h, the solvent-free enzymatic polymerization in an open vial without any drying agents
gave comparable high molecular weights products, with a Mw and a dispersity of 15,000 g/mol and
2.2, respectively.
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Recently, multifunctional, bio-based oligoester resins based on 9,10-epoxy-18-
hydroxyoctadecanoic acid were enzymatically synthesized by using N435 as the catalysts
(Scheme 38) [276,277]. The Mn, dispersity, monomer conversion and reaction yield of the resulting
oligoesters were around 900–1100 g/mol, 2.3–3.1, 95%–99%, and 82%–89%, respectively. Moreover, the
functional end groups and the epoxy groups were well preserved after the enzymatic polymerization.
The obtained oligoesters can undergo further modifications via different techniques such as
Diels-Alder reactions, radical polymerization and ring-opening polymerization.
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8.4. Glycerol-Based Polyesters

Glycerol-based aliphatic polyesters can be used as thermosets like shape memory materials; and
have found potential applications in biomedical and pharmaceutical fields, for example, they can be
used as carriers for drug delivery, sealants or coatings for tissue repair, and agents for antibacterial
applications [278].

The N435-catalyzed polymerization of divinyl adipate and glycerol in bulk yielded poly(glyceryl
adipate) with a Mw and dispersity of up to 10,400 g/mol and 2.3–3.1, respectively (Scheme 39) [279].
MALDI-ToF MS analysis suggested that linear polyesters with hydroxyl substituents were mainly
produced and no polymer network was formed. The number of hydroxyl groups per repeating
units was around 0.8–0.9; and the pendant groups of the synthetic poly(glyceryl adipate) consisted of
90%–95% of secondary and 5%–10% of primary hydroxyl groups.
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1,4-butanediol in bulk [279].

By replacing the activated divinyl adipate with unactivated adipic acid, the N435-catalyzed
enzymatic polycondensation also resulted in poly(glyceryl adipate), with a slight low Mw of 3700 g/mol
and a dispersity of 1.4 (Scheme 40) [280].
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Poly(glyceryl-1,18-cis-9-octadecenedioate) was successfully produced via the N435-catalyzed
polycondensation of 1,18-cis-9-octadecenedioic (oleic diacid) and glycerol in bulk (Scheme 41) [283].
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At a molar monomer feed ratio of 1.0:1.0, the Mn and dispersity of the obtained polyesters were
up to 9100 g/mol, and around 3.3–3.4, respectively. However, the percentage of dendritic glycerol
units (Den %) was quite low, around 13%–16%. By increasing the molar feed ratio of oleic diacid and
glycerol from 1.0:1.0 to 1.0:1.5, the resulting polyesters possessed a similar Mn and dispersity, but a
significant higher Den % (~31%). In contrast, gelation was observed in the polymerization catalyzed
by dibutyltin oxide.
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Moreover, several glycerol-based co-polyesters were successfully produced via lipase-
catalyzed polycondensation.

The enzymatic co-polymerization of divinyl adipate, glycerol and 1,4-BDO gave poly(glyceryl
adipate-co-butylene adipate) (Scheme 39) [279]. The hydroxyl number of the obtained co-polyesters
can be well controlled by adjusting the amount of 1,4-BDO in the reaction mixture.

Poly(octamethylene adipate-co-glyceryl adipate) were successfully produced via the
N435-catalyzed co-polymerization of glycerol, adipic acid and 1,8-octanediol in bulk
(Scheme 40) [280–282], with Mn’s of up to 75,600 g/mol. The 13C–NMR study indicated that
the obtained polyesters were highly branched but had few interchain cross-links; and the degree of
branching and molecular weights can be controlled by altering the reaction time and molar feed ratio
of monomers [282]. In addition, due to the regio-selectivity of N435, the enzymatic polymerization
gave linear polyesters at short reaction times (ď18 h) but yielded highly branched polyesters at a
long reaction time (42 h). Moreover, with respect to esterifications, N435 showed 77% to 82% of the
regio-selectivity towards the primary hydroxyl groups of glycerol and this was independent of the
amount of glycerol in the reaction media.

The enzymatic co-polymerization of divinyl esters, glycerol and ω-fatty acids were also
investigated, using lipases as biocatalysts (Scheme 42) [284,285]. Among the tested lipases,
N435 showed the highest catalytic activity. The enzymatic polymerization yielded biodegradable
cross-linkable polyesters with Mn’s of up to 8500 g/mol. The obtained polyesters were thermally
cross-linked, which resulted in transparent polymeric films with high-gloss surfaces.
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Later, the same research group reported the synthesis of epoxide-containing, glycerol-based
co-polyesters via N435-catalzyed polymerization via two routes (Scheme 43) [286]. The first
route yielded corresponding polyesters with Mn’s, dispersities and epoxidation ratios of around
3300–7900 g/mol, 1.3–1.6, and 76%–96%, respectively; and the second route gave relatively higher
values of Mn, dispersity and epoxidation ratio, which were around 4200–6500 g/mol, 1.9–2.1, and
88%–94%, respectively.
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divinyl sebacate, glycerol and vegetable oil-based fatty acids [286].

Recently, polymeric triglyceride analogs, poly(oleic diacid-co-glycerol-co-linoleic acid)s, were
prepared via the N435-catalyzed polycondensation (Scheme 44) [287]. By varying the molar feed ratio
of oleic diacid, glycerol and crude linoleic acid from 1.0:1.0:1.0 to 1.0:1.0:1.33, the Mn and dispersity of
the obtained products decreased from 12,300 to 6300 g/mol, and 6.3 to 1.7, respectively, whereas the
degree of tri-substituted units increased from 18% to 100%. In addition, when the molar feed ratio of
oleic diacid, glycerol and crude linoleic acid was 1.0:1.0:0.67, all monomers were converted to polymers
after 8 h reaction; and the Mn and degree of tri-substituted units of the resulting co-polyesters reached
9500 g/mol, and 64%, respectively.
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8.5. Sweet Polyesters Derived from Carbohydrates

8.5.1. Sugar and Sugar Alcohol-Based Polyesters

Sugars and sugar alcohols can be used as starting materials for the production of biobased linear
and branched functional polyesters which have various potential applications, for example, they
can be used as coating materials, biodegradable and bioresorbable polymers, and optically active
polymers [112].

It is difficult to synthesize polyesters with sugar and sugar alcohol units via conventional
techniques, as tedious protection and de-protection steps are normally required, to prevent the gelation
during the polymerization. However, these multiple-functional monomers can be directly polymerized
via enzymatic polymerization, due to the highly regio-selectivity of the enzymes.

The lipase-catalyzed polymerization with D-sorbitol was first reported by Kobayashi et al.
(Scheme 45) [288]. Sorbitol-based polyesters with Mn’s of around 3000–12,000 g/mol were produced
in moderate yields (around 40%–85%). Moreover, 1H– and 13C–NMR study indicated that the primary
hydroxyl groups of D-sorbitol were exclusively esterified during the enzymatic polymerization.
However, to compensate the low catalytic reactivity of N435 in the polar aprotic solvent acetonitrile,
activated divinyl sebacate and high concentration of N435 (76 wt %) were used.
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Scheme 45. N435-catalyzed polymerization of D-sorbitol with divinyl sebacate [288].

In addition, divinyl sebacate and other activated monomers including
bis(2,2,2-trifluoroethyl)malonate, bis(2,2,2-trifluoroethyl)glutarate and divinyl adipate, were
enzymatically polymerized with disaccharides (sucrose, trehalose, and lactose), D-sorbitol and
D-mannitol in acetonitrile. [289] It was found that N435 was able to differentiate the five tested
carbohydrates, as the molecular weights of the resulting polyesters showed the following array:
disaccharide-based polyesters < mannitol-based polyesters < sorbitol-based polyesters.

Unactivated diacid monomers were also used as starting materials for the enzymatic synthesis
of sorbitol-based polyesters. Gross et al. [280,281] reported the N435-catalyzed polycondensation
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of D-sorbitol, 1,8-octanediol and adipic acid in bulk (Scheme 46). Poly(sorbityl adipate) and
poly(octamethylene adipate-co-sorbityl adipate)s were produced, with Mn’s and dispersities of around
7000–20,300 g/mol, and 1.6–3.3, respectively. In addition, the molar percentage of sorbityl units in
the co-polyesters can be tunable from 0% to 100%. Moreover, the NMR analysis revealed that N435
showed highly regio-selectivity (ě85% ˘ 5%) towards the primary hydroxyl groups of D-sorbitol at
1- and 6-positions [280].Polymers 2016, 8, 243 33 of 52 
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diols in bulk [280,281,290].

In the same laboratory, the enzymatic polycondensation of adipic acid and 1,8-octanediol with
different sugar alcohols was investigated (Scheme 46) [290]. Sweet co-polyesters with Mw’s ranging
from 11,000 and 73,000 g/mol were obtained; and no correlation was observed between the reactivity
of the tested sugar diols and their chain length. However, N435 showed the highest reactivity
towards D-mannitol; and the co-polyester containing D-mannitol units possessed the highest degree
of branching.

Recently, sorbitol-based, hydroxy-functional polyesters were successfully synthesized via the
N435-catalyzed co-polymerization (Scheme 47) [291]. The Mn of the resulting co-polyesters was
successfully controlled at around 4000–8000 g/mol, by tuning the reaction time, enzyme concentration
and reaction stoichiometry. However, only maximum 53% of the added D-sorbitol was incorporated
into the final products, even though its feed ratio was quite low (ď5 mol %). Besides, the obtained
polyesters displayed suitable properties for being used as solvent-borne coating resins.
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8.5.2. Polyesters Based on Rigid Sugar Derivatives

DAHs (isosorbide, isomannide and isoidide) and the diacetalized monomers 2,3:4,5-di-O-
methylene-galactaric acid (Glux diacid) and 2,4:3,5-di-O-methylene-D-glucitol (Glux diol), are rigid
compounds which are derived from sugars. They are good candidates for polyester synthesis,
rendering polyesters with high values of Tg and better thermal stability.

Isosorbide was enzymatically polymerized with various aliphatic diacid ethyl esters in the
presence of N435 (Scheme 48), as reported by Catalani et al. [292]. The solvent-free enzymatic
polymerization gave low molecular weight poly(isosorbide adipate) (Mw ď 3800 g/mol), as the
hydroxyl groups of isosorbide can be condensed by N435. However, high molecular weight isosorbide
polyesters with Mw’s of up to 40,000 g/mol were produced via the enzymatic polymerization by
azeotropic distillation; and significantly higher molecular weight products can be obtained by
decreasing the concentration of reactants in the reaction media. Meanwhile, it was found that
the suitable solvents for the enzymatic polymerization were cyclohexane, cyclohexane/benzene
(6:1, v/v) and cyclohexane/toluene (6:1, v/v). Furthermore, the enzymatic azeotropic polymerization in
cyclohexane/toluene gave isosorbide polyesters with a higher Mw when the chain length of the tested
aliphatic diacid ethyl esters increased from C4 to C6. However, by further increasing the chain length
from C6 to C8, C10 and 12, isosorbide polyesters with lower molecular weights were produced.
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The same research group also investigated the N435-catalyzed azeotropic polycondensation
of isosorbide/isomannide and diethyl adipate with different fractions of unsaturated diesters
(Scheme 49) [293]. No homo-polyesters and co-polyesters containing itaconate units were obtained
via the enzymatic polymerization. However, high molecular weight isosorbide/isomanide-based
unsaturated co-polyesters were produced from the enzymatic azeotropic polymerization with the other
tested unsaturated diesters, with Mw’s of up to 15,900 g/mol. Moreover, Michael additions of water
to C=C bonds occurred during the enzymatic polymerization; and the corresponding polymers can
undergo additional reactions through hydroxyl pendant groups. Besides, the enzymatic polymerization
involving isosorbide gave much higher molecular weights products, which suggested that N435 prefers
isosorbide over isomannide. This is however in contract with the result reported by Boeriu et al. [294].
They investigated the N435-catalyzed polymerization of succinic acid with isomannide, isosorbide
or isoidide in toluene/tert-butanol; and found that N435 showed preference for isomannide over
isosorbide and over isoidide. They attributed this to the preference of N435 for the endo-hydroxyl
groups, which is due to the fact that the transition state of esters with exo-hydroxyl groups does not
form all the required hydrogen bonds for catalysis.
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A series of Glux diacid- and Glux diol-based polyesters were synthesized via the N435-catalyzed
polycondensation of diethyl sebacate and 1,4-BDO with Glux diacid/Glux diol (Scheme 50) [295].
The Mw, reaction yield and intrinsic viscosity of the resulting polyesters were around 10,000 g/mol,
30%–70%, and 0.3–0.44 dL/g, respectively. In addition, the molecular weights and reaction yields of
the obtained Glux diacid-based polyesters were lower than those of the synthetic Glux diol-based
polyesters; and these two parameters decreased monotonically with increasing the Glux content in
both Glux diacid- and Glux diol-based polyesters. Moreover, no polyester was obtained from the
enzymatic polymerization of Glux diacid and 1,4-BDO. This can be explained by the bulky bicyclic
structure next to the carboxylate groups, which hinders the access of this group to the active site of the
enzyme CALB. Furthermore, all the synthetic polyesters possess random microstructures.
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8.6. Biobased Polyamides

At present, studies related to the enzymatic synthesis of biobased synthetic polyamides are scarcer.
A few potentially biobased aliphatic polyamides, such as nylon 4,10, nylon 6,10, and nylon 8,10, can
be synthesized via lipase-catalyzed polymerization. However, the molecular weights of the obtained
polyamides were quite low.

Landfester et al. [197] studied the N435-catalyzed polycondensation of diethyl sebacate and
1,8-octanediamine (Scheme 51). The enzymatic polymerization gave nylon 8,10 with Mn’s of around
2000–5000 g/mol.
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In our group, oligomers including nylon 4,10, nylon 6,10, and nylon 8,10 were produced via the
lipase-catalyzed polymerization of diethyl sebacate with different diamines, with a DPmax of up to 16
(Scheme 52) [235].Polymers 2016, 8, 243 36 of 52 
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Scheme 52. Lipase-catalyzed polycondensation of diethyl sebacate and diamines.  

8.7. Biobased Furan Polyesters and Furan Polyamides 

Furan polymers are not new polymers. In the late 1970s, poly(hexamethylene furanoate), a furan 
polyester, was synthesized by Moore and Kelly [296,297]; and various furan polyesters were 
successfully prepared by Ballauff et al. [298], Gandini et al. [299], and Okada et al. [300] since 1990s.  

In recent years, the research on FDCA-based polyesters and polyamides is booming, due to the 
fast development of biobased FDCA and the broad potential applications of FDCA-based polymers 
[16]. The FDCA-based polymers are promising sustainable aromatic polymer alternatives, and 
FDCA-based polymers possess similar or even better properties than their petrol-base counterparts. 
For example, recent studies suggested that poly(ethylene furanoate) (PEF) possesses better barrier 
properties compared to PET: PEF shows surprisingly large reductions in CO2 permeability (19×), O2 
permeability (11×) and diffusivity (31×) [301,302]. 

At present, FDCA-based polyesters and polyamides are predominately synthesized via melt 
polycondensation at elevated temperatures of around 200 °C. However, decarboxylation of FDCA 
takes place at around 195 °C and other side-reactions may occur at such elevated temperatures 
[16,303–305], which may lead to the discoloration of the resulting polymers and the formation of low 
molecular weight products. However, these drawbacks could be circumvented by using enzyme 
catalysts. 

The N435-catalyzed polymerization with dimethyl 2,5-furandicarboxylate (dimethyl 
FDCA)/BHMF/5-hydroxymethyl-2-furancarboxylic acid (HMFA) was reported by Habeych N. [306] 
and Boeriu et al. [307], using a one-stage method in the mixture of toluene and tert-butanol. However, 
only a mixture of linear and cyclic furan oligomers were produced (Scheme 53).  

Recently, we studied the N435-catalyzed polymerization of BHMF and various diacid ethyl 
esters, using the two-stage, three step method (Scheme 54) [308]. BHMF-based polyesters with low 
molecular weights were produced, with ܯ୵തതതതത ’s of around 1800–2900 g/mol. The polymerization 
kinetic study and MALDI-ToF MS analysis revealed that ether end groups were formed during the 
enzymatic polymerization, which led to the low molecular weights. 

FDCA-based furanic-aliphatic polyesters were successfully produced via the enzymatic 
polymerization of dimethyl FDCA with various aliphatic diols, using a two-stage method in diphenyl 
ether at 80–140 °C (Scheme 55) [309]. The obtained polyesters reached a very high ܯ୵തതതതത of up to 
100,000 g/mol, which is normally hard to achieve by enzymatic polymerization. For the first time we 
demonstrated that enzymatic polymerizations are capable of producing high molecular weight 
FDCA-based polyesters, which have been primarily synthesized via step-growth polymerization 
using organometallic catalysts at elevated temperatures around 150–280 °C. Moreover, we found that 
CALB prefers alkane-α,ω-aliphatic linear diols of > 3 carbons. Furthermore, the FDCA-based furanic-
aliphatic polyesters possess similar crystalline and thermal properties compared to their petrol-based 
counterparts, semi-aromatic polyesters. 
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8.7. Biobased Furan Polyesters and Furan Polyamides

Furan polymers are not new polymers. In the late 1970s, poly(hexamethylene furanoate), a
furan polyester, was synthesized by Moore and Kelly [296,297]; and various furan polyesters were
successfully prepared by Ballauff et al. [298], Gandini et al. [299], and Okada et al. [300] since 1990s.

In recent years, the research on FDCA-based polyesters and polyamides is booming, due to the fast
development of biobased FDCA and the broad potential applications of FDCA-based polymers [16].
The FDCA-based polymers are promising sustainable aromatic polymer alternatives, and FDCA-based
polymers possess similar or even better properties than their petrol-base counterparts. For example,
recent studies suggested that poly(ethylene furanoate) (PEF) possesses better barrier properties
compared to PET: PEF shows surprisingly large reductions in CO2 permeability (19ˆ), O2 permeability
(11ˆ) and diffusivity (31ˆ) [301,302].

At present, FDCA-based polyesters and polyamides are predominately synthesized via melt
polycondensation at elevated temperatures of around 200 ˝C. However, decarboxylation of FDCA takes
place at around 195 ˝C and other side-reactions may occur at such elevated temperatures [16,303–305],
which may lead to the discoloration of the resulting polymers and the formation of low molecular
weight products. However, these drawbacks could be circumvented by using enzyme catalysts.
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The N435-catalyzed polymerization with dimethyl 2,5-furandicarboxylate (dimethyl FDCA)/
BHMF/5-hydroxymethyl-2-furancarboxylic acid (HMFA) was reported by Habeych N. [306] and
Boeriu et al. [307], using a one-stage method in the mixture of toluene and tert-butanol. However, only
a mixture of linear and cyclic furan oligomers were produced (Scheme 53).Polymers 2016, 8, 243 37 of 52 
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Furthermore, high molecular weight FDCA-based furanic-aliphatic polyamides were produced 
from the enzymatic polycondensation of dimethyl FDCA and 1,8-ODA, using a one-stage method or 
a temperature-varied two-stage method (Scheme 56) [310]. The FDCA-based furanic-aliphatic 
polyamides can be used as a promising sustainable alternatives to petrol-based polyphthalamides 
(semi-aromatic polyamides) and be applied as thermoplastic engineering polymers and high 
performance materials. The enzymatic polymerization resulted in poly(octamethylene furanamide) 
(PA 8,F) with a very high ܯ୵തതതതത  of up to 54,000 g/mol. This is the first time that FDCA-based 
polyamides are successfully produced via enzymatic polymerization; and the molecular weights of 
the obtained PA 8,F are much higher than those produced via melt-polycondensation, the primarily 
synthesis approach for semi-aromatic polyamides, at elevated temperatures usually above 200 °C. 

Scheme 53. N435-catalyzed polymerizations with furan monomers: bis(hydroxymethyl)furan
(BHMF), 5-hydroxymethyl-2-furancarboxylic acid (HMFA) and dimethyl 2,5-Furandicarboxylic acid
(FDCA) [306,307].

Recently, we studied the N435-catalyzed polymerization of BHMF and various diacid ethyl esters,
using the two-stage, three step method (Scheme 54) [308]. BHMF-based polyesters with low molecular
weights were produced, with Mw’s of around 1800–2900 g/mol. The polymerization kinetic study
and MALDI-ToF MS analysis revealed that ether end groups were formed during the enzymatic
polymerization, which led to the low molecular weights.
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Scheme 54. N435-catalyzed polycondensation of BHMF and diacid ethyl esters via a two-stage, three
step method in diphenyl ether at 80 ˝C [308].

FDCA-based furanic-aliphatic polyesters were successfully produced via the enzymatic
polymerization of dimethyl FDCA with various aliphatic diols, using a two-stage method in diphenyl
ether at 80–140 ˝C (Scheme 55) [309]. The obtained polyesters reached a very high Mw of up to
100,000 g/mol, which is normally hard to achieve by enzymatic polymerization. For the first time
we demonstrated that enzymatic polymerizations are capable of producing high molecular weight
FDCA-based polyesters, which have been primarily synthesized via step-growth polymerization
using organometallic catalysts at elevated temperatures around 150–280 ˝C. Moreover, we found
that CALB prefers alkane-α,ω-aliphatic linear diols of > 3 carbons. Furthermore, the FDCA-based
furanic-aliphatic polyesters possess similar crystalline and thermal properties compared to their
petrol-based counterparts, semi-aromatic polyesters.
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Scheme 55. N435-catalyzed polycondensation of dimethyl FDCA and aliphatic diol via a two-stage
method in diphenyl ether [309].

Furthermore, high molecular weight FDCA-based furanic-aliphatic polyamides were produced
from the enzymatic polycondensation of dimethyl FDCA and 1,8-ODA, using a one-stage method
or a temperature-varied two-stage method (Scheme 56) [310]. The FDCA-based furanic-aliphatic
polyamides can be used as a promising sustainable alternatives to petrol-based polyphthalamides
(semi-aromatic polyamides) and be applied as thermoplastic engineering polymers and high
performance materials. The enzymatic polymerization resulted in poly(octamethylene furanamide)
(PA 8,F) with a very high Mw of up to 54,000 g/mol. This is the first time that FDCA-based polyamides
are successfully produced via enzymatic polymerization; and the molecular weights of the obtained
PA 8,F are much higher than those produced via melt-polycondensation, the primarily synthesis
approach for semi-aromatic polyamides, at elevated temperatures usually above 200 ˝C. Moreover, the
obtained PA 8,F possesses a similar Tg and similar crystal structures, a comparable Td, but a lower Tm,
compared to its petrol-based counterpart, poly(octamethylene terephthalamide) (PA 8,T).
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9. Conclusions and Outlook

Enzymatic polymerization is proven to be a powerful and versatile approach for the production of
biobased polyesters and polyamides with different chemical compositions (aliphatic and semi-aromatic
polymers), varied architectures (linear, branched and hyperbranched polymers), and diverse
functionalities (pendant hydroxyl groups, carbon–carbon double bonds, epoxy groups, and so on).
Among the enzymes studied for biobased polyester and polyamide synthesis, CALB, especially
its immobilized form N435, shows broad monomer adaptability, stable and excellent catalytic
performance, and great tolerance of various conditions. Moreover, with the mild synthetic conditions,
non-toxic and renewable enzyme catalysts, and sustainable starting materials, synthesis of biobased
polymers via enzymatic polymerizations provides an opportunity for achieving green polymers and
a future sustainable polymer industry, which will eventually play an essential role for realizing and
maintaining a green and sustainable society.

However, this approach also possesses some limitations and disadvantages:
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(1) the atom efficiency is low when ester derivatives rather than acids are used;
(2) non-ecofriendly solvents including diphenyl ether and toluene are commonly used;
(3) long polymerization times are required for achieving high molecular weights;
(4) high reaction temperatures at around 100–140 ˝C were applied for enzymatic synthesis of

polymers having a high Tm and low solubility; and the catalytic reactivity of enzymes decreases
significantly at such elevated temperatures;

(5) the price of enzyme catalysts is still quite high;
(6) enzymatic polymerizations involving monomers with short chain length like 1,3-propanediol,

monomers with secondary hydroxyl groups such as isosorbide and 2,3-butanediol, and polyols,
generally result in low molecular weight products;

(7) the purify and price of biobased monomers remain a concern;
(8) last but certainly not least, only limited variety of biobased monomers are currently

commercially available.

Therefore, more efforts are required to address these problems. For example, acids can be used
to improve the atom efficiency, green solvents such as ionic liquids and supercritical CO2 can be
employed as the reaction media, more robust and thermal stable enzymes should be developed for
enzymatic polymerizations, improved and optimal processes should be explored for the production of
diverse biobased monomers with high purity and low price, and so on.

Although numerous polyesters and polyamides are readily produced by using free lipases and
immobilized lipases as the catalysts, the explanations for the different polymerization results are not
clear yet. This could be an interest topic for the future research.

Noteworthy is that many experimental results reveal that lipase-catalyzed polymerizations
involving structurally similar monomers afford polymers with different compositions and varied
molecular weights. This could be attributed to the synergistic effect caused by many reasons, for
example, the specificity and selectivity of lipases towards different monomers, the physical properties
of the starting materials (purity, melting temperature, and miscibility and solubility in the reaction
media), the physical properties of the resulting intermediates and the final products (glass transition
temperature, melting temperature, crystallization ability, and miscibility and solubility in the reaction
media), the enzymatic polymerization conditions, and so on. However, such synergistic effect has not
been fully understood yet, which requires systematic studies in the future. Besides, it would be of
great interest to employ computer simulations to study the specificity and selectivity of lipases for the
monomers in the enzymatic polymerization, as well as, the enzymatic polymerization mechanism.

At present, enzymatic polymerizations have already been poised for use in commercial process to
prepare polymers targeted for cosmetic and medical applications. However, polymers including
biobased polymers are still predominately produced via conventional approaches. Due to the
fast development of biotechnologies and enzymatic polymerization techniques, and the increased
realization of the great benefits that enzymatic polymerizations and biobased monomers have to
offer, there will be more highly value-added specialty biobased polymers produced commercially
via biocatalytic approach in the near future. However, for the production of biobased commodity
polymers, engineering plastics and high performance polymers, the commercial enzymatic process is
promising but still has a long way to go, considering the high efficiency and low cost of the current
pathways to the petrol-based counterparts.

Acknowledgments: This research forms part of the research programme of the Dutch Polymer Institute (DPI),
project #727c polymers go even greener.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bower, D.I. An Introduction to Polymer Physics; Cambridge University Press: Cambridge, UK, 2002.



Polymers 2016, 8, 243 40 of 53

2. PlasticsEurope. Plastics-the Facts 2015; PlasticsEurope: Brussels, Belgium, 2015.
3. Aeschelmann, F.; Carus, M. Bio-Based Building Blocks and Polymers in the World-Capacities, Production and

Applications: Status Quo and Trends Towards 2020; nova-Institut GmbH: Hürth, Germany, 2015; pp. 1–500.
4. Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic

fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [CrossRef]
5. Isikgor, F.H.; Remzi Becer, C. Lignocellulosic biomass: A sustainable platform for the production of bio-based

chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [CrossRef]
6. Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and

engineering. Chem. Rev. 2006, 106, 4044–4098. [CrossRef] [PubMed]
7. Gandini, A. Monomers and macromonomers from renewable resources. In Biocatalysis in Polymer Chemistry;

Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 1–33.
8. Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances.

Prog. Polym. Sci. 2015, 48, 1–39. [CrossRef]
9. Gandini, A.; Lacerda, T.M.; Carvalho, A.J.; Trovatti, E. Progress of polymers from renewable resources:

Furans, vegetable oils, and polysaccharides. Chem. Rev. 2016, 116, 1637–1669. [CrossRef] [PubMed]
10. Dove, A. Polymer science tries to make it easy to be green. Science 2012, 335, 1382–1384. [CrossRef]
11. Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558.

[CrossRef] [PubMed]
12. Mathers, R.T. How well can renewable resources mimic commodity monomers and polymers? J. Polym. Sci.

Part A Polym. Chem. 2012, 50, 1–15. [CrossRef]
13. Mülhaupt, R. Green polymer chemistry and bio-based plastics: Dreams and reality. Macromol. Chem. Phys.

2013, 214, 159–174. [CrossRef]
14. Vilela, C.; Sousa, A.F.; Fonseca, A.C.; Serra, A.C.; Coelho, J.F.J.; Freire, C.S.R.; Silvestre, A.J.D. The quest for

sustainable polyesters-insights into the future. Polym. Chem. 2014, 5, 3119–3141. [CrossRef]
15. Galbis, J.A.; Garcia-Martin Mde, G.; de Paz, M.V.; Galbis, E. Synthetic polymers from sugar-based monomers.

Chem. Rev. 2016, 116, 1600–1636. [CrossRef] [PubMed]
16. Sousa, A.F.; Vilela, C.; Fonseca, A.C.; Matos, M.; Freire, C.S.R.; Gruter, G.-J.M.; Coelho, J.F.J.; Silvestre, A.J.D.

Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency.
Polym. Chem. 2015, 6, 5961–5983. [CrossRef]

17. Bell, S.L. Ihs Chemical Process Economics Program: Report 265a, Bio-Based Polymers; IHS Chemical: New York,
NY, USA, 2013.

18. Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume I-Results of Screening for Potential
Candidates from Sugars and Synthesis Gas; DOE/GO-102004-1992; Pacific Northwest National Laboratory and
National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2004; pp. 1–76.

19. Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev.
2007, 107, 2411–2502. [CrossRef] [PubMed]

20. Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass-Volume II-Results of
Screening for Potential Candidates from Biorefinery Lignin; PNNL-16983, Pacific Northwest National Laboratory,
University of Tennessee, National Renewable Energy Laboratory: Oak Ridge, TN, USA, 2007; pp. 1–79.

21. Gandini, A. Polymers from renewable resources: A challenge for the future of macromolecular materials.
Macromolecules 2008, 41, 9491–9504. [CrossRef]

22. Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery
carbohydrates-the us department of energy’s “top 10” revisited. Green Chem. 2010, 12, 539–554. [CrossRef]

23. Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the
production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [CrossRef] [PubMed]

24. van Putten, R.-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.
Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113,
1499–1597. [CrossRef] [PubMed]

25. Besson, M.; Gallezot, P.; Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev.
2014, 114, 1827–1870. [CrossRef] [PubMed]

26. Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem.
2014, 16, 950–963. [CrossRef]

http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002
http://dx.doi.org/10.1039/C5PY00263J
http://dx.doi.org/10.1021/cr068360d
http://www.ncbi.nlm.nih.gov/pubmed/16967928
http://dx.doi.org/10.1016/j.progpolymsci.2014.11.002
http://dx.doi.org/10.1021/acs.chemrev.5b00264
http://www.ncbi.nlm.nih.gov/pubmed/26291381
http://dx.doi.org/10.1126/science.335.6074.1382
http://dx.doi.org/10.1039/C1CS15147A
http://www.ncbi.nlm.nih.gov/pubmed/21909591
http://dx.doi.org/10.1002/pola.24939
http://dx.doi.org/10.1002/macp.201200439
http://dx.doi.org/10.1039/C3PY01213A
http://dx.doi.org/10.1021/acs.chemrev.5b00242
http://www.ncbi.nlm.nih.gov/pubmed/26291239
http://dx.doi.org/10.1039/C5PY00686D
http://dx.doi.org/10.1021/cr050989d
http://www.ncbi.nlm.nih.gov/pubmed/17535020
http://dx.doi.org/10.1021/ma801735u
http://dx.doi.org/10.1039/b922014c
http://dx.doi.org/10.1021/cr900354u
http://www.ncbi.nlm.nih.gov/pubmed/20218547
http://dx.doi.org/10.1021/cr300182k
http://www.ncbi.nlm.nih.gov/pubmed/23394139
http://dx.doi.org/10.1021/cr4002269
http://www.ncbi.nlm.nih.gov/pubmed/24083630
http://dx.doi.org/10.1039/C3GC41935E


Polymers 2016, 8, 243 41 of 53

27. Delidovich, I.; Hausoul, P.J.; Deng, L.; Pfutzenreuter, R.; Rose, M.; Palkovits, R. Alternative monomers
based on lignocellulose and their use for polymer production. Chem. Rev. 2016, 116, 1540–1599. [CrossRef]
[PubMed]

28. Becker, J.; Wittmann, C. Advanced biotechnology: Metabolically engineered cells for the bio-based
production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. 2015,
54, 3328–3350. [CrossRef] [PubMed]

29. Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the production of top building block chemicals and
their derivatives. Metab. Eng. 2015, 28, 223–239. [CrossRef] [PubMed]

30. Dusselier, M.; Mascal, M.; Sels, B.F. Top chemical opportunities from carbohydrate biomass: A chemist’s
view of the biorefinery. In Selective Catalysis for Renewable Feedstocks and Chemicals; Nicholas, K.M., Ed.;
Springer-Verlag: Berlin/Heidelberg, Germany, 2014; Volume 353, pp. 1–40.

31. Harmsen, P.F.H.; Hackmann, M.M.; Bos, H.L. Green building blocks for bio-based plastics.
Biofuels Bioprod. Biorefin. 2014, 8, 306–324. [CrossRef]

32. Taylor, R.; Nattrass, L.; Alberts, G.; Robson, P.; Chudziak, C.; Bauen, A.; Libelli, I.M.; Lotti, G.;
Prussi, M.; Nistri, R.; et al. From the Sugar Platform to Biofuels and Biochemicals; contract No.
ENER/C2/423-2012/SI2.673791; E4tech, RE-CORD and WUR: London, UK, 2015; pp. 1–183.

33. De Jong, E.; Higson, A.; Walsh, P.; Wellisch, M. Bio-Based Chemicals: Value Added Products from Biorefineries;
Avantium Chemicals (Netherlands), NNFCC (UK), Energy Research Group (Ireland), and Agriculture and
Agri-Food Canada (Canada): Wageningen, The Netherlands, 2012.

34. Golden, J.; Handfield, R. Why Biobased? Opportunities in the Emerging Bioeconomy; US Department of
Agriculture, Office of Procurement and Property Management: Washington, DC, USA, 2014.

35. Gross, R.A.; Kumar, A.; Kalra, B. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 2001, 101,
2097–2124. [CrossRef] [PubMed]

36. Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic polymerization. Chem. Rev. 2001, 101, 3793–3818. [CrossRef]
[PubMed]

37. Matsumura, S. Enzymatic synthesis of polyesters via ring-opening polymerization. In Enzyme-Catalyzed
Synthesis of Polymers; Kobayashi, S., Ritter, H., Kaplan, D., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany,
2006; Volume 194, pp. 95–132.

38. Singh, A.; Kaplan, D.L. In vitro enzyme-induced vinyl polymerization. In Enzyme-Catalyzed Synthesis of
Polymers; Kobayashi, S., Ritter, H., Kaplan, D., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006;
Volume 194, pp. 211–224.

39. Uyama, H.; Kobayashi, S. Enzymatic synthesis of polyesters via polycondensation. In Enzyme-Catalyzed
Synthesis of Polymers; Kobayashi, S., Ritter, H., Kaplan, D., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany,
2006; Volume 194, pp. 133–158.

40. Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: An opportunity for green polymer chemistry.
Chem. Rev. 2009, 109, 5288–5353. [CrossRef] [PubMed]

41. Gross, R.A.; Ganesh, M.; Lu, W. Enzyme-catalysis breathes new life into polyester condensation
polymerizations. Trends Biotechnol. 2010, 28, 435–443. [CrossRef] [PubMed]
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182. Miletić, N.; Vuković, Z.; Nastasović, A.; Loos, K. Macroporous poly(glycidyl methacrylate-co-ethylene glycol
dimethacrylate) resins—Versatile immobilization supports for biocatalysts. J. Mol. Catal. B-Enzym. 2009, 56,
196–201. [CrossRef]

183. Miletic, N.; Abetz, V.; Ebert, K.; Loos, K. Immobilization of candida antarctica lipase B on polystyrene
nanoparticles. Macromol. Rapid Commun. 2010, 31, 71–74. [CrossRef] [PubMed]

184. Miletic, N.; Fahriansyah; Nguyen, L.T.T.; Loos, K. Formation, topography and reactivity of candida antarctica
lipase B immobilized on silicon surface. Biocatal. Biotransform. 2010, 28, 357–369. [CrossRef]

185. Miletic, N.; Nastasovic, A.; Loos, K. Immobilization of biocatalysts for enzymatic polymerizations:
Possibilities, advantages, applications. Bioresour. Technol. 2012, 115, 126–135. [CrossRef] [PubMed]

186. Morita, T.; Koike, H.; Koyama, Y.; Hagiwara, H.; Ito, E.; Fukuoka, T.; Imura, T.; Machida, M.; Kitamoto, D.
Genome sequence of the basidiomycetous yeast pseudozyma antarctica T-34, a producer of the glycolipid
biosurfactants mannosylerythritol lipids. Genome Announc. 2013, 1, e0006413. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10924-011-0287-3
http://dx.doi.org/10.1039/b919088k
http://dx.doi.org/10.2174/1570179411108060810
http://dx.doi.org/10.1016/j.molcatb.2010.03.004
http://dx.doi.org/10.1016/j.jbiosc.2012.10.002
http://www.ncbi.nlm.nih.gov/pubmed/23164681
http://dx.doi.org/10.1016/S0959-440X(99)00037-8
http://dx.doi.org/10.1093/nar/gkh141
http://www.ncbi.nlm.nih.gov/pubmed/14681380
http://dx.doi.org/10.1134/S0003683814040024
http://dx.doi.org/10.1093/protein/5.3.197
http://www.ncbi.nlm.nih.gov/pubmed/1409539
http://dx.doi.org/10.1155/2014/684506
http://www.ncbi.nlm.nih.gov/pubmed/24783219
http://dx.doi.org/10.1016/S0009-3084(98)00030-9
http://dx.doi.org/10.1016/j.biotechadv.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/23954307
http://dx.doi.org/10.1146/annurev.micro.53.1.315
http://www.ncbi.nlm.nih.gov/pubmed/10547694
http://dx.doi.org/10.1021/cs400684x
http://dx.doi.org/10.1039/C2CS35231A
http://www.ncbi.nlm.nih.gov/pubmed/23059445
http://dx.doi.org/10.1039/c3cs35446f
http://www.ncbi.nlm.nih.gov/pubmed/23403895
http://dx.doi.org/10.1016/j.reactfunctpolym.2008.11.001
http://dx.doi.org/10.1016/j.molcatb.2008.04.012
http://dx.doi.org/10.1002/marc.200900497
http://www.ncbi.nlm.nih.gov/pubmed/21590839
http://dx.doi.org/10.3109/10242422.2010.531712
http://dx.doi.org/10.1016/j.biortech.2011.11.054
http://www.ncbi.nlm.nih.gov/pubmed/22142507
http://dx.doi.org/10.1128/genomeA.00064-13
http://www.ncbi.nlm.nih.gov/pubmed/23558529


Polymers 2016, 8, 243 48 of 53

187. Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T.A. The sequence, crystal structure determination and
refinement of two crystal forms of lipase b from candida antarctica. Structure 1994, 2, 293–308. [CrossRef]

188. Cygler, M.; Schrag, J.D. Structure as basis for understanding interfacial properties of lipases. In Lipases, Part
A: Biotechnology; Rubin, B., Dennis, E.A., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 1997;
Volume 284, pp. 3–27.

189. Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of candida antarctica lipase b: Protonation and the
mechanism of interfacial activation. J. Lipid Res. 2015, 56, 2348–2358. [CrossRef] [PubMed]

190. Zisis, T.; Freddolino, P.L.; Turunen, P.; van Teeseling, M.C.F.; Rowan, A.E.; Blank, K.G. Interfacial activation
of candida antarctica lipase b: Combined evidence from experiment and simulation. Biochemistry 2015, 54,
5969–5979. [CrossRef] [PubMed]

191. Skjøt, M.; De Maria, L.; Chatterjee, R.; Svendsen, A.; Patkar, S.A.; Østergaard, P.R.; Brask, J. Understanding
the plasticity of the α/β hydrolase fold: Lid swapping on the candida antarctica lipase b results in chimeras
with interesting biocatalytic properties. ChemBioChem 2009, 10, 520–527. [CrossRef] [PubMed]

192. Martinelle, M.; Holmquist, M.; Hult, K. On the interfacial activation of Candida antarctica lipase a and b as
compared with Humicola lanuginosa lipase. Biochim. Biophys. Acta 1995, 1258, 272–276. [CrossRef]

193. Takwa, M. Lipase Specificity and Selectivity: Engineering, Kinetics and Applied Catalysis. Ph.D. Thesis,
KTH, Royal Institute of Technology, Stockholm, Sweden, 2010.

194. Tufvesson, P.; Törnvall, U.; Carvalho, J.; Karlsson, A.J.; Hatti-Kaul, R. Towards a cost-effective immobilized
lipase for the synthesis of specialty chemicals. J. Mol. Catal. B-Enzym. 2011, 68, 200–205. [CrossRef]

195. Mei, Y.; Miller, L.; Gao, W.; Gross, R.A. Imaging the distribution and secondary structure of immobilized
enzymes using infrared microspectroscopy. Biomacromolecules 2003, 4, 70–74. [CrossRef] [PubMed]

196. Lozano, P.; De Diego, T.; Carrie, D.; Vaultier, M.; Iborra, J.L. Lipase catalysis in ionic liquids and supercritical
carbon dioxide at 150 ˝C. Biotechnol. Prog. 2003, 19, 380–382. [CrossRef] [PubMed]

197. Ragupathy, L.; Ziener, U.; Dyllick-Brenzinger, R.; von Vacano, B.; Landfester, K. Enzyme-catalyzed
polymerizations at higher temperatures: Synthetic methods to produce polyamides and new
poly(amide-co-ester)s. J. Mol. Catal. B-Enzym. 2012, 76, 94–105. [CrossRef]

198. Frampton, M.B.; Zelisko, P.M. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at
elevated temperatures. Chem. Commun. 2013, 49, 9269–9271. [CrossRef] [PubMed]

199. Kobayashi, S.; Shoda, S.; Uyama, H. Enzymatic polymerization and oligomerization. In Polymer
Synthesis/Polymer Engineering; Springer-Verlag: Berlin/Heidelberg, Germany, 1995; Volume 121, pp. 1–30.

200. Loos, K. Preface. In Biocatalysis in Polymer Chemistry; Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2010; pp. i–xxix.

201. Hollmann, F. Enzymatic polymerization of vinyl polymers. In Biocatalysis in Polymer Chemistry; Loos, K., Ed.;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 143–163.

202. van der Vlist, J.; Loos, K. Enzymatic polymerizations of polysaccharides. In Biocatalysis in Polymer Chemistry;
Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 211–246.

203. van der Vlist, J.; Palomo Reixach, M.; van der Maarel, M.; Dijkhuizen, L.; Schouten, A.J.; Loos, K. Synthesis
of branched polyglucans by the tandem action of potato phosphorylase and deinococcus geothermalis
glycogen branching enzyme. Macromol. Rapid Commun. 2008, 29, 1293–1297. [CrossRef]

204. Ciric, J.; Loos, K. Synthesis of branched polysaccharides with tunable degree of branching. Carbohydr. Polym.
2013, 93, 31–37. [CrossRef] [PubMed]

205. Ciric, J.; Petrovic, D.M.; Loos, K. Polysaccharide biocatalysis: From synthesizing carbohydrate standards to
establishing characterization methods. Macromol. Chem. Phys. 2014, 215, 931–944. [CrossRef]

206. Cheng, H.N. Enzyme-catalyzed synthesis of polyamides and polypeptides. In Biocatalysis in Polymer
Chemistry; Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 131–141.

207. Stavila, E.; Loos, K. Synthesis of polyamides and their copolymers via enzymatic polymerization.
J. Renew. Mater. 2015, 3, 268–280. [CrossRef]

208. Linares, G.G.; Baldessari, A. Lipases as efficient catalysts in the synthesis of monomers and polymers with
biomedical applications. Curr. Org. Chem. 2013, 17, 719–743. [CrossRef]

209. Okumura, S.; Iwai, M.; Tominaga, Y. Synthesis of ester oligomer by aspergillus-niger lipase. Agric. Biol. Chem.
1984, 48, 2805–2808. [CrossRef]

http://dx.doi.org/10.1016/S0969-2126(00)00031-9
http://dx.doi.org/10.1194/jlr.M063388
http://www.ncbi.nlm.nih.gov/pubmed/26447231
http://dx.doi.org/10.1021/acs.biochem.5b00586
http://www.ncbi.nlm.nih.gov/pubmed/26346632
http://dx.doi.org/10.1002/cbic.200800668
http://www.ncbi.nlm.nih.gov/pubmed/19156649
http://dx.doi.org/10.1016/0005-2760(95)00131-U
http://dx.doi.org/10.1016/j.molcatb.2010.11.004
http://dx.doi.org/10.1021/bm025611t
http://www.ncbi.nlm.nih.gov/pubmed/12523849
http://dx.doi.org/10.1021/bp025759o
http://www.ncbi.nlm.nih.gov/pubmed/12675575
http://dx.doi.org/10.1016/j.molcatb.2011.11.019
http://dx.doi.org/10.1039/c3cc45380d
http://www.ncbi.nlm.nih.gov/pubmed/23999945
http://dx.doi.org/10.1002/marc.200800248
http://dx.doi.org/10.1016/j.carbpol.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/23465898
http://dx.doi.org/10.1002/macp.201300801
http://dx.doi.org/10.7569/JRM.2015.634102
http://dx.doi.org/10.2174/1385272811317070007
http://dx.doi.org/10.1271/bbb1961.48.2805


Polymers 2016, 8, 243 49 of 53

210. Knani, D.; Gutman, A.L.; Kohn, D.H. Enzymatic polyesterification in organic media. Enzyme-catalyzed
synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening
polymerization of ε-caprolactone. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 1221–1232.

211. Uyama, H.; Kobayashi, S. Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett.
1993, 22, 1149–1150. [CrossRef]

212. Bisht, K.S.; Henderson, L.A.; Gross, R.A.; Kaplan, D.L.; Swift, G. Enzyme-catalyzed ring-opening
polymerization ofω-pentadecalactone. Macromolecules 1997, 30, 2705–2711. [CrossRef]

213. Yu, Y.; Wu, D.; Liu, C.B.; Zhao, Z.H.; Yang, Y.; Li, Q.S. Lipase/esterase-catalyzed synthesis of aliphatic
polyesters via polycondensation: A review. Process Biochem. 2012, 47, 1027–1036. [CrossRef]

214. Shoda, S.; Uyama, H.; Kadokawa, J.; Kimura, S.; Kobayashi, S. Enzymes as green catalysts for precision
macromolecular synthesis. Chem. Rev. 2016, 116, 2307–2413. [CrossRef] [PubMed]

215. Binns, F.; Harffey, P.; Roberts, S.M.; Taylor, A. Studies leading to the large scale synthesis of polyesters using
enzymes. J. Chem. Soc. Perkin Trans. 1999, 1, 2671–2676. [CrossRef]

216. Duda, A.; Kowalski, A.; Penczek, S.; Uyama, H.; Kobayashi, S. Kinetics of the ring-opening polymerization
of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations.
Macromolecules 2002, 35, 4266–4270.

217. Park, H.G.; Chang, H.N.; Dordick, J.S. Enzymatic synthesis of various aromatic polyesters in anhydrous
organic solvents. Biocatalysis 1994, 11, 263–271. [CrossRef]

218. Mezoul, G.; Lalot, T.; Brigodiot, M.; Maréchal, E. Enzyme-catalyzed syntheses of poly(1,6-hexanediyl
isophthalate) and poly(1,6-hexanediyl terephthalate) in organic medium. Polym. Bull. 1996, 36, 541–548.
[CrossRef]

219. Linko, Y.Y.; Lamsa, M.; Wu, X.Y.; Uosukainen, E.; Seppala, J.; Linko, P. Biodegradable products by lipase
biocatalysis. J. Biotechnol. 1998, 66, 41–50. [CrossRef]

220. Wu, X.Y.; Linko, Y.Y.; Seppälä, J.; Leisola, M.; Linko, P. Lipase-catalyzed synthesis of aromatic polyesters.
J. Ind. Microbiol. Biotechnol. 1998, 20, 328–332. [CrossRef]

221. Rodney, R.L.; Allinson, B.T.; Beckman, E.J.; Russell, A.J. Enzyme-catalyzed polycondensation reactions for
the synthesis of aromatic polycarbonates and polyesters. Biotechnol. Bioeng. 1999, 65, 485–489. [CrossRef]

222. Uyama, H.; Yaguchi, S.; Kobayashi, S. Enzymatic synthesis of aromatic polyesters by lipase-catalyzed
polymerization of dicarboxylic acid divinyl esters and glycols. Polym. J. 1999, 31, 380–383. [CrossRef]

223. Park, H.G.; Chang, H.N.; Dordick, J.S. Chemoenzymatic synthesis of sucrose-containing aromatic polymers.
Biotechnol. Bioeng. 2001, 72, 541–547. [CrossRef]

224. Lavalette, A.; Lalot, T.; Brigodiot, M.; Maréchal, E. Lipase-catalyzed synthesis of a pure macrocyclic polyester
from dimethyl terephthalate and diethylene glycol. Biomacromolecules 2002, 3, 225–228. [CrossRef] [PubMed]

225. Kumar, R.; Tyagi, R.; Parmar, V.S.; Samuelson, L.A.; Kumar, J.; Watterson, A.C. Biocatalytic “Green” Synthesis
of peg-based aromatic polyesters: Optimization of the substrate and reaction conditions. Green Chem. 2004,
6, 516–520. [CrossRef]

226. Poojari, Y.; Clarson, S.J. Lipase-catalyzed synthesis and properties of silicone aromatic polyesters and silicone
aromatic polyamides. Macromolecules 2010, 43, 4616–4622. [CrossRef]

227. Qian, X.Q.; Wu, Q.; Xu, F.L.; Lin, X.F. Lipase-catalyzed synthesis of polymeric prodrugs of nonsteroidal
anti-inflammatory drugs. J. Appl. Polym. Sci. 2013, 128, 3271–3279. [CrossRef]

228. Wallace, J.S.; Morrow, C.J. Biocatalytic synthesis of polymers. II. Preparation of [aa–bb]x polyesters by
porcine pancreatic lipase catalyzed transesterification in anhydrous, low polarity organic solvents. J. Polym.
Sci. Part A Polym. Chem. 1989, 27, 3271–3284.

229. Fukuda, S.; Matsumura, S. Enzymatic synthesis and chemical recycling of aromatic polyesters via cyclic
oligomers. Kobunshi Ronbunshu 2011, 68, 332–340. [CrossRef]

230. Cheng, H.N.; Gu, Q.M.; Maslanka, W.W. Enzyme-Catalyzed Polyamides and Compositions and Processes of
Preparing and Using the Same. U.S. Patent US6677427 B1, 13 January 2004.

231. Qu-Ming, G.; Maslanka, W.W.; Cheng, H.N. Enzyme-catalyzed polyamides and their derivatives. In Polymer
Biocatalysis and Biomaterials II; American Chemical Society: Washington, DC, USA, 2008; Volume 999,
pp. 309–319.

232. Kong, X.M.; Yamamoto, M.; Haring, D. Method for Producing an Aqueous Polyamide Dispersion. U.S. Patent
US20080167418 A1, 10 June 2008.

http://dx.doi.org/10.1246/cl.1993.1149
http://dx.doi.org/10.1021/ma961869y
http://dx.doi.org/10.1016/j.procbio.2012.04.006
http://dx.doi.org/10.1021/acs.chemrev.5b00472
http://www.ncbi.nlm.nih.gov/pubmed/26791937
http://dx.doi.org/10.1039/a904889h
http://dx.doi.org/10.3109/10242429409008859
http://dx.doi.org/10.1007/BF00342444
http://dx.doi.org/10.1016/S0168-1656(98)00155-2
http://dx.doi.org/10.1038/sj.jim.2900533
http://dx.doi.org/10.1002/(SICI)1097-0290(19991120)65:4&lt;485::AID-BIT14&gt;3.0.CO;2-7
http://dx.doi.org/10.1295/polymj.31.380
http://dx.doi.org/10.1002/1097-0290(20010305)72:5&lt;541::AID-BIT1018&gt;3.0.CO;2-C
http://dx.doi.org/10.1021/bm0156532
http://www.ncbi.nlm.nih.gov/pubmed/11888304
http://dx.doi.org/10.1039/B407700H
http://dx.doi.org/10.1021/ma100548z
http://dx.doi.org/10.1002/app.38375
http://dx.doi.org/10.1295/koron.68.332


Polymers 2016, 8, 243 50 of 53

233. Schwab, L.W.; Kroon, R.; Schouten, A.J.; Loos, K. Enzyme-catalyzed ring-opening polymerization of
unsubstituted β-lactam. Macromol. Rapid Commun. 2008, 29, 794–797. [CrossRef]

234. Baum, I.; Elsässer, B.; Schwab, L.W.; Loos, K.; Fels, G. Atomistic model for the polyamide formation from
β-lactam catalyzed by candida antarctica lipase b. ACS Catal. 2011, 1, 323–336. [CrossRef]

235. Stavila, E.; Arsyi, R.Z.; Petrovic, D.M.; Loos, K. Fusarium solani pisi cutinase-catalyzed synthesis of
polyamides. Eur. Polym. J. 2013, 49, 834–842. [CrossRef]

236. Stavila, E.; Loos, K. Synthesis of lactams using enzyme-catalyzed aminolysis. Tetrahedron Lett. 2013, 54,
370–372. [CrossRef]

237. Stavila, E.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzyme-catalyzed synthesis of aliphatic-aromatic
oligoamides. Biomacromolecules 2013, 14, 1600–1606. [CrossRef] [PubMed]

238. Stavila, E.; Alberda van Ekenstein, G.O.R.; Woortman, A.J.J.; Loos, K. Lipase-catalyzed ring-opening
copolymerization of epsilon-caprolactone and beta-lactam. Biomacromolecules 2014, 15, 234–241. [CrossRef]
[PubMed]

239. Matsumura, S.; Mabuchi, K.; Toshima, K. Lipase-catalyzed ring-opening polymerization of lactide.
Macromol. Rapid Commun. 1997, 18, 477–482. [CrossRef]

240. Matsumura, S.; Mabuchi, K.; Toshima, K. Novel ring-opening polymerization of lactide by lipase.
Macromol. Symp. 1998, 130, 285–304. [CrossRef]

241. Fujioka, M.; Hosoda, N.; Nishiyama, S.; Noguchi, H.; Shoji, A.; Kumar, D.S.; Katsuraya, K.; Ishii, S.; Yoshida, Y.
One-pot enzymatic synthesis of poly(L,L-lactide) by immobilized lipase catalyst. Sen’i Gakkaishi 2006, 62,
63–65. [CrossRef]

242. Hans, M.; Keul, H.; Moeller, M. Ring-opening polymerization of dd-lactide catalyzed by novozyme 435.
Macromol. Biosci. 2009, 9, 239–247. [CrossRef] [PubMed]

243. Garcia-Arrazola, R.; Lopez-Guerrero, D.A.; Gimeno, M.; Barzana, E. Lipase-catalyzed synthesis of
poly-L-lactide using supercritical carbon dioxide. J. Supercrit. Fluids 2009, 51, 197–201. [CrossRef]

244. Bonduelle, C.; Martin-Vaca, B.; Bourissou, D. Lipase-catalyzed ring-opening polymerization of the
o-carboxylic anhydride derived from lactic acid. Biomacromolecules 2009, 10, 3069–3073. [CrossRef] [PubMed]

245. Numata, K.; Srivastava, R.K.; Finne-Wistrand, A.; Albertsson, A.-C.; Doi, Y.; Abe, H. Branched poly(lactide)
synthesized by enzymatic polymerization: Effects of molecular branches and stereochemistry on enzymatic
degradation and alkaline hydrolysis. Biomacromolecules 2007, 8, 3115–3125. [CrossRef] [PubMed]

246. Matsumura, S.; Tsukada, K.; Toshima, K. Novel lipase-catalyzed ring-opening copolymerization of lactide
and trimethylene carbonate forming poly(ester carbonate)s. Int. J. Biol. Macromol. 1999, 25, 161–167.
[CrossRef]

247. Huijser, S.; Staal, B.B.P.; Huang, J.; Duchateau, R.; Koning, C.E. Topology characterization by MALDI-ToF-MS
of enzymatically synthesized poly(lactide-co-glycolide). Biomacromolecules 2006, 7, 2465–2469. [CrossRef]
[PubMed]

248. Jiang, Z.; Zhang, J. Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactide with
diesters and diols. Polymer 2013, 54, 6105–6113. [CrossRef]

249. Takiyama, E.; Fujimaki, T. synthesis. In Studies in Polymer Science; Yoshiharu, D., Kazuhiko, F., Eds.; Elsevier:
Amsterdam, The Netherlands, 1994; Volume 12, pp. 150–174.

250. Azim, H.; Dekhterman, A.; Jiang, Z.; Gross, R.A. Candida antarctica lipase B-catalyzed synthesis of
poly(butylene succinate): Shorter chain building blocks also work. Biomacromolecules 2006, 7, 3093–3097.
[CrossRef] [PubMed]

251. Sugihara, S.; Toshima, K.; Matsumura, S. New strategy for enzymatic synthesis of high-molecular-weight
poly(butylene succinate) via cyclic oligomers. Macromol. Rapid Commun. 2006, 27, 203–207. [CrossRef]

252. Ren, L.W.; Wang, Y.S.; Ge, J.; Lu, D.N.; Liu, Z. Enzymatic synthesis of high-molecular-weight poly(butylene
succinate) and its copolymers. Macromol. Chem. Phys. 2015, 216, 636–640. [CrossRef]

253. Uyama, H.; Inada, K.; Kobayashi, S. Lipase-catalyzed synthesis of aliphatic polyesters by polycondensation
of dicarboxylic acids and glycols in solvent-free system. Polym. J. 2000, 32, 440–443. [CrossRef]

254. Li, G.J.; Yao, D.H.; Zong, M.H. Lipase-catalyzed synthesis of biodegradable copolymer containing malic acid
units in solvent-free system. Eur. Polym. J. 2008, 44, 1123–1129. [CrossRef]

255. Liu, W.H.; Chen, B.Q.; Wang, F.; Tan, T.W.; Deng, L. Lipase-catalyzed synthesis of aliphatic polyesters and
properties characterization. Process Biochem. 2011, 46, 1993–2000. [CrossRef]

http://dx.doi.org/10.1002/marc.200800117
http://dx.doi.org/10.1021/cs1000398
http://dx.doi.org/10.1016/j.eurpolymj.2012.12.010
http://dx.doi.org/10.1016/j.tetlet.2012.10.133
http://dx.doi.org/10.1021/bm400243a
http://www.ncbi.nlm.nih.gov/pubmed/23544613
http://dx.doi.org/10.1021/bm401514k
http://www.ncbi.nlm.nih.gov/pubmed/24294825
http://dx.doi.org/10.1002/marc.1997.030180604
http://dx.doi.org/10.1002/masy.19981300125
http://dx.doi.org/10.2115/fiber.62.63
http://dx.doi.org/10.1002/mabi.200800236
http://www.ncbi.nlm.nih.gov/pubmed/18925581
http://dx.doi.org/10.1016/j.supflu.2009.08.014
http://dx.doi.org/10.1021/bm9007343
http://www.ncbi.nlm.nih.gov/pubmed/19634904
http://dx.doi.org/10.1021/bm700537x
http://www.ncbi.nlm.nih.gov/pubmed/17722879
http://dx.doi.org/10.1016/S0141-8130(99)00030-6
http://dx.doi.org/10.1021/bm060466v
http://www.ncbi.nlm.nih.gov/pubmed/16961304
http://dx.doi.org/10.1016/j.polymer.2013.09.005
http://dx.doi.org/10.1021/bm060574h
http://www.ncbi.nlm.nih.gov/pubmed/17096536
http://dx.doi.org/10.1002/marc.200500723
http://dx.doi.org/10.1002/macp.201400550
http://dx.doi.org/10.1295/polymj.32.440
http://dx.doi.org/10.1016/j.eurpolymj.2008.01.027
http://dx.doi.org/10.1016/j.procbio.2011.07.008


Polymers 2016, 8, 243 51 of 53

256. Liu, W.; Wang, F.; Tan, T.; Chen, B. Lipase-catalyzed synthesis and characterization of polymers by
cyclodextrin as support architecture. Carbohydr. Polym. 2013, 92, 633–640. [CrossRef] [PubMed]

257. Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Environmentally benign synthesis of
saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived
from renewable resources. Polym. Chem. 2015, 6, 5451–5463. [CrossRef]

258. Curia, S.; Barclay, A.F.; Torron, S.; Johansson, M.; Howdle, S.M. Green process for green materials: Viable
low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO2. Philos. Trans. R.
Soc. A 2015, 373. [CrossRef] [PubMed]

259. Corici, L.; Pellis, A.; Ferrario, V.; Ebert, C.; Cantone, S.; Gardossi, L. Understanding potentials and restrictions
of solvent-free enzymatic polycondensation of itaconic acid: An experimental and computational analysis.
Adv. Synth. Catal. 2015, 357, 1763–1774. [CrossRef]

260. Pellis, A.; Corici, L.; Sinigoi, L.; D’Amelio, N.; Fattor, D.; Ferrario, V.; Ebert, C.; Gardossi, L. Towards
feasible and scalable solvent-free enzymatic polycondensations: Integrating robust biocatalysts with thin
film reactions. Green Chem. 2015, 17, 1756–1766. [CrossRef]

261. Yamaguchi, S.; Tanha, M.; Hult, A.; Okuda, T.; Ohara, H.; Kobayashi, S. Green polymer chemistry:
Lipase-catalyzed synthesis of bio-based reactive polyesters employing itaconic anhydride as a renewable
monomer. Polym. J. 2014, 46, 2–13. [CrossRef]

262. Barrett, D.G.; Merkel, T.J.; Luft, J.C.; Yousaf, M.N. One-step syntheses of photocurable polyesters based on a
renewable resource. Macromolecules 2010, 43, 9660–9667. [CrossRef]

263. Mayumi, Y.; Hiroki, E.; Shuichi, M. Enzymatic synthesis and properties of novel biobased elastomers
consisting of 12-hydroxystearate, itaconate and butane-1,4-diol. In Green Polymer Chemistry: Biocatalysis and
Biomaterials; American Chemical Society: Washington, DC, USA, 2010; Volume 1043, pp. 237–251.

264. Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzyme-catalyzed synthesis of
unsaturated aliphatic polyesters based on green monomers from renewable resources. Biomolecules 2013, 3,
461–480. [CrossRef] [PubMed]

265. Jiang, Y.; Alberda van Ekenstein, G.O.R.; Woortman, A.J.J.; Loos, K. Fully biobased unsaturated
aliphatic polyesters from renewable resources: Enzymatic synthesis, characterization, and properties.
Macromol. Chem. Phys. 2014, 215, 2185–2197. [CrossRef]

266. Biermann, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O.; Rüsch gen. Klaas, M.; Schäfer, H.J.;
Schneider, M.P. New syntheses with oils and fats as renewable raw materials for the chemical industry.
Angew. Chem. Int. Ed. 2000, 39, 2206–2224. [CrossRef]

267. Lligadas, G.; Ronda, J.C.; Galia, M.; Cadiz, V. Renewable polymeric materials from vegetable oils:
A perspective. Mater. Today 2013, 16, 337–343. [CrossRef]

268. Alam, M.; Akra, D.; Sharmin, E.; Zafar, F.; Ahmad, S. Vegetable oil based eco-friendly coating materials:
A review article. Arabian J. Chem. 2014, 7, 469–479. [CrossRef]

269. Miao, S.; Wang, P.; Su, Z.; Zhang, S. Vegetable-oil-based polymers as future polymeric biomaterials.
Acta Biomater. 2014, 10, 1692–1704. [CrossRef] [PubMed]

270. Ebata, H.; Toshima, K.; Matsumura, S. Lipase-catalyzed synthesis and curing of high-molecular-weight
polyricinoleate. Macromol. Biosci. 2007, 7, 798–803. [CrossRef] [PubMed]

271. Ebata, H.; Toshima, K.; Matsumura, S. Lipase-catalyzed synthesis and properties of
poly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed towards novel green and sustainable
elastomers. Macromol. Biosci. 2008, 8, 38–45. [CrossRef] [PubMed]

272. Warwel, S.; Demes, C.; Steinke, G. Polyesters by lipase-catalyzed polycondensation of unsaturated and
epoxidized long-chain alpha,omega-dicarboxylic acid methyl esters with diols. J. Polym. Sci. Part A
Polym. Chem. 2001, 39, 1601–1609. [CrossRef]

273. Yang, Y.X.; Lu, W.H.; Zhang, X.Y.; Xie, W.C.; Cai, M.M.; Gross, R.A. Two-step biocatalytic route to biobased
functional polyesters from omega-carboxy fatty acids and diols. Biomacromolecules 2010, 11, 259–268.
[CrossRef] [PubMed]

274. Beisson, F.; Li-Beisson, Y.; Pollard, M. Solving the puzzles of cutin and suberin polymer biosynthesis.
Curr. Opin. Plant Biol. 2012, 15, 329–337. [CrossRef] [PubMed]

275. Olsson, A.; Lindstrom, M.; Iversen, T. Lipase-catalyzed synthesis of an epoxy-functionalized polyester
from the suberin monomer cis-9,10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 2007, 8, 757–760.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.carbpol.2012.09.064
http://www.ncbi.nlm.nih.gov/pubmed/23218346
http://dx.doi.org/10.1039/C5PY00660K
http://dx.doi.org/10.1098/rsta.2015.0073
http://www.ncbi.nlm.nih.gov/pubmed/26574529
http://dx.doi.org/10.1002/adsc.201500182
http://dx.doi.org/10.1039/C4GC02289K
http://dx.doi.org/10.1038/pj.2013.62
http://dx.doi.org/10.1021/ma1015424
http://dx.doi.org/10.3390/biom3030461
http://www.ncbi.nlm.nih.gov/pubmed/24970176
http://dx.doi.org/10.1002/macp.201400164
http://dx.doi.org/10.1002/1521-3773(20000703)39:13&lt;2206::AID-ANIE2206&gt;3.0.CO;2-P
http://dx.doi.org/10.1016/j.mattod.2013.08.016
http://dx.doi.org/10.1016/j.arabjc.2013.12.023
http://dx.doi.org/10.1016/j.actbio.2013.08.040
http://www.ncbi.nlm.nih.gov/pubmed/24012607
http://dx.doi.org/10.1002/mabi.200700018
http://www.ncbi.nlm.nih.gov/pubmed/17541925
http://dx.doi.org/10.1002/mabi.200700134
http://www.ncbi.nlm.nih.gov/pubmed/17955511
http://dx.doi.org/10.1002/pola.1137
http://dx.doi.org/10.1021/bm901112m
http://www.ncbi.nlm.nih.gov/pubmed/20000460
http://dx.doi.org/10.1016/j.pbi.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22465132
http://dx.doi.org/10.1021/bm060965w
http://www.ncbi.nlm.nih.gov/pubmed/17243765


Polymers 2016, 8, 243 52 of 53

276. Torron, S.; Johansson, M. Oxetane-terminated telechelic epoxy-functional polyesters as cationically
polymerizable thermoset resins: Tuning the reactivity with structural design. J. Polym. Sci. Part A Polym. Chem.
2015, 53, 2258–2266. [CrossRef]

277. Semlitsch, S.; Torron, S.; Johansson, M.; Martinelle, M. Enzymatic catalysis as a versatile tool for the synthesis
of multifunctional, bio-based oligoester resins. Green Chem. 2016, 18, 1923–1929. [CrossRef]

278. Zhang, H.; Grinstaff, M.W. Recent advances in glycerol polymers: Chemistry and biomedical applications.
Macromol. Rapid Commun. 2014, 35, 1906–1924. [CrossRef] [PubMed]

279. Kline, B.J.; Beckman, E.J.; Russell, A.J. One-step biocatalytic synthesis of linear polyesters with pendant
hydroxyl groups. J. Am. Chem. Soc. 1998, 120, 9475–9480. [CrossRef]

280. Kumar, A.; Kulshrestha, A.S.; Gao, W.; Gross, R.A. Versatile route to polyol polyesters by lipase catalysis.
Macromolecules 2003, 36, 8219–8221. [CrossRef]

281. Fu, H.; Kulshrestha, A.S.; Gao, W.; Gross, R.A.; Baiardo, M.; Scandola, M. Physical characterization of sorbitol
or glycerol containing aliphatic copolyesters synthesized by lipase-catalyzed polymerization. Macromolecules
2003, 36, 9804–9808. [CrossRef]

282. Kulshrestha, A.S.; Gao, W.; Gross, R.A. Glycerol copolyesters: Control of branching and molecular weight
using a lipase catalyst. Macromolecules 2005, 38, 3193–3204. [CrossRef]

283. Yang, Y.X.; Lu, W.H.; Cai, J.L.; Hou, Y.; Ouyang, S.Y.; Xie, W.C.; Gross, R.A. Poly(oleic diacid-co-glycerol):
Comparison of polymer structure resulting from chemical and lipase catalysis. Macromolecules 2011, 44,
1977–1985. [CrossRef]

284. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Enzymatic synthesis of cross-linkable polyesters from renewable
resources. Biomacromolecules 2001, 2, 29–31. [CrossRef] [PubMed]

285. Tsujimoto, T.; Uyama, H.; Kobayashi, S. Enzymatic synthesis and curing of biodegradable crosslinkable
polyesters. Macromol. Biosci. 2002, 2, 329–335. [CrossRef]

286. Uyama, H.; Kuwabara, M.; Tsujimoto, T.; Kobayashi, S. Enzymatic synthesis and curing of biodegradable
epoxide-containing polyesters from renewable resources. Biomacromolecules 2003, 4, 211–215. [CrossRef]
[PubMed]

287. Zhang, Y.-R.; Spinella, S.; Xie, W.; Cai, J.; Yang, Y.; Wang, Y.-Z.; Gross, R.A. Polymeric triglyceride analogs
prepared by enzyme-catalyzed condensation polymerization. Eur. Polym. J. 2013, 49, 793–803. [CrossRef]

288. Uyama, H.; Klegraf, E.; Wada, S.; Kobayashi, S. Regioselective polymerization of sorbitol and divinyl sebacate
using lipase catalyst. Chem. Lett. 2000, 29, 800–801. [CrossRef]

289. Kim, D.Y.; Dordick, J.S. Combinatorial array-based enzymatic polyester synthesis. Biotechnol. Bioeng. 2001,
76, 200–206. [CrossRef] [PubMed]

290. Jun, H.; Wei, G.; Ankur, K.; Richard, A.G. “Sweet polyesters”: Lipase-catalyzed
condensation-polymerizations of alditols. In Polymer Biocatalysis and Biomaterials II; American Chemical
Society: Washington, DC, USA, 2008; Volume 999, pp. 275–284.

291. Gustini, L.; Noordover, B.A.J.; Gehrels, C.; Dietz, C.; Koning, C.E. Enzymatic synthesis and preliminary
evaluation as coating of sorbitol-based, hydroxy-functional polyesters with controlled molecular weights.
Eur. Polym. J. 2015, 67, 459–475. [CrossRef]

292. Juais, D.; Naves, A.F.; Li, C.; Gross, R.A.; Catalani, L.H. Isosorbide polyesters from enzymatic catalysis.
Macromolecules 2010, 43, 10315–10319. [CrossRef]

293. Naves, A.F.; Fernandes, H.T.C.; Immich, A.P.S.; Catalani, L.H. Enzymatic syntheses of unsaturated polyesters
based on isosorbide and isomannide. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 3881–3891. [CrossRef]

294. Habeych, D.I.; Juhl, P.B.; Pleiss, J.; Vanegas, D.; Eggink, G.; Boeriu, C.G. Biocatalytic synthesis of polyesters
from sugar-based building blocks using immobilized candida antarctica lipase B. J. Mol. Catal. B-Enzym.
2011, 71, 1–9. [CrossRef]

295. Japu, C.; Martinez de Ilarduya, A.; Alla, A.; Jiang, Y.; Loos, K.; Munoz-Guerra, S. Copolyesters made from
1,4-butanediol, sebacic acid, and D-glucose by melt and enzymatic polycondensation. Biomacromolecules 2015,
16, 868–879. [CrossRef] [PubMed]

296. Moore, J.A.; Kelly, J.E. Polyesters of 2,5-disubstituted furan and tetrahydrofuran. In Presented at the 168th
ACS National Meeting, Atlantic, NJ, USA, 8–13 September 1974.

297. Moore, J.A.; Kelly, J.E. Polyesters derived from furan and tetrahydrofuran nuclei. Macromolecules 1978, 11,
568–573. [CrossRef]

http://dx.doi.org/10.1002/pola.27673
http://dx.doi.org/10.1039/C5GC02597D
http://dx.doi.org/10.1002/marc.201400389
http://www.ncbi.nlm.nih.gov/pubmed/25308354
http://dx.doi.org/10.1021/ja9808907
http://dx.doi.org/10.1021/ma0351827
http://dx.doi.org/10.1021/ma035129i
http://dx.doi.org/10.1021/ma0480190
http://dx.doi.org/10.1021/ma102939k
http://dx.doi.org/10.1021/bm000097h
http://www.ncbi.nlm.nih.gov/pubmed/11749151
http://dx.doi.org/10.1002/1616-5195(200209)2:7&lt;329::AID-MABI329&gt;3.0.CO;2-H
http://dx.doi.org/10.1021/bm0256092
http://www.ncbi.nlm.nih.gov/pubmed/12625714
http://dx.doi.org/10.1016/j.eurpolymj.2012.11.011
http://dx.doi.org/10.1246/cl.2000.800
http://dx.doi.org/10.1002/bit.10011
http://www.ncbi.nlm.nih.gov/pubmed/11668454
http://dx.doi.org/10.1016/j.eurpolymj.2014.12.025
http://dx.doi.org/10.1021/ma1013176
http://dx.doi.org/10.1002/pola.26789
http://dx.doi.org/10.1016/j.molcatb.2011.02.015
http://dx.doi.org/10.1021/bm501771e
http://www.ncbi.nlm.nih.gov/pubmed/25621935
http://dx.doi.org/10.1021/ma60063a028


Polymers 2016, 8, 243 53 of 53

298. Storbeck, R.; Ballauff, M. Synthesis and properties of polyesters based on 2,5-furandicarboxylic acid and
1,4:3,6-dianhydrohexitols. Polymer 1993, 34, 5003–5006. [CrossRef]

299. Khrouf, A.; Boufi, S.; El Gharbi, R.; Belgacem, N.M.; Gandini, A. Polyesters bearing furan moieties: 1.
Polytransesterification involving difuranic diesters and aliphatic diols. Polym. Bull. 1996, 37, 589–596.
[CrossRef]

300. Okada, M.; Tachikawa, K.; Aoi, K. Biodegradable polymers based on renewable resources. II. Synthesis and
biodegradability of polyesters containing furan rings. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2729–2737.

301. Burgess, S.K.; Karvan, O.; Johnson, J.R.; Kriegel, R.M.; Koros, W.J. Oxygen sorption and transport in
amorphous poly(ethylene furanoate). Polymer 2014, 55, 4748–4756. [CrossRef]

302. Burgess, S.K.; Leisen, J.E.; Kraftschik, B.E.; Mubarak, C.R.; Kriegel, R.M.; Koros, W.J. Chain mobility,
thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate).
Macromolecules 2014, 47, 1383–1391. [CrossRef]

303. Hopff, H.; Krieger, A. Uber decarboxylierung und dissoziation heterocyclischer dicarbonsauren.
Helv. Chim. Acta 1961, 44, 1058–1063. [CrossRef]

304. Hopff, H.; Krieger, A. Über polyamide aus heterocyclischen dicarbonsäuren. Die Makromol. Chem. 1961, 47,
93–113. [CrossRef]

305. Heertjes, P.; Kok, G. Polycondensation products of 2, 5-furandicarboxylic acid. Delft Prog. Rep. Ser. A 1974, 1,
59–63.

306. Habeych N., D.I. Biocatalytic Synthesis of Cyclic Ester Oligomers from Biobased Building Blocks. Ph.D.
Thesis, Wageningen University, Wageningen, The Netherland, 2011.

307. Cruz-Izquierdo, Á.; van den Broek, L.A.M.; Serra, J.L.; Llama, M.J.; Boeriu, C.G. Lipase-catalyzed synthesis
of oligoesters of 2,5-furandicarboxylic acid with aliphatic diols. Pure Appl. Chem. 2015, 87, 59–69. [CrossRef]

308. Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Petrovic, D.M.; Loos, K. Enzymatic synthesis of
biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block. Biomacromolecules 2014, 15,
2482–2493. [CrossRef] [PubMed]

309. Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. A biocatalytic approach towards
sustainable furanic–aliphatic polyesters. Polym. Chem. 2015, 6, 5198–5211. [CrossRef]

310. Jiang, Y.; Maniar, D.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzymatic
polymerization of furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives
to polyphthalamides. Biomacromolecules 2015, 16, 3674–3685. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0032-3861(93)90037-B
http://dx.doi.org/10.1007/BF00296603
http://dx.doi.org/10.1016/j.polymer.2014.07.041
http://dx.doi.org/10.1021/ma5000199
http://dx.doi.org/10.1002/hlca.19610440425
http://dx.doi.org/10.1002/macp.1961.020470109
http://dx.doi.org/10.1515/pac-2014-1003
http://dx.doi.org/10.1021/bm500340w
http://www.ncbi.nlm.nih.gov/pubmed/24835301
http://dx.doi.org/10.1039/C5PY00629E
http://dx.doi.org/10.1021/acs.biomac.5b01172
http://www.ncbi.nlm.nih.gov/pubmed/26418272
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Polymers: From Petrol-Based to Biobased and Beyond 
	Polyesters 
	Polyamides 
	Biobased Monomers for Polyester and Polyamide Synthesis 
	Biobased Lactones and Lactams 
	Biobased Aliphatic Diacids 
	Biobased Aliphatic Diols and Polyols 
	Biobased Aliphatic Diamines 
	Biobased Aromatic Monomers 
	Other Biobased Monomers 

	Lipases 
	Enzyme-Catalyzed Synthesis of Polyesters 
	Enzyme-Catalyzed Synthesis of Polyamides 
	Lipase-Catalyzed Synthesis of Sustainable Polyesters and Polyamides from Biobased Monomers 
	Biobased Saturated Aliphatic Polyesters 
	Poly(lactic acid) 
	Poly(butylene succinate) 
	Other Biobased Aliphatic Polyesters 

	Biobased Unsaturated Aliphatic Polyesters 
	Polyesters Derived from Long Chain Fatty Acids and their Derivatives 
	Glycerol-Based Polyesters 
	Sweet Polyesters Derived from Carbohydrates 
	Sugar and Sugar Alcohol-Based Polyesters 
	Polyesters Based on Rigid Sugar Derivatives 

	Biobased Polyamides 
	Biobased Furan Polyesters and Furan Polyamides 

	Conclusions and Outlook 

