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+e classification and identification of arrhythmias using electrocardiogram (ECG) signals are of great practical significance in the
early prevention and diagnosis of cardiovascular diseases. In this study, we propose an arrhythmia classification algorithm based
on two-dimensional (2D) images and modified EfficientNet. First, we developed a method for converting original one-di-
mensional (1D) ECG signals into 2D image signals. In contrast with the existing classification method that uses only the time-
domain features of a 1D ECG signal, the classification of 2D images can consider the spatiotemporal characteristics of the signal.
+en, to better assign feature weights, we introduced an attention feature fusion module (AFF) into the EfficientNet network to
replace the addition operation in the mobile inverted bottleneck convolution (MBConv) structure of the network. We selected
EfficientNet for modification because, compared with most convolutional neural networks (CNNs), EfficientNet does not require
manual adjustment of parameters, which improves the accuracy and speed of the network. Finally, we combined the 2D images
and the improved EfficientNet network and tested its performance as an arrhythmia classification method. Our experimental
results show that the network training of the proposed method requires less equipment and training time, and this method can
effectively distinguish eight types of heartbeats in the MIT-BIH arrhythmia database, with a classification accuracy of 99.54%.
+us, the model has a good classification effect.

1. Introduction

+e 2020 report on cardiovascular health and disease in
China shows that the incidence and mortality of cardio-
vascular disease have been increasing, while the age of onset
has been decreasing [1]. Arrhythmia is an important group
of cardiovascular diseases, and its early detection plays a
crucial role in the treatment of cardiovascular diseases. +e
diagnosis of arrhythmia mostly depends on the electro-
cardiogram (ECG), and the classification of arrhythmia by
analyzing the ECG has become a hot research topic [2].

+e traditional classification and identification of ar-
rhythmia rely mainly on extracting features [3] such as
timing features, statistical features, and morphological fea-
tures [4–7]. +e QRS complex, the most widely utilized
feature in the field, is generally processed by employing
Hermite polynomials, wavelet transforms, high-order sta-
tistics, and other techniques before extractingmorphological

characteristics [5–13]. Because of the emergence of deep
learning, researchers often use neural network feature se-
lection instead of manual feature selection to achieve au-
tomatic feature extraction [14–25]. Hannun et al. [19]
directly input the one-dimensional (1D) ECG signal into the
improved ResNet-34 deep learning network for the first
time, realizing end-to-end arrhythmia classification. Lu et al.
[24] used the convolution method to convert the 1D ECG
signal into a two-dimensional (2D) image for the first time,
and they fused temporal features for the classification of five
types of arrhythmia, with an accuracy rate of 99%. Huang
et al. [20] converted ECG signals into time-spectrograms
through a short-time Fourier transform, and used 2D
convolutional neural networks (CNNs) to classify five types
of arrhythmias, achieving an accuracy of 99%. Compared
with the 1D training accuracy of 90.93%, the 2D image
training effect was better. Naz et al. [23] converted ECG
signals into 32 × 32 binary images and used several deep
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CNNs for ventricular tachyarrhythmia recognition,
achieving an accuracy of 97.6%. Maskeliunas et al. [25]
obtained the statistical features extracted from 2D images
based on Gramian angular field (GAF), achieving 86% ac-
curacy in the classification of premature ventricular con-
traction (PVC) beats versus normal (NOR) beats. Akbar
et al. [17] extracted ECG signal features based on time-
spectral entropy and input them into the CNN, realizing the
classification of five types of arrhythmias, and the classifi-
cation accuracy reached 98.33%. In the same year, Min et al.
[21] used the GAF transformation to convert 1D signals into
2D signals and then utilized the transfer CNN to achieve the
classification of five types of arrhythmias. +e above
methods convert 1D ECG signals into 2D signals and use
neural networks to classify them with good results, but
manual parameter tuning is required in most CNN struc-
tures, the number of iterations is high, the process is
complex and time-consuming, equipment requirements are
high, there are few types of arrhythmias involved in ar-
rhythmia classification, and there is still room to improve the
classification accuracy.

To improve classification accuracy, the width, depth, or
resolution of the network is generally increased. Although
two or three dimensions can be arbitrarily scaled, arbitrary
scaling requires tedious manual tuning, and usually still
produces sub-optimal accuracy and efficiency. Tan et al.
[26] proposed EfficientNet, whose main idea is to search for
an efficient baseline and then use hybrid scaling, which
combines depth, width, and resolution scaling according to
certain rules. It has few network parameters and a much
higher speed while providing good accuracy, which im-
proves the practicality of the network as well as the in-
dustrial landing possibility. +rough transfer learning, the
EfficientNet network has achieved a good level of perfor-
mance on several well-known data sets and good results in
medicine [27–30]. Feature fusion is usually implemented
with simple linear operations. Attention feature fusion
(AFF) [31] can better fuse semantically inconsistent and
scale-inconsistent features and is suitable for short
connections.

In this study, we developed a preprocessing method to
convert 1D ECG signals into 2D images and modified the
EfficientNet network to achieve arrhythmia classification.
We selected EfficientNet for modification due to its transfer
learning capabilities, fast training speed, and high efficiency
and because it does not require manual adjustment of
network parameters. +e aim of the modification was to
improve EfficientNet and apply it to arrhythmia classifica-
tion. +e novelty and contribution of this study are as
follows:

(1) A preprocessing method is proposed to convert the
original 1D ECG signal into a 2D image, which
reflects the spatiotemporal features of the signal.

(2) AFF is introduced to replace the addition operation
in the MBConv structure of the EfficientNet
network.

(3) +e proposed method effectively distinguishes eight
types of heartbeats in the MIT-BIH arrhythmia
database, with a classification accuracy of 99.54%.

2. Materials and Methods

In this section, we will briefly introduce the database that we
used for ECG classification and describe our data pre-
processing and network. +e flow diagram of the proposed
method is shown in Figure 1.

2.1. Database. We obtained the experimental data in this
study from the MIT-BIH arrhythmia database, which has
approximately 110,000 ECG beats, including 16 different
types of arrhythmias [32, 33]. Considering that unclassifiable
beats such as paced heartbeats in the database have usually
been ignored in prior ECG arrhythmia classification studies,
we selected eight common arrhythmias for classification in
this study: NOR, PVC, paced beat (PAB), right bundle branch
block beat (RBBB), left bundle branch block beat (LBBB),
atrial premature contraction (APC), ventricular flutter wave
(VFW), and ventricular escape beat (VEB). +e selected data
codes and sample numbers are shown in Table 1.

2.2. Preprocessing. ECG signal preprocessing mainly refers
to beat segmentation and signal filtering. Generally, a
relatively complete ECG signal includes at least the P
wave, QRS complex, and T wave, and the time intervals of
each waveband are shown in Table 2 [34]. It can be seen
from Table 2 that the minimum duration of the complete P
wave, QRS complex, and T wave is 0.44 s (including the
P–R interval and Q–T interval). Combined with the
sampling frequency of 360 Hz, a relatively complete
heartbeat sequence length of at least 158 sample points
can be obtained. Figure 2(a) shows the original waveform
of an ECG signal, whose horizontal coordinate is the
number of sampling sequence points, and the vertical
coordinate is the amplitude of the ECG signal. We took
the R-peak marked by the expert as the dividing point and
extended pointm1 to the left (including the R-peak point),
extended point m2 to the right (excluding the R-peak
point), and performed dynamic segmentation to form a
cardiac slice, which contained a relatively complete P
wave, QRS complex, and T wave. +en, we made a single
heartbeat ECG signal waveform diagram, setting
A � A1, A2, . . . . . . At , as shown in Figure 2(b), where the
displayed abscissa range is [nmin, nmax], and the ordinate
range is [Amin, Amax]. To unify the distribution of beats, we
normalized the beats and converted them into 2D images.
We set the amplitude of the ECG signal as
Afn, n ∈ [1, m1 + m2]  and the pixel value of the 2D
image as Ia,b, a ∈ [1, 224], b ∈ [1, 224] . +e correspond-
ing point relationship of the conversion from the 1D ECG
signal to the 2D image signal is shown in Figure 2(b), and
the conversion formulas are as follows:
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Table 1: MIT-BIH arrhythmia database.

Type Records Number of beats
NOR 100, 101, 103, 105, 108, 112, 113, 114, 115, 117, 121, 122, 123, 202, 205, 219, 230, 234 75,016
PVC 106, 116, 119, 200, 201, 203, 208, 210, 213, 215, 221, 228, 233 7,130
PAB 102, 104, 107, 217 7,024
RBBB 118, 124, 212, 231 7,256
LBBB 109, 111, 207, 213 8,072
APC 209, 220, 222, 223, 232 2,544
VFW 207 472
VEB 207 106
Total 107,620

Table 2: Time interval table of each waveband of the ECG signal.

Wave P P−R QRS Q−T T
Time interval (s) 0.12 0.12–0.20 0.06–0.10 0.32–0.44 0.05–0.25

ECG signals 2D images

ImageNet

Pre-training

Improved
EfficientNet

Heartbeat
Classification

Preprocessing

Figure 1: Flow diagram of the proposed method.
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Figure 2: Data preprocessing: (a) heartbeat interception: extract a heartbeat from the original signal and (b) 1D to 2D: transform a 1D signal
into a 2D image.
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I(a, b) �

255∗
Afn − min Afn( 

max Afn(  − min Afn( 
a � x&b � y

255 else

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (1)

x � 224∗
n − nmin

nmax − nmin
, (2)

y � 224∗
Afn − Amin

Amax − Amin
. (3)

Among these formulas, (1) returns the pixel expressions
for 2D images, (2) is the formula for transforming the
horizontal coordinates of 2D images, and (3) is the formula
for transforming the vertical coordinates of 2D images. +e
pseudocode of the proposed preprocessing method is shown
in Algorithm 1.

+ere is a lot of noise in the process of ECG signal
acquisition owing to the influence of the in vivo and in vitro
environment; thus, we used the morphological corrosion
function to denoise the 2D images to create a heartbeat
sample.

3. Improved EfficientNet

EfficientNet features several distinct network models
ranging from B0 to B7, with B1 to B7 continuously in-
creasing the number of layers, parameters, and sub-blocks
based on B0. Simultaneously, the resolution of the input
image is growing, which means that equipment needs are
continually increasing. Here, we chose the EfficientNet-B0
network as the classification model based on the features
included in the 2D images of the cardiac slices and the
hardware resources of the available equipment. +e network
input image resolution requirement for EfficientNet-B0 is
224× 224. As shown in the analysis in Section 2.2, trans-
forming the waveform picture into an image with a reso-
lution of 224× 224 meets the requirements.

+e MBConv module is the core structure of the Effi-
cientNet-B0 network. Its structural diagram is shown in
Figure 3(a). A simple addition operation is used to realize the
feature fusion of different branches. In this study, we in-
troduced the AFF [31] to replace the addition operation in
the MBConv structure so as to better allocate the weight of

the features. +e improved MBConv structure is shown in
Figure 3(b), and the mapping relationship of AFF is

Z � M(X∪Y)⊗X +(1 − M(X∪Y))⊗Y, (4)

where ∪ is the initial feature fusion of the two input features
(X and Y), M is the multi-scale attention module function,
and ⊗ represents feature multiplication.

4. Results and Analysis

To validate the effectiveness of the algorithm, we performed
model training on Intel CPU, NVIDIA GTX1650 GPU,
using the Python-based PyTorch framework with PyTorch
1.9 and Python 3.8. We randomly divided the ECG signal
image data set into two parts: the training set of 96,858
images, 20% of which we designated as the validation set
(19,371 images), and the test set of 10,762 images.

4.1. Heartbeat Sequence Length Comparison Experiment.
From Section 2.2, we know that a more complete heartbeat
sequence containing a complete P wave, QRS complex, and
T wave is at least 158 sample points in length. When the
intercepted heartbeat sequence is too short, the sample will
contain insufficient information, and the classification ac-
curacy will be low; when the sequence is too long, the sample
will contain a large amount of information, but some in-
formation may be redundant, so there is little room for
improving the classification accuracy, and the time it takes to
initialize data increases.

In this study, we used varied sequence lengths (L) for
related experiments to verify the influence of heartbeat
sequence length on classification performance. We defined L
as 130, 160, 170, 180, 190, 200, and 250 sample points, with
corresponding left and right extension points (m1 and m2)
satisfying m1�m2� 65, m1�m2� 80, m1�m2� 85,
m1�m2� 90, m1�m2� 95, m1�m2�100, and m1� 100
and m2�150, respectively. Figure 4(a) depicts the accuracy
of the training set versus the number of epochs of model
training for the different sequence lengths. +e accuracy of
the training set under different sequence lengths is largely
stable after 300 epochs. We chose the best model for testing,
and Figure 4(b) shows the accuracy comparison graph of the
test set over various lengths. As L increases, the accuracy of

(i) Algorithm
(ii) Input: A � A1, A2, . . . . . . At , m1, m2
(iii) Output: I� I1(a, b), . . . . . . IN(a, b) 

(iv) Begin
(v) Find R-peak points: Rindex[N]

(vi) for j� 1 to N do
(vii) Heartbeat interception: A′←A[Rindex[j] − m1: Rindex[j] + m2]

(viii) +e 1D signal to the 2D image: according to equations (1)–(3), get Ij(a, b)

(ix) Return I

ALGORITHM 1: Pseudocode of proposed preprocessing method.
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the test set increases from 130, peaks at 180, and then de-
clines. +is suggests that the duration of the heartbeat se-
quence influences accuracy and different sequence lengths
contain varied ECG signal properties. Although the physical
properties of the QRS complex are the most important for

defining the heart rate type, the P wave and Twave also have
an impact on the classification outcomes. L� 130 contains
mostly the QRS complex and has an incomplete P wave and
Twave; L� 160–200 includes a more complete P wave, QRS
complex, and T wave with more features; and L� 250
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Figure 4: Comparison of accuracy for different heartbeat sequence lengths (L): (a) comparison of training set accuracy corresponding to
different heartbeat sequence lengths, (b) comparison of test set accuracy corresponding to different heartbeat sequence lengths, and (c)
comparison of training time corresponding to different heartbeat sequence lengths.
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Figure 3: Comparison before and after the improvement of the MBConv structure: (a) the structure of MBConv and (b) the improved
structure of MBConv, wherein AFF replaces the addition operation in the MBConv structure.
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includes not only a complete P wave, QRS complex, and T
wave but also a gentle wave before and after the P wave and
after the Twave. Too many sample points make features less
distinct while also causing accuracy swings. Additionally, as
seen in Figure 4(c), more sample points equate to a longer
training time.

Considering the inevitable data imbalance in the medical
data set sample, we employed evaluation metrics such as
sensitivity, specificity, and precision [20] for further com-
parison, with the results displayed in Figure 5. When
comparing the evaluation indexes in Figure 5, it can be seen
that the total index of L� 180 is better than that of other
examples, particularly in APC, where the precision rate and
sensitivity are greatly increased. +e type of arrhythmia is
more accurate in general.

4.2. Experiment on Classification of EfficientNet Network
before and after Improvement. To verify the performance of
the classification method based on the improved Effi-
cientNet network, we conducted experiments on a sample
library of heartbeats with a sequence length L� 180. To
ameliorate the data imbalance problem in the medical data
set samples, we performed data augmentation for two types
of samples: VEB and VFW; we added four data sets with the

heartbeat sequence lengths L� 160, L� 170, L� 190, and
L� 200 to the data set of L� 180.

Table 3 shows the outcomes of EfficientNet before and
after improvement, as well as the classification evaluation
indexes before and after data augmentation. Compared with
other methods, AFF-EfficientNet-B0 + data augmentation
has significantly higher accuracy for APC and VFW com-
pared to the other three methods, with an overall accuracy of
99.54. APC is a common clinical arrhythmia with symptoms
such as palpitations, and some people may be asymptomatic;
VFW is more commonly observed in those with serious
heart problems and is diagnosed mostly through an ECG
examination. +us, the results indicate that the revised
model enhances APC and VFW recognition accuracy and
makes follow-up treatment easier.

+e classification confusion matrix of AFF-Effi-
cientNet-B0 + data augmentation is given in Figure 6.
Figure 6 shows that the categorization accuracy of all eight
ECG signal types is relatively high, and there is relatively
more confusion between the three categories of APC, PVC,
and NOR.

Figure 7 shows the typical correct sample heartbeat
maps, and Figure 8 shows some of the misidentified sample
heartbeat maps. +e main reason for the misclassification of
APC as NOR in Figure 8(a) is that this APC heartbeat picture
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Figure 5: Comparison of test results for different heartbeat sequence lengths (L): (a) comparison of test sensitivity corresponding to
different heartbeat sequence lengths, (b) comparison of test specificity corresponding to different heartbeat sequence lengths, and (c)
comparison of test precision corresponding to different heartbeat sequence lengths.
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has a large difference at the P wave compared to most of the
samples in the APC library, and the reason for the mis-
classification of NOR as APC in Figure 8(b) is that in ad-
dition to the P wave, there is also a large undulation at its T
wave, which is different from the normal NOR sample in
Figure 7.

In addition, the heartbeat of the same patient generally
has the greatest similarity in terms of APC and NOR; for
example, patient number 100 was recorded to have both
APC and NOR, so this also contributed to some extent to the
result that the model sometimes confused APC and NOR. In
Figure 8(c), the NOR sample mistakenly detected as a PVC
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Figure 6: Confusion matrix representation of the test classification results for L� 180.

Table 3: Comparison of sensitivity, specificity, and precision at L� 180.

Evaluation indicator Method
Type

APC LBBB NOR PAB PVC RBBB VEB VFW

Sensitivity

Method 1 0.89 0.995 0.998 1 0.989 0.997 1 0.979
Method 2 0.906 0.996 0.998 1 0.99 0.999 1 0.987
Method 3 0.909 0.998 0.998 1 0.989 0.997 1 0.979
Method 4 0.902 0.998 0.999 1 0.987 0.997 1 0.991

Specificity

Method 1 0.89 0.995 0.998 1 0.989 0.997 1 0.979
Method 2 0.906 0.996 0.998 1 0.99 0.999 1 0.987
Method 3 0.909 0.998 0.998 1 0.989 0.997 1 0.979
Method 4 0.902 0.998 0.999 1 0.987 0.997 1 0.991

Precision

Method 1 0.954 1 0.996 1 0.99 0.994 1 0.958
Method 2 0.962 1 0.997 1 0.986 0.993 1 0.979
Method 3 0.967 1 0.996 1 0.989 0.994 1 0.939
Method 4 0.974 1 0.996 1 0.989 0.993 1 0.987

Notes: Method 1, Method 2, Method 3, and Method 4 represent EfficientNet-B0, EfficientNet-B0 + data augmentation, AFF-EfficientNet-B0, and AFF-
EfficientNet-B0 + data augmentation, respectively.

(a) (b)

(c)

Figure 7: Typical correct sample heartbeat maps. (a) NOR. (b) APC. (c) PVC.
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sample was similar to the normal PVC sample in Figure 7,
which was an atypical case in the NOR sample pool. +e
same was true for the PVC sample misclassified as a NOR
sample in Figure 8(d).

+e analysis of the classification accuracy by sequence
length and the analysis of the misclassified samples indicate
there are obvious shortcomings in existing methods that use
the QRS complex as the main feature for ECG signal
classification, and the small undulations on both sides of the
QRS complex have some influence on the classification
accuracy. +us, the classification based solely on the QRS
complex is not ideal.

4.3. Comparison Experiments with Other Classification
Algorithms. Table 4 shows the results of comparing the
algorithm in this paper with other algorithms, all using the
MIT-BIH arrhythmia database. Plawiak and Acharya [35]
used 10 s as the time base to intercept ECG signal samples to
build a database, employed the discrete Fourier transform to
extract features, and combined the features with the CNN
for classification and identification. With a small number of
classification samples, the accuracy reached 95%. Liu et al.
[35] used heartbeats from a database established by baseline
intercepted samples and extracted the signal features under
eight different time windows using a wavelet scattering
transform. After using principal component analysis (PCA)
for dimensionality reduction and a k-nearest neighbor
classifier for four classifications, they obtained an accuracy of
99.3%. Yang et al. [15] extracted ECG morphological pa-
rameters, such as amplitude, time interval, andQRS complex
morphological features and combined them with the k-
nearest neighbor classifier for 15 classifications, achieving an
accuracy of 97.7%. Romdhane et al. [36] used the focal loss to
construct a novel loss function and optimized the CNN

model to achieve five end-to-end classifications with an
accuracy of 98.41%. Several recent papers have the problem
of data imbalance, which is the norm for medical data sets.

In this study, eight categories of classification were
achieved, with an accuracy of 99.54%, which was higher than
the accuracy of existing arrhythmia classification methods,
but the same problem of sample imbalance existed; in-
creasing samples and evaluation metrics such as specificity
and sensitivity were used to mitigate this problem. In
comparison to existing methods, the accuracy of the method
proposed in this study was found to be higher, and it
achieved the classification of more categories. In addition,
the proposed method had low equipment requirements and
fast training and testing time. +e average training time for
each epoch was 4.5min; the single test time was 0.0027 s; and
the model size was 16,713KB.

5. Discussion and Conclusion

In this study, we developed a method for converting original
1D ECG signals into 2D image signals. To better assign
feature weights, we introduced AFF to replace the addition
operation in the MBConv structure of the EfficientNet
network.

+e main limitation of the proposed arrhythmia clas-
sification algorithm is the low positive prediction accuracy
for identifying APC beats. +is is caused by data imbalance:
specifically, there are many more NOR beats than other
beats. +e ratio of APC beats is only 2.3% in the data set.
Moreover, multiple ECG samples from the same patient will
generally exhibit the greatest similarity in heartbeats. +e
study results of the data augmentation show that the positive
prediction accuracy for identifying VEB is substantially
increased and ranges from 97.9% to 99.1%.

(a) (b) (c) (d)

Figure 8: Some misclassified sample heartbeat maps: (a) heartbeat images misclassified as NOR instead of APC, (b) heartbeat images
misclassified as APC instead of NOR, (c) heartbeat images misclassified as PVC instead of NOR, and (d) heartbeat images misclassified as
NOR instead of PVC.

Table 4: Comparison of different methods.

Author Method Type Accuracy (%) Number of samples
Plawiak and Acharya [35] Welch method and discrete Fourier transform 17 95.00 744
Liu et al. [35] Wavelet scattering transform 4 99.30 100,507
Yang et al. [15] ECG morphological parameters and visual pattern characteristics 15 97.70 104,986
Romdhane et al. [36] Building a deep CNN model 5 98.41 109,446
+is paper 1D to 2D+AFF-EfficientNet 8 99.54 107,620
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Given the influence of available laboratory equipment,
we converted 1D ECG signals into 2D image signals and
used spatiotemporal characteristics to perform classification
experiments on eight ECG signal types in the MIT-BIH
arrhythmia database, achieving relatively high accuracy of
99.54% based on the improved EfficientNet-B0 network.
Most medical data sets have sample imbalance problems,
which are generally mitigated by increasing a few types of
samples or decreasing most types of samples. In this study,
we applied the preprocessing method of 1D to 2D ECG
signal conversion, which increased the amount of data, and
selected the best length. Additionally, we performed data
augmentation for two categories, VEB and VFW, and we
added four similar groups of different-length images to this
data set, which alleviated the data imbalance problem to
some extent. Finally, we employed three evaluation indices,
namely, sensitivity, specificity, and precision rate ground, to
evaluate the model’s effect, all of which were found to be
high, indicating that the model has a good classification
effect.

To extend the sample, the next step will be to identify
relevant volunteers for sample collection. Validation of more
ECG signal databases will be considered in the future to
improve the practicality and robustness of the classification
method for eventual application on medical robots or ECG
signal monitoring devices. +is approach can help doctors
more accurately and quickly diagnose cardiovascular dis-
eases from ECG signals [37].
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