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Abstract: The past decade has witnessed the discovery of obesity-related genetic variants and their
functions through genome-wide association studies. Combinations of risk alleles can influence
obesity phenotypes with different degrees of effectiveness across various individuals by interacting
with environmental factors. We examined the interaction between genetic variation and changes
in dietary habits or exercise that influences body fat loss from a large Korean cohort (n = 8840).
Out of 673 obesity-related SNPs, a total of 100 SNPs (37 for carbohydrate intake; 19 for fat intake;
44 for total calories intake; 25 for exercise onset) identified to have gene-environment interaction
effect in generalized linear model were used to calculate genetic risk scores (GRS). Based on the GRS
distribution, we divided the population into four levels, namely, “very insensitive”, “insensitive”,
“sensitive”, and “very sensitive” for each of the four categories, “carbohydrate intake”, “fat intake”,
“total calories intake”, and “exercise”. Overall, the mean body fat loss became larger when the
sensitivity level was increased. In conclusion, genetic variants influence the effectiveness of dietary
regimes for body fat loss. Based on our findings, we suggest a platform for personalized body
fat management by providing the most suitable and effective nutrition or activity plan specific to
an individual.
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1. Introduction

The advent of genome-wide association studies (GWAS) has enabled the discovery of thousands
of genetic variants that contribute to human diseases in the last decade [1]. Multiple risk alleles
identified from GWAS have been useful in predicting the risk of patients developing various diseases,
including metabolic syndrome, hypertension, hyperlipidemia, type 2 diabetes mellitus, heart disease,
cardiovascular disease, and other comorbidities [2–4]. Obesity-related genetic variants are major
contributors to these complex diseases and have thus been extensively studied. In 2007, the first single
nucleotide polymorphisms (SNPs) mapped to the fat mass and obesity-associated (FTO) gene region
were found to be associated with body mass index (BMI) [5–10]. Subsequent identification of other
SNPs has accelerated the characterization of the effects of different variant combinations on obesity
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phenotype, as well as their interactions with environmental factors, such as dietary habits, lifestyle,
and physical activity [11–16]. In addition, the market for the direct-to-consumer (DTC) genomic testing
has emerged [17,18]. Personal genomics companies, such as Pathway Genomics, DNA Fit, 23andMe,
Navigenics, and Helix Health, have offered personalized genetic reports that provide information
on future medical risks, fitness, and athletic ability, as well as recommendations on diet, skin care,
or lifestyle. However, the U.S. federal drug administration (FDA) has halted the continuation of
these services because of the lack of adequate scientific evidence, although such services have been
relaunched recently. Thus, detailed investigations that utilize genetic screening tools are required to
establish more reliable personalized health care programs.

In this study, we aimed to identify the genetic variants that influence an individual’s potential
for body fat loss. Our study was motivated by the results of previous studies, which demonstrated
that each individual has a genetic different predisposition and can thus benefit from a specific diet
and exercise regime [19–24]. An individual’s response to changes in nutrient intake or physical
activity may depend on the number of risk alleles. Thus, we tested the associations between the
body fat loss and SNPs that interact with either reductions in energy intake or increase in exercise.
A set of selected SNPs were used to score each individual’s sensitivity to body fat loss through the
modulation of environmental variables, including carbohydrate intake, fat intake, total calorie intake,
and exercise status. Our study explores the following novel aspects: (1) assessment of the applicability
of obesity-related SNPs to Koreans; (2) evaluation of the interaction between genetic and environmental
factors that influence the extent of body fat loss; and (3) incorporation of changes in total calorie intake,
carbohydrate intake, and fat intake into the model using data from a large Korean cohort obtained by
administering food frequency questionnaires (FFQ).

2. Methods

2.1. Data Source

A large Korean cohort was obtained from the Korea Association REsource (KARE) [25], the first
project of Korean Genome and Epidemiology Study (KoGES). A total of 8840 participants were
surveyed biannually from 2001 (baseline) to 2013 (seventh follow-up) in two cities (Ansung and Ansan).
Collected dataset comprised a total of 503 items for 16 categories, including general characteristics,
drinking history, smoking history, physical activities, drug history, past medical history, treatment
history, family history of disease, reproductive factors, body composition, vital signs, chest X-ray,
clinical examination, anthropometry, dietary habit, and feeding frequency. Among these, items
that were used as independent variables in our study included food frequency questionnaire (FFQ),
which was available only for the first and third follow-ups (n = 4293), and intensive exercise status,
which was available from the third to seventh follow-up (n = 3343). In addition, a subset of SNPs
was extracted from whole-genome sequencing data of the cohort using PLINK v1.07 software [26,27].
The pre-defined subset comprising 673 SNPs that are related to obesity and waist-to-hip ratio was
obtained from the GWAS catalog database.

2.2. Ethics Statement

The protocol of the clinical study was approved by the Institutional Review Board (2016-07-029)
of the Korea Centers for Disease Control and Prevention and all experiments were conducted in
accordance with the approved guidelines. The data was obtained from the Korean Genome and
Epidemiology Study (KoGES; 4851-302). Written informed consent was obtained from all participants.

2.3. Linear Regression Model and Genetic Risk Score

The overall workflow of our approach is illustrated in Figure 1A. We started from identifying
SNPs that interact with the nutrient intake and exercise status on body fat change. To evaluate changes
in body fat mass that were influenced by the interactions between genetic risk factors and changes
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in dietary habits or exercise status at individual SNP level, we adopted a generalized linear model
to test each SNP. The additive genetic effect was modeled as 0, 1, or 2, which encode the number of
copies of the minor alleles. After adjusting for covariates, including gender and age, we examined
(1) the effects of the interaction between a SNP and change in either carbohydrate intake (∆C; gram) or
fat intake (∆F; gram) on body fat mass (kilogram); (2) effect of interaction between a SNP and changes
in daily calorie intake (gram) on changes in body fat mass (kilogram); and (3) the main effect of SNP
on changes in body fat mass (kilogram) corresponding to changes in exercise status. Model (1) was
adjusted for changes in total calorie intake (∆TC) to measure the sole effect of nutrients. Furthermore,
the exercise status of the cohort obtained from the third to seventh follow-up studies was measured as
binary variables, with 1 for the response “no” and the value 2 for “yes” to the question “Please check
if you have regularly exercised enough for sweat.” To regularize this variable with uneven missing
values across individuals and time points, the difference in body fat mass was measured between two
consecutive time points from the time point with response 2 to that with response 1, regardless of time
directionality. Changes in body fat mass over time were averaged for each individual and used as the
dependent variable ∆body fat * in model (3). The following three models were previously described:

∆body fat = gender + age + ∆TC + SNPi + ∆C + ∆F + βc ∆C × SNPi + βf ∆F × SNPi (1)

∆body fat = gender + age + ∆TC + SNPi + βTC∆TC × SNPi (2)

∆body fat∗ = gender + age + βE SNPi (3)

Statistical analyses were performed using the standard package glm in R software (http://www.r-
project.org/) for model fitting.

Basically, SNPs with interaction effects “∆C × SNP” or “∆F × SNP” p-values lower than 0.05 were
selected to calculate genetic risk scores for “effectiveness of carbohydrate intake changes” (CE) or
“effectiveness of fat intake changes” (FE), respectively. Similarly, SNPs with interaction effect “∆TC
× SNP” in model (2) or with main effect in model (3) and met the threshold of 0.05, were used
for defining “effectiveness of total calories intake changes” (TE) or “effectiveness of exercise” (EE),
respectively. The SNAP tool was used to identify SNPs in linkage disequilibrium (LD) for each category
(http://www.broad.mit.edu/mpg/snap/) [28]. If the scores of pairwise LD among a set of SNPs
were higher than 0.7, only one SNP with the term coefficient having smallest p-value was retained.
This process was performed for each the four categories, CE, FE, TE, and EE.

The final set of SNPs was used to count the number of risk alleles of an individual. Each of the
SNPs was assigned the coefficient sign of the corresponding term (βf, βF, βTC) in the linear model.
On the other hand, the sign was reversed for the term βE because a positive coefficient represents
a positive genetic effect of exercise onset on weight gain; however, we aimed to increase the TE score
as a result of effective weight loss through exercise. Next, each individual’s genetic risk score was
calculated by multiplying the number of risk alleles for each SNP by the assigned sign and summing
over all SNPs (Figure 1B). The steps were performed for each of the four categories to generate four
genetic risk scores (GRS) per individual. For all four GRS distributions, the degrees of effectiveness
were defined as “very low” (VL; smaller than the 25th percentile GRS), “low” (L; larger than or equal
to the 25th percentile and smaller than the 50th percentile GRS), “high” (H; larger than or equal to the
50th percentile and smaller than the 75th percentile GRS), and “very high” (VH; larger than or equal
to the 75th percentile GRS). Thus, each individual can be assigned to one of four classes (VL, L, H,
and VH) for each of the four categories (CE, FE, TE, and EE).

http://www.r-project.org/
http://www.r-project.org/
http://www.broad.mit.edu/mpg/snap/
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Figure 1. (A) Workflow for designing genome-based personalized health care program. Among the
set of SNPs related to obesity under GWAS catalog, SNPs of which has significant interaction effects
for diet or exercise were assigned to four different effectiveness categories using generalized linear
model: effectiveness of “carbohydrate intake changes” (CE), effectiveness of “fat intake changes” (FE),
effectiveness of “total calories intake changes” (TE) or “effectiveness of exercise” (EE). Genetic risk
scores (GRS) of four effectiveness categories were calculated per individual. The distributions of
GRSs for each of four effectiveness classes were generated using the KoGES cohort. The degree of
effectiveness was defined as “very low” (VL; smaller than the 25th percentile GRS), “low” (L; larger
than or equal to the 25th percentile and smaller than the 50th percentile GRS), “high” (H; larger than or
equal to the 50th percentile and smaller than the 75th percentile GRS), and “very high” (VH; larger
than or equal to the 75th percentile GRS) for all of four GRS distributions; (B) Calculation of genetic
risk score (GRS). The GRS of an individual is calculated based on the genotypes of the selected SNPs
(column names of the table). The score of each SNP (3rd row in the table) was calculated by multiplying
the genotype that is the number of risk alleles of each SNPs (1st row in the table) by the effect sign
(2nd row in the table) which is determined by the sign of estimated coefficient of the corresponding
interaction term from the linear model. These scores are summed over all the selected SNPs to generate
the final effectiveness score of the individual (denoted as “Total score” at the right corner of the table).
This process was applied to all of the individuals, as well as all of the four categories: “effectiveness
of carbohydrate intake changes” (CE), “effectiveness of fat intake changes” (FE), “effectiveness of
total calories intake changes” (TE), and “effectiveness of exercise” (EE). Thus, a total of four GRS
distributions were generated.
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3. Results

3.1. Characteristics of the Cohort

The KoGES study included a total of 8840 participants. Of these 4293 (2070 males and
2223 females) participants had complete FFQ data (baseline and third follow-up) and body composition
measurements and were subsequently analyzed for changes in dietary habits (Table 1). Individuals who
experienced drastic changes in exercise status at least once over five follow-ups (third to seventh) were
included in the study on changes in exercise regime (n = 3343; 1516 males and 1827 females). The mean
ages were about 51 and 55 years for the dietary and exercise study, respectively. The mean difference
in daily carbohydrate intake between the baseline and the third follow-up was −18.40 g, while the
mean differences in fat and total calorie intake were −4.71 g and −147.12 g, respectively. The mean
differences in BMI and body fat mass were −0.14 kg/m2 and −0.42 kg, respectively. To investigate
the effects of exercise, the differences in mean body fat mass between consecutive time points for
those who responded with either yes or no to significant increase in exercise status are summarized in
Table 1. To incorporate temporal data points from the third to seventh follow-ups, the change in body
fat mass for each individual was measured from the point of response “yes” to that of response “no”
regardless of time directionality. The differences were averaged, and the mean of averaged body fat
mass difference was −0.08 kg.

Table 1. Characteristics of the KoGES cohort. The sample size for each gender and mean ± SD along
with sample size in parenthesis for other categories are presented.

Diet Exercise
Male (n) 2070 Male (n) 1516

Female (n) 2223 Female (n) 1827
Age (years) 50.84 ± 8.54 Age (years) 55 ± 8.29

Carbohydrate intake at baseline (g) 343.3 ± 114.21

Body fat change
according to exercise

status change

(3rd to 4th)
Stopped 0.27 ± 2.16 (653)

Carbohydrate intake at 3rd follow-up (g) 324.89 ± 94.94 Started −0.05 ± 2.24 (741)
Carbohydrate intake change (g) −18.4 ± 132.38

(4th to 5th)
Stopped 0.07 ± 2.22 (650)

Fat intake at baseline (g) 33.25 ± 21.08 Started −0.09 ± 2.28 (675)
Fat intake at 3rd follow-up (g) 28.54 ± 18.64

(5th to 6th)
Stopped 0.29 ± 2.15 (773)

Fat intake change (g) −4.71 ± 22.1 Started 0.06±2.12 (616)
Total calories intake at baseline (g) 1960.19 ± 688.77

(6th to 7th)
Stopped 1.29 ± 2.37 (569)

Total calories intake at 3rd follow-up (g) 1813.06 ± 581.05 Started 1.3 ± 2.43 (662)
Total calories intake change (g) −147.12 ± 758.94

Averaged body fat
change over times

Exercise status change
between any two

consecutive time points
irregardless of time

directionality

−0.08 ± 2.11 (3343)

BMI at baseline (kg/m2) 24.48 ± 3
BMI at 3rd follow-up (kg/m2) 24.35 ± 2.95

BMI change (kg/m2) −0.14 ± 1.2
Body fat mass at baseline (kg) 16.86 ± 5.29

Body fat mass at 3rd follow-up (kg) 16.44 ± 5.26
Body fat mass change (kg) −0.42 ± 2.57

3.2. SNP Selection by Generalized Linear Model

Generalized linear model (GLM) was used for single SNP analysis of 673 obesity-related SNPs.
Results revealed a total of 111 SNPs having significant interactions with changes in diet or exercise to
influence body fat mass (α = 0.05) (Supplementary file). Eighteen SNPs were in linkage disequilibrium
(LD), and the SNP with the smallest p-value for each LD group was selected as the representative
SNPs for each group, leaving a total of seven SNPs. The number of SNPs that were included in
the final set of SNPs used for quantifying the effectiveness of changes in carbohydrate intake (CE),
fat intake (FE), total calorie intake (TE), and exercise onset (EE) were 37, 19, 44, and 25, respectively
(Table 2). CE and TE (n = 14) showed the highest number of SNPs that were common between any
two categories, whereas only 0 to 2 SNPs were common in other sets (Figure S1). The minor allele
frequencies ranged from 0.01 to 0.49 (Figure S2). Table 3 shows the top ten SNPs sorted by p-value
and their corresponding coefficient estimates from GLM and matched gene names. For the diet study,
under the categories CE, FE, and TE, the “Peroxisome proliferator-activated receptor gamma” (PPARG)
gene showed the most number of mapped SNPs (n = 16) and was highly ranked with a low p-value.
In addition, results suggested the interaction of “angiotensinogen” (AGT; seven SNPs mapped) with
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all four categories. Moreover, “Apolipoprotein A2” (APOA2; four SNPs mapped) interacted with all
categories except for FE. Each of the 41 SNPs was uniquely matched to a gene, whereas 32 SNPs were
mapped to intergenic regions.

Table 2. The number of SNPs assigned with −1 or +1 for each category. The finally subset of SNPs
were assigned to either negative (−1) or positive (+1) effect groups based on the sign of the estimated
coefficient of the corresponding term in the linear model. As shown in the table, CE, FE, TE, and EE
comprised 37 SNPs (18 negative and 19 positive), 19 SNPs (seven negative and 12 positive), 44 SNPs
(14 negative and 30 positive), and 25 SNPs (12 negative and 13 positive), respectively.

CE FE TC EE

−1 18 7 14 12
1 19 12 30 13

Table 3. Top ten SNPs identified by the generalized linear model (GLM; sorted by p-value). The SNPs
identified from “∆C × SNP” in model (1), from “∆F × SNP” in model (1), from “∆TC × SNP” in
model (2), and from “SNP” in model (3) were used to determine polygenic effectiveness for changes in
carbohydrate intake (CE), fat intake (FE), total calorie intake (TE), and exercise status (EE), respectively.
For polymorphisms in linkage disequilibrium (LD), only SNPs with the smallest p-values were selected
to represent each group; this procedure was performed for each category. The coefficient estimates and
p-values were obtained from a single SNP analysis using GLM.

Category SNP Estimate p-Value Gene Name

CE rs13077495 0.006 1.90 × 10−5 PPARG
CE rs206936 −0.0018 0.00016 RPS10-NUDT3
CE rs17793951 0.0036 0.00064 PPARG
CE rs189428681 0.0066 0.0015 PPARG
CE rs7578465 −0.0016 0.0019 ALK
CE rs191018871 0.0062 0.0021 PPARG
CE rs7920888 −0.0015 0.0043 intergenic
CE rs13041126 −0.0015 0.0052 intergenic
CE rs6782178 0.0023 0.0056 PPARG
CE rs6810295 0.0014 0.006 OSBPL10
FE rs2237892 −0.01 0.00067 KCNQ1
FE rs1413020 0.012 0.0062 intergenic
FE rs2972165 0.029 0.0072 PPARG
FE rs2389438 0.017 0.011 intergenic
FE rs2938398 0.0091 0.013 PPARG
FE rs11122577 −0.0077 0.014 AGT
FE rs11142387 0.0074 0.019 intergenic
FE rs7551318 −0.027 0.02 intergenic
FE rs4243830 −0.008 0.022 PLEKHG5
FE rs4144743 −0.0066 0.023 intergenic
TE rs2972164 0.00056 2.50 × 10−5 PPARG
TE rs11142387 0.00032 4.10 × 10−5 intergenic
TE rs13077495 0.0009 5.70 × 10−5 PPARG
TE rs206936 −0.00029 0.0001 RPS10-NUDT3
TE rs67216730 0.00062 0.00044 PPARG
TE rs2920502 0.00026 0.00059 PPARG
TE rs7578465 −0.00025 0.0014 ALK
TE rs13041126 −0.00022 0.0032 intergenic
TE rs12150665 0.00021 0.0047 GGNBP2
TE rs4327120 0.00024 0.0048 intergenic
EE rs4432245 −0.14 0.0065 EIF2AK4
EE rs10929925 −0.14 0.0065 intergenic
EE rs4762 −0.21 0.013 AGT
EE rs7164727 0.15 0.013 intergenic
EE rs2770102 −0.18 0.014 LINC00340
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Table 3. Cont.

Category SNP Estimate p-Value Gene Name

EE rs11583200 0.19 0.015 ELAVL4
EE rs2228213 −0.13 0.021 HIVEP1
EE rs1205 0.12 0.021 CRP
EE rs2845885 0.12 0.028 MACROD1
EE rs3093059 0.16 0.03 CRP

3.3. GRS Classification and Effectiveness of Dietary Regime

Based on the sign of the estimated coefficient, the final set of SNPs was assigned with a value of
either −1 or 1 (Table 2). The genetic risk score (GRS) was calculated as the total number of risk alleles
of a SNP multiplied by the assigned sign. The GRS data approximately followed a normal distribution.
Descriptive statistics of the GRS distribution are summarized in Table 4. The GRS means and standard
deviations were 0.43 ± 3.81, 1.4 ± 2.5, 5.4 ± 4.2, and 1.5 ± 3.1 for CE, FE, TE, and EE, respectively.
To investigate changes in body fat in relation to the GRS, individuals were stratified into four groups,
namely, very low (VL), low (L), high (H), and very high (VH), for each category (Figure 2). Overall,
as the effectiveness level increased from VL to VH, body fat reduction tended to be higher according
to either reduction in nutrient intake or exercise onset. For example, for individuals with greater than
75 g reduction in carbohydrate intake (first quantile of the distribution of changes in carbohydrate
intake), the mean changes in body fat were 0.13, −0.37, −0.54, and −1.19, for the CE-VL, CE-L, CE-H,
and CE-VH groups, respectively. For individuals with greater than 13 g reduction in fat intake (first
quantile in the distribution of changes in fat intake) the mean changes in body fat were −0.22, −0.095,
−0.25, and −0.80 for the groups FE-VL, FE-L, FE-H, and FE-VH, respectively. In individuals with
greater than 478 kcal reduction in total calorie intake (first quantile in the distribution of changes in
total calorie intake), the mean changes in body fat were 0.093, 0.0055, −0.64, and −1.14 for the groups
TE-VL, TE-L, TE-H, and TE-VH, respectively. Among individuals who experienced exercise onset,
the corresponding mean changes in body fat were 0.92, 0.41, −0.033, and −0.018. Thus, these results
suggest that individuals belonging to the VH group can benefit more from reduced nutrient intake or
more rigorous exercise to increase body fat loss compared to individuals classified under lower levels.

Table 4. Descriptive statistics for GRS distribution and p-values for normality test. The mean, median,
minimum, and maximum values of the GRS distribution for each category (CE, effectiveness of
carbohydrate intake changes; FE, effectiveness of fat intake changes; TE, effectiveness of total calories
intake changes; EE, effectiveness of exercise) are shown. All four GRS distributions followed a normal
distribution based on Shapiro-Wilk test.

CE FE TC EE

Mean (SD) 0.43 (3.8) 1.4 (2.5) 5.4 (4.2) 1.5 (3.1)
Median 0 1 5 2

Minimum −13 −9 −10 −9
Maximum 15 11 30 11

p-value for normality test <2.2 × 10−16 <2.2 × 10−16 6.874 × 10−15 7.203 × 10−14

3.4. Personalized Genome-Based Health Care

As described above, the effectiveness of body fat loss can be determined based on the quantile of
and individual’s GRS (Figure 3). For example, individuals assigned under CE-VH, FE-L, TE-VH, and
EE-H groups are potentially more sensitive to changes in carbohydrate intake than fat intake but are
also highly responsive to total calorie intake and exercise onset. Thus, these patients are advised to
undergo intensive exercise regime and to monitor total calorie intake, particularly the proportion of
carbohydrates in the diet.



Nutrients 2018, 10, 266 8 of 13

Figure 2. Distribution of genetic risk scores (GRS) and within-group changes in body fat as a function
of changes in diet or exercise regime. Each individual’s GRS can be calculated based on the final
set of SNPs to measure changes in carbohydrate intake (CE), fat intake (FE), total calorie intake (TE),
and exercise status (EE). To determine the effectiveness of body fat loss, “very low” (VL) was defined to
range from the minimum of GRS and the value less than the 25th percentile. The “low” (L) level ranges
from the value larger than or equal to the 25th percentile and 50th percentile, “high” (H) includes
values larger than or equal to the 50th percentile and less than the 75th percentile, and “very high”
(VL) corresponds to values larger than or equal to the 75th percentile. Among individuals with greater
than 75 g reduction in carbohydrate intake, the mean change in body fat in individuals grouped to
CE-VL was 0.13, −0.37 for the group CE-L, −0.54 for the CE-H group, and −1.19 for the CE-VH
group. Among individuals with at least 13 g reduction in fat intake, the mean changes in body fat
were −0.22, −0.095, −0.25, and −0.80 for the groups FE-VL, FE-L, FE-H, and FE-VH, respectively.
Among individuals with at least 478 kcal reduction in total calorie intake, the mean changes in the body
fat were 0.093, 0.0055, −0.64, and −1.14 for the groups TE-VL, TE-L, TE-H, and TE-VH, respectively.
Among individuals who experienced exercise onset, the mean changes in body fat were 0.92, 0.41,
−0.033, and −0.018, respectively.
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Figure 3. Classification of an individual to the very low (VL), low (L), high (H), and very high (VH)
groups and to each of the four categories, changes in effectiveness of carbohydrate intake (CE), changes
in effectiveness of fat intake (FE), changes in effectiveness of total calories intake (TE), and changes in
effectiveness of exercise status (EE). Each individual’s GRS was calculated based on a set of SNPs that
were selected to represent risk factors for each of the categories CE, FE, TC, and EE. In this example,
the individual was classified as “CE-VH” because the GRS for CE is higher than the 75th percentile
in the distribution of population GRS. Similarly, a GRS between the 25th and 50th percentile in the
FE distribution, higher than the 75th percentile in the TE distribution, or between the 50th and 75th
percentile in the EE distribution will be classified under FE-L, TE-VH, or EE-H, respectively.

4. Discussion

Dietary habits worldwide have become westernized, and the number of individuals diagnosed
with obesity and weight control issues has continued to increase. Recent studies have uncovered the
association among obesity, genetic factors, and dietary habit or physical activity. They include genetic
loci contributing to dietary habit on obesity, the effects of gene-environment interactions on obesity,
and modifying effects of dietary habit on the association between genetic factors and obesity [29–37].
As rising life expectancy, the biological insights about obesity from previous studies led to present the
need for the personalized diet. Here, in this paper, we proposed a computational platform to provide
the personalized guide to improve health status.

The identified SNPs may be functionally related to the metabolism of nutrients in the body
(Table S1). Indeed, many of the SNPs we identified have been reported to be associated with metabolic
syndrome or insulin resistance as a consequence of metabolic malfunction. In our study, 16 SNPs
at PPARG related to CE, FE, TE, and EE were identified. PPARG is involved in lipid and glucose
homeostasis [38,39], decreased plasma leptin level [40], and insulin resistance [41,42]. Especially,
PPARG rs17793951 and rs2920502 are associated with insulin resistance [43] and the higher risk
of metabolic syndrome by regulating the expression of adiponectin [44]. We also identified ARAP1
rs11603334, a genetic polymorphism associated with carbohydrate and fat intake. Kulzer et al. reported
that it increases the expression of ARAP1 in human pancreatic islets, which can contribute to type 2
diabetes susceptibility [45].

Considering the potential inaccuracies of the cohort data, false positives might be present in
the set of selected SNPs. Instead of conducting rigorous measurements of daily calories intake, FFQ
estimates the average daily food items in list and weekly or yearly feeding frequencies. Thus, errors in
the data could have arisen from subjective judgment on the day of administering the questionnaire or
could have been influenced by the most recent memories of eating behavior. In addition, a fixed list of
foods ignores other variable food items consumed by different individuals. Not only the FFQ estimates
but also the questionnaire that used binary variables and self-reported answers for physical activity
also includes limitations. The binary variable “exercise status” as the answer to the questionnaire
“Please check if you do sweaty exercise regularly” could not differentiate precisely on the varied degree
of physical activity, for example, low-, intermediate-, and high-intensity activities. Also, self-reported
answers system has several limitations. The answer can be easily biased by many factors including
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individual’s mood at the time of filling out the questionnaire or resistance to answering the private
question. Additionally, it is not feasible for a subject to remember the exact days of exercise in the
question of “Please check if you do sweaty exercise regularly”. Furthermore, the questionnaires were
administered two years apart, during which unobserved environmental factors could have influenced
body fat loss.

Another limitation of the study is lack of independent validation data where the effectiveness
of the proposed strategy can be evaluated. Internal validation analysis demonstrated the usefulness
of the approach, but to rigorously evaluate the effect size of each group while reserving statistical
power of the training dataset, an independent cohort data would be needed. In this regard, we plan to
conduct prospective interventional experiments by grouping individuals into either exercise or dietary
group, which are further divided into either low carbohydrate or low-fat diet groups. Also, to obtain
more precise physical activity data from subjects, wearable devices will be distributed to the subjects.
By applying our model to an independent data set, we expect to overcome limitations and validate the
algorithm and update the SNP set that influences diet efficacy.

5. Conclusions

To develop an efficient strategy for effectively reducing body fat, we proposed a GWAS procedure
consisting of the following steps: SNP selection by testing the interaction between genetic and
environmental factors using a linear model; calculation of scores as the sum of the number of risk
alleles over a set of selected SNPs; and allocation of individuals to an appropriate body fat loss regime
in response to the altered environmental factor. Our proposed approach could ultimately provide
an effective genome-based personalized diet strategy by determining the nutritional component that
requires modulation or the degree of exercise effectiveness for a particular individual.

This research focused on the reduction of body fat mass in a whole body. One direction for
further development of the study might be considering body fat distribution or metabolic health.
Recent studies suggested that metabolic health is an independent factor to predict cardiovascular
risk [46,47]. We expect a similar approach will be effective to develop a personalized strategy to turn
metabolically unhealthy people to metabolically healthy ones, which may have a more significant
impact on public health.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/10/3/266/s1, Figure
S1: Venn diagram of the number of SNPs identified by the GLM and numbers of overlapping among the four
categories; Figure S2: Minor allele frequencies of SNPs that influence the effectiveness of changes in carbohydrate
intake (CE), effectiveness of changes in fat intake (FE), effectiveness of changes in total calorie intake, and
effectiveness of exercise status (EE); Table S1: Gene names of the corresponding SNPs for each category. File:
Summary of the selected SNPs for GRS calculation.
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