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Intraperitoneal (i.p.) administration of small interfering RNA (siRNA) has, to date, shown promise in treating tumours located
within the peritoneal cavity. The ability of these siRNA molecules to reach extraperitoneal tumours following i.p. administration
is, however, yet to be investigated. Here, we examined the impact of PEGylation on the biodistribution of i.p. administered
nucleic acids-containing lipoplexes. We showed that in contrast to non-PEGylated liposomes, PEGylated liposomes can deliver
siRNA efficiently to extraperitoneal tumours following i.p. administration, resulting in a 45% reduction in tumour size when the
oncogene-targeted siRNA was used. This difference was likely contributed by the decreased uptake of PEGylated lipoplexes in
the first-pass organs, and, in particular, we observed a 10-fold decrease in the macrophage uptake of these particles compared to
non-PEGylated counterparts. Overall, our results indicated the potential of using PEGylated liposomes to deliver siRNA for the
treatment of i.p. localized cancer with coexisting extraperitoneal metastasis.

1. Introduction

Since its discovery, small interfering RNA (siRNA) has been
widely investigated as a therapeutic agent to treat a wide
range of human diseases, from cancer [1] to infectious [2]
or neurodegenerative diseases [3]. For cancer therapy, it
is typically administered locally (intracerebral/intratumoral
injections) or systemically (intravenous injections) with the
use of suitable delivery carriers, such as liposomes or poly-
mers (reviewed in [4]). These carriers often carry a positive
charge to interact efficiently with negatively charged siRNA
thereby achieving effective entrapment or protection as well
as permitting efficient cell entry. The promise of using siRNA
to treat cancer has been recently demonstrated in a phase I
clinical trial in which the repeated intravenous (i.v.) admin-
istrations of siRNA-containing cyclodextrin nanoparticles
resulted in a significant downregulation of the targeted M2
subunit of ribonucleotide reductase (RRM2) protein in solid
tumours [5].

Despite the success, the common adverse effects of re-
peated i.v. administration, such as phlebitis or loss of veins
[6], along with the risk of embolism following injection [7],
warrants research into alternative route of administration for
cancer treatments. This is of particular interest for the ad-
ministration of nucleic acids as the presence of both posi-
tively and negatively charged components in the formulation
system often results in formation of aggregates in highly con-
centrated samples [8]. Given the intraperitoneal (i.p.) nature
of several cancer types, including cancers of the digestive
system, peritoneum, and ovaries [9], the i.p. route of admin-
istration presents as an attractive alternative. To date, three
randomised phase III trials have already demonstrated the
survival benefit of i.p. versus i.v. chemotherapy [10, 11] or
when adjunct i.p. chemotherapy was used [12] for the treat-
ment of advanced, low-volume ovarian cancer. Importantly,
i.p., in contrast to i.v., delivery route permits large volume
administration such that formulations can be prepared at
dilute concentrations in order to avoid particle aggregation.
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To date, several studies have described the successful i.p.
delivery of DNA, antisense, or siRNA, using viral vectors
[13, 14], nanoparticles [15], liposomes [1], or polymers
[16]. Fewell and colleagues, for example, administered a
polymer-complexed anticancer cytokine interleukin-12 gene
intraperitoneally into a mouse model of disseminated ovar-
ian cancer, resulting in a significant decrease in vascular
endothelial growth factor in tumours and improved survival
[16]. Similarly, Landen and colleagues demonstrated a 48–
81% tumour reduction following intraperitoneal adminis-
tration of liposome-entrapped siRNA and paclitaxel, a chem-
otherapeutic agent, in a mouse model of ovarian cancer
[1]. Importantly, it was reported that the level of tumour
reduction observed was comparable to concurrently-treated
mice with paclitaxel and siRNA administered via i.v. route
[1]. While these studies demonstrated the feasibility of
delivering nucleic acids intraperitoneally for treatment of
i.p. localised tumour, the potential of these i.p. administered
nucleic acids to reach extraperitoneal tumours is yet to be
confirmed. This is important as many types of cancers have
the tendency to metastasize to extraperitoneal sites with the
primary tumour located within the peritoneal cavity [17, 18].

To our knowledge, only one study, to date, has reported
the potential of delivering siRNA to extraperitoneal tumours
following i.p. administration using TransMessenger, a com-
mercially available transfection reagent [19]. The level of
tumour delivery as well as factors which could influence the
practicality of this approach, however, is still yet to be inves-
tigated. The aim of this study was therefore to systematically
investigate the potential of siRNA to reach extraperitoneal
tumours following i.p. administration. The siRNA molecules
was entrapped within either non-PEGylated or PEGylated
liposomes and the biodistribution along with the level of
uptake by i.p. macrophages were examined. The delivery
efficacy of siRNA to extraperitoneal tumours was further
assessed in mice bearing E6/7 oncogene-expressed extraperi-
toneal tumours. Overall, our results indicated the potential
of PEGylated liposomes to deliver siRNA to extraperitoneal
tumours following i.p. administration and could therefore be
of use for the treatment of i.p. localized cancer with coexist-
ing extraperitoneal metastasis.

2. Materials and Methods

2.1. Materials. Dioleoyl trimethylammonium propane
(DOTAP) and cholesterol were purchased from Sigma (St
Louis, Mo, USA). Polyethylene Glycol (PEG)2000-C16Cer-
amide conjugate was from Avanti Polar Lipids (Alabaster,
Ala, USA) and dioleoylphosphatidylethanolamine (DOPE)
was from Northern Lipids (Vancouver, Canada).

Oligodeoxynucleotides with sense sequence of 5′-GTC-
AGAAATAGAAACTGGTCATC-3′ and antisense sequence
of 5′-GATGACCAGTTTCTATTTCTGAC-3′ were obtained
from Invitrogen (Carlbad, Calif, USA). HPV16 E6/7-target-
ed siRNA (5′-GCAACAGUUACUGCGACGUUU-3′; 5′-
ACGUCGCAGUAACUGUUGCUU-3′) and control siRNA
(5′-UUAUGCCGAUCGCGUCACAUU-3′; 5′-UGUGAC-
GCGAUCGGCAUAAUU-3′) were purchased from Sigma-
Aldrich (St Louis, Mo, USA) in annealed form.

TC-1 cells (murine C57B/6 lung epithelial cells) were ob-
tained from TC Wu [20] and were cultured in Dulbecco’s
Modified Eagle Media (DMEM; Invitrogen, Carlsbad, Calif,
USA) supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Bovoge, Keilor East, Australia), 0.2% primocin
(InvivoGen, San Diego, Calif, USA), and 2 mM L-glutamine
(Invitrogen).

2.2. Liposome Formulations. Non-PEGylated DOTAP/Cho-
lesterol (1 : 1 molar ratio) was prepared using the hydration
of lipid film method as previously described [21]. Dried lipid
film was hydrated using sterile 5% dextrose solution, and
the final liposome concentration was 5 mM. After stabilizing
at room temperature for two hours, small unilamellar lipo-
somes were obtained via extrusion through 0.1 µm pore
size Nucleopore track-etched membranes using a Lipex
extruder (Northern lipids, Vancouver, Canada). The resul-
tant liposomes were then complexed with oligonucleotides at
a nitrogen : phosphate (N : P) ratio of 4 : 1 with the final
oligonucleotides concentration being 24 µg /300 µL.

PEGylated lipoplexes were formulated using the hydra-
tion of freeze-dried matrix (HFDM) technique [22]. DOTAP,
cholesterol, DOPE and PEG2000-C16Ceramide with a molar
ratio of 50 : 35 : 5 : 10 were used. Freeze-dried matrix was
hydrated with sterile water and the final product contained
24 µg oligonucleotides or siRNA in 300 µL of isotonic sucrose
solution.

The particle size and nucleic acids entrapment efficiency
of both formulations were examined using the procedures
described previously in Wu et al. [22].

2.3. Animal Studies. All animal experiments were approved
by The University of Queensland Animal Ethics Committee,
and 2-month-old female C57B/6 mice (Perth, ARC) were
used in all studies.

2.3.1. Peritoneal Macrophages Uptake Study. Two separate in-
jections of PEGylated or non-PEGylated lipoplexes contain-
ing 36 µg of FITC-conjugated oligonucleotides (450 µL/dose)
were administered intraperitoneally into each mouse. Injec-
tions were performed at the left and right lower quadrant
of the peritoneal cavity, and all mice received a total dose
of 72 µg of liposome-entrapped oligonucleotides or the
corresponding amount of empty liposomes. At 6 hours after
i.p. administration, euthanized mice were injected intraperi-
toneally with 5 mL of PBS-Heparin-FCS (5% heat inactivated
FCS and 4 U/mL Na heparin, DBL, Hospira Pty Ltd, Lake
Forest, Ill, USA). Pooled peritoneal fluid of up to 3 mice
was collected for each treatment group, and i.p. macrophages
were identified via staining with APC-CD11b (BioLegend,
San Diego, CA) and PE-F4/80 (BioLegend) antibodies.
The percentages of FITC-positive cells were determined in
CD11b- and F4/80-positive population using flow cytometry
(BD-FACS Canto).

2.3.2. Biodistribution Study. Mice were inoculated with 1 ×
106 TC-1 cells suspended in 100 µL PBS subcutaneously at
the right abdominal side. On day 14 after the inoculation,
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non-PEGylated or PEGylated lipoplexes, which contained
72 µg of Alexa Fluor 750-conjugated oligonucleotides, were
injected intraperitoneally using the procedure described
above. Empty liposome-treated mice were used as controls.
At 24 hrs post injection, tumours and major first-pass
internal organs (liver, kidneys, and spleen) were dissected
and the fluorescence intensity of each organ was examined
using excitation and emission wavelengths of 720 nm and
790 nm, respectively, in a Kodak In Vivo Imager. Results were
subsequently analysed using the Kodak molecular imaging
software.

2.3.3. Tumour Growth Inhibition Study. Mice were injected
with one million TC-1 cells, suspended in 100 µL of sterile
PBS, at the right abdominal side. On day 3, 7, and 10 fol-
lowing tumour cell inoculation, mice were treated intraperi-
toneally with isotonic sucrose solution (vehicle), empty
liposomes, or PEGylated lipoplexes containing 72 µg of either
E6/7-targeted siRNA or control siRNA. Five mice were used
per treatment group, and tumour size was monitored using
callipers during the course of the experiment. All mice
were sacrificed on day 13, and the tumour size of each
mouse was recorded and analysed using the GraphPad Prism
software (GraphPad software, La Jolla, CA). Student t-test
was performed to assess the difference between treatment
and control groups.

3. Results and Discussion

In order to examine the feasibility of delivering nucleic acids
to extraperitoneal tumours following i.p. administration, we
first sought to evaluate the level of uptake of oligonucle-
otides-containing lipoplexes by i.p. macrophages as they
serve as our body’s first line of defence by efficiently engulfing
foreign particles. It was anticipated that a strong uptake
of these particles by macrophages present in the peritoneal
cavity would likely to significantly hinder their delivery to
tumours, similar to what has been established with i.v. route
of administration (reviewed in [23]). To address this, we
formulated PEGylated lipoplexes in which the presence of
PEG polymer on the particle surface would aid in their escape
from the immune surveillance [24]. These particles were
formulated using the hydration of freeze-dried matrix tech-
nique, resulting in final particles with an average size of 180–
200 nm and an entrapment efficiency of >90% [22]. Similar
particle size and entrapment efficiency were obtained for
non-PEGylated lipoplexes. Oligonucleotides incorporated in
these lipoplexes were FITC-labelled such that the level of
uptake of these particles by i.p. macrophages could be easily
assessed. Importantly, contrary to the study performed by
Niu and colleagues where only 12 µL of siRNA-containing
complexes was administered intraperitoneally into each
mouse [19], we administered diluted lipoplexes in a large
volume to ensure even distribution of the particles within
the peritoneal cavity and to reduce the potential formation
of aggregates. This high-volume administration of diluted
samples has been previously reported to result in reduced
clearance leading to superior efficacy [25–29]. At 6 hrs after

i.p. administration of lipoplexes, i.p. macrophages were
isolated and identified via CD11b and F4/80 antibodies
staining. Based on the FITC fluorescence signal detected in
these macrophages, it was estimated that there was a 10-fold
decrease in the level of uptake by macrophages for PEGylated
lipoplexes compared to non-PEGylated ones (6.3% versus
62.3%, Figure 1).

To examine whether this difference in macrophage up-
take alters the biodistribution and the delivery efficiency of
these particles to extraperitoneal tumours, we next labelled
oligonucleotides with an infra red fluorescent dye, Alexa
Fluor 750. The biodistribution of both PEGylated and non-
PEGylated lipoplexes was subsequently examined in mice
bearing extraperitoneal E6/7-expressing tumours. At 24 hrs
after administration, it was found that the non-PEGylated
lipoplexes accumulated mainly in the liver, spleen, and
kidneys while very little tumour accumulation of these
particles was observed (7.5% of total dose remained, Figure 2
and Table 1). In contrast, while a considerable amount of
oligonucleotides still accumulated in first-pass organs, as
expected [1, 29], the delivery of PEGylated lipoplexes to the
extraperitoneal tumour was evident (Figure 3). This level of
tumour localisation of PEGylated lipoplexes was found to
be significantly more than that achieved by non-PEGylated
ones (65.9% versus 7.5%, Figures 2, 3, and Table 1) and
is consistent with what we have previously observed with
i.v. route of administration of these particles [8]. Minimal
delivery of either non-PEGylated or PEGylated lipoplexes
was observed in the lungs (data not shown).

It must be noted that the PEGylated lipoplexes exhibited
a significant decrease in spleen uptake compared to non-
PEGylated lipoplexes following i.p. administration (7.8%
versus 30%, Table 1). This could be contributed by the
decreased uptake of these particles by i.p macrophages as it
has been shown that intraperitoneal macrophages typically
travel through the subcapsular sinus of parathymic lymph
nodes and eventually reside in the parenchyma of the liver
and spleen [30]. It is therefore likely that, following escape
from first-pass organs, PEGylated lipoplexes were absorbed
into subdiaphragmatic lymphatics at a much higher rate
compared to non-PEGylated particles prior to entering
the general circulation, which in turn contributed to their
enhanced tumour localisation [6]. In addition, following
absorption via mesenteric lymphatics, the slight reduction
in liver uptake observed for PEGylated lipoplexes could
also have contributed to the increased drainage of the
administrative material into the portal veins [31] (Table 1). It
is therefore anticipated that the PEGylated lipoplexes reached
the extraperitoneal tumours via a combination of portal
and lymphatics pathways. In contrast, diffusion across the
peritoneum is less likely to be the route of transport for
these particles to extraperitoneal sites as previous reports
have shown that the largest pore size in the peritoneum is
less than 40 nm [32, 33], which is significantly smaller than
the size of our lipoplexes.

Having established the ability of PEGylated liposomes
in delivering oligonucleotides to extraperitoneal tumours
following i.p. administration, we next performed an efficacy
study examining the antitumour effect of E6/7 siRNA when
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Figure 1: Uptake of FITC-oligonucleotides by intraperitoneal macrophages at 6 hrs after i.p. administration. Oligonucleotides were delivered
using either (A) non-PEGylated or (B) PEGylated liposomes (LP), and macrophages were identified via APC-CD11b and PE-F4/80 staining.
FACS plots are gated on APC-CD11b- and PE-F4/80-positive cells, and pooled peritoneal fluid of up to 3 mice was examined for each
treatment group.

Table 1: Quantitative analysis of the distribution of Alexa Fluor 750-conjugated oligonucleotides in tumours and major first-pass organs at
24 hrs following intraperitoneal administration in mice. Oligonucleotides were delivered using either non-PEGylated or PEGylated liposomes
(LP). The fluorescent images are presented in Figures 2 and 3.

Average percentage of the total fluorescence intensity detected

Tumour Liver Kidney Spleen

Non-PEGylated LP 7.5% 45.7% 15.7% 30.0%

PEGylated LP 65.9% 20.6% 7.8% 5.7%
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Figure 2: Biodistribution of non-PEGylated liposome-entrapped Alexa Fluor 750-conjugated oligonucleotides in tumours and major first-
pass organs at 24 hrs following intraperitoneal (i.p.) administration in mice.
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Figure 3: Biodistribution of PEGylated liposome-entrapped Alexa Fluor 750-conjugated oligonucleotides in tumours and major first-pass
organs at 24 hrs following intraperitoneal (i.p.) administration in mice.

they are delivered intraperitoneally using these PEGylated
lipoplexes. E6/7 was chosen as the target oncogene as it is
exclusively present in tumour cells of cervical origin and
its presence is absolutely essential for the proliferation of
TC-1 cells used in this study [20]. Naked E6/7 siRNA,
however, would not be able to be taken up by tumour
cells readily following systemic administration [8]. Effective
tumour delivery of these E6/7-targeted siRNAs using an
appropriate carrier was therefore essential in order to achieve
a significant reduction in tumour growth rate, as we have
previously demonstrated with i.v. route of administration
[8]. Indeed, a 45% decrease in average tumour size was
observed in mice treated with 3 doses of i.p. administered
PEGylated siE6/7-containing lipoplexes when compared to
vehicle-only-treated mice (Figure 4, P < .05). While similar
level of tumour size reduction was reported to be achieved
with a much more frequent administrations of a much lower
dose/volume (2 µg/12 µL/dose, 12 injections) of siRNA in

another study [19], we have found that the administration
of such a low volume of lipoplexes into the peritoneal
cavity is unlikely to yield a consistent level of delivery to
extraperitoneal tumours (data not shown). It must be noted,
however, that a slight reduction in tumour size was also
observed in nontargeted siRNA or empty liposome treated
groups compared to vehicle-only controls, although the level
of reduction was not statistically significant (Figure 4). It
is speculated at this time that this nonspecific reduction
in tumour size observed could have been contributed by
the mice’s intrinsic response to repeated administrations of
large volume/dose of liposomes. It remains to be investigated
in the future as to whether enhanced tolerability and less
nonspecific effects could occur when the dose was infusing
slowly into mice without losing the efficacy [6]. Despite
this, our results clearly indicated the promise of PEGylated
liposomes in delivering siRNA to extraperitoneal tumours
following i.p. administration.
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Figure 4: Inhibition of extraperitoneal TC-1 tumour growth by
i.p. delivered siE6/7-containing PEGylated lipoplexes in mice. Mice
received siRNA treatments on days 3, 7, and 10 following tumour
cell inoculatios and tumour size was measured using callipers on
day 13. All siRNAs were delivered using PEGylated liposomes (LP).
Five mice were used per treatment group, and the error bars
represent standard deviations. ∗P < .05, significantly different from
the vehicle-only treatment group.

4. Conclusions

To our knowledge, this is the first paper which systematically
investigates the feasibility of delivering siRNA to extraperi-
toneal tumours following i.p. administration. We showed
that, in contrast to non-PEGylated liposomes, PEGylated
liposomes were able to facilitate the escape of siRNA from
first-pass organs and deliver siRNA efficiently to extraperi-
toneal tumours after i.p injections. With the incorporation
of E6/7-targeted siRNA, significant antitumour effect was
observed in mice bearing extraperitoneal TC-1 tumours.
Given the inconvenience of repeated i.v. administration
along with the ease of aggregate formation for siRNA-
containing formulations, our findings offer an attractive
alternative for the treatment of cancers of peritoneal origin
with the presence of extraperitoneal metastasis.
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