Endoscopic Ulirasound

I Review

[ OPEN |

The application of artificial intelligence in EUS
Deyu Zhang', Chang Wu', Zhenghui Yang', Hua Yin?, Yue Liu', Wanshun Li', Haojie Huang'*, Zhendong Jin'"*

ABSTRACT \

Artificial intelligence (Al) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learn-
ing algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis.
Al-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gas-
trointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of Alin EUS diagnosis still has some
urgent problems to be solved. First, the development of sensitive Al diagnostic tools requires a large amount of high-quality training data.
Second, there is overfitting and bias in the current Al algorithms, leading to poor diagnostic reliability. Third, the value of Al still needs to
be determined in prospective studies. Fourth, the ethical risks of Al need to be considered and avoided.
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INTRODUCTION

Artificial intelligence (AI) was first mentioned in a 1950 article titled
“Computational machinery and intelligence,” written by Turing,
the father of computer science as well as Al In that article, he asked
the classic question: “Can a machine think?”!"! Then, in 1956, sev-
eral computer scientists gathered at the Dartmouth conference to
propose the concept of “AL,” and they dreamed of using the com-
puters that had just emerged to build complex machines that had
the same essential properties as human intelligence. For the subse-
quent decades, Al had been mentioned in many top academic con-
ferences and was constantly used in research laboratories. However,
during the early stage of Al, because of imperfect algorithm theory
and the limited computing power of hardware, the development of
Alwas very slow. In nearly a decade, thanks to the increase in data
volume, the improvement in computing power, and the emergence
of new machine learning algorithms (deep learning), research on
Al began to make explosive progress, and since then, Al has been
widely used in many fields, especially in the medical field.*=’

Endoscopic ultrasonography was introduced first by Wild and Reid
in 1957 with a blind mechanical radial scanning probe introduced
into the rectum.”! Endoscopic ultrasonography has undergone sev-
eral improvements, such as a 360-degree scanning field and a pro-
gressive increase in ultrasound frequency and resolution. In the
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middle and late 1980s, not only did EUS link the anatomical wall
and EUS but also recorded the depth of tumor penetration (T stage)
and the metastasis (N stage) of local lymph nodes, and endoscopic
ultrasonography clearly proved the superiority of EUS in lesions
inside and near the gastrointestinal tract, as compared with other
imaging modalities (such as computed tomography and magnetic
resonance imaging). However, EUS cannot distinguish cancer from
benign lesions (ie, pancreatic cancer from pancreatitis or inflamma-
tory lymph nodes from metastases'™). To solve this problem, a
company developed EUS equipped with a biopsy channel, and in
1991, EUS-ENA of pancreatic lesions”! was successfully performed.
To solve the problem of less tissue collected by EUS-FNA puncture,
some scholars designed the side cutting and front cutting needles of
the biopsy (EUS-FNB) and verified that the latter needles collected
significantly more tissue.'°'?! In addition, needle-based confocal
laser microscopy, which enables real-time microscopy # vivo imaging
of tissue surfaces, is used as an alternative to microbiopsy.!'*1”!
Furthermore, EUS-guided procedures for peripancreatic fluid col-
lections have been shown to be superior to percutaneous and sur-
gical tﬁgjhniques in terms of morbidity, length of hospital stay, and
costs.

However, EUS is limited by the inherent characteristics of ultra-
sound imaging and higher requirements for endoscopic physicians,
the diagnostic yield may drop in the beginners or less experienced
operators, and EUS does carry a small but real risk of pancreatitis,
infection, pancreatic duct leak, malignant seeding, hemorrhage,
and even death.!'”! Moreover, most senior EUS experts are often
concentrated in senior medical centers. As a result, with less experi-
enced EUS physicians, EUS may lead to insufficient lesion detection
or a misdiagnosis. Furthermore, fatigue and carelessness sometimes
lead to a misdiagnosis of tumors even when specialists perform
EUS.?% It can be seen that there are still many limitations in the
clinical application of EUS, and data analysis means big data,
which makes AT urgently needed to assist ultrasound endoscopists
in diagnosis and treatment.

With the wider application of EUS in the clinic and the continuous
development of Al an increasing number of researchers are study-
ing how to better apply Al technology to EUS for the diagnosis of
related digestive tract diseases.!*'* This review mainly introduces
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the application and advanced research fields of artificial intelligence
in EUS diagnosis.

THE CONCEPT AND APPLICATION OF Al

Al has been described as “a branch of computer science that aims
to create systems or methods that analyse information and allow
the handling of complexity in a wide range of applications.”!**!
In other words, Al is a new technology in which researchers design
and create relevant algorithms, process relevant data without man-
ual assistance, and draw corresponding conclusions.

Assisted in diagnosis and image recognition

Artificial intelligence can assist doctors in clinical diagnosis and im-
age recognition. For example, a deep learning—based Al model has
been reported to have similar performance to dermatologists in the
classification of skin cancers.**! Alternatively, deep learning can use
images of lung,?”! prostate,”®! brain”! tumors to predict patient
survival and tumor mutations. Other studies point to the important
role of Alin the identification of effects in breast cancer screening.*"!

Personalized medicine and treatment

Artificial intelligence can realize precision medicine and treat-
ment plans by analyzing information about the patient's genome,
physiological indicators, and medical history.*'=**! Different doc-
tors and nurses have different diagnoses and treatments and may
not have the same treatment plans for the same disease, and differ-
ent patients need to have their own personalized treatment plans.
Taking the opportunity that Al offers, an Al-assisted medical secu-
rity system will enable all doctors to practice at the same level of ex-
pertise as the best teams of doctors and share other data in addition
to patient privacy risks on different medical platforms, enabling
both medical staff and patients to achieve the best results.[*¥

However, tasks that cannot be performed by machines because of
the need for emotional intelligence, such as asking patients careful
questions to detect more subtle symptoms and building trust by
building personal relationships using human intuition, remain
unique qualifications of physicians, and these can guide the im-
plementation of future computationally optimized diagnosis and
treatment plans.>*!

Medical management and data analysis

Artificial intelligence can process large amounts of medical data
and use machine learning algorithms for data analysis to support
medical decision making and management. Some scholars believe
that big data can improve diabetes care by establishing a large sys-
tem, and by combining the information of the patient with diabetes
with the big data, the health care professional and the health care
system can use Al to provide accurate care of diabetic patients
through data processing.®®!

The US Food and Drug Administration has approved IDx-DR, a
device that uses Al algorithms to analyze digital retinal images
and help with early detection of retinopathy.*”*®! The American
Diabetes Association has approved the use of autonomous Al to
detect diabetic retinopathy and macular edema.’*!

Robot-assisted surgery

Robotic surgical techniques are assisted surgical techniques based
on AL Unlike public expectations, the development and adop-
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tion of autonomous robots in medical interventions are much
slower. For decades, robotic surgery has been synonymous with
robot-assisted surgery, which promotes surgical procedures and
makes motion smoother than human-accessible motion, but it
still requires motion control by the surgeon.*!!

For instance, in the US Food and Drug Administration—approved
da Vinci surgical system for minimally invasive operations, surgeons
operate the robot from a console.*?! Such systems are designed to
translate the surgeon's hand movements into the movements of in-
struments inside the patient and are therefore not autonomous.
However, surgeons have also made a breakthrough. Suturing is
one of the most common procedures during surgery, and therefore,
autonomous knotting robots have been developed.*!! The super-
vised autonomous robotic system for suturing an intestinal anasto-
mosis showed superior iz vivo suture quality compared with that
of surgeons in a laboratory setting.[*>*4!

With the continuing development of preprogrammed, image-guided,
and teleoperated surgical robots, more robot-assisted or automated
intervention methods are expected to be incorporated into surgical
practice.** "1 A balance needs to be struck between patient rights,
commercial value, and the needs of Al researchers to provide
the big data needed to build deep learning models as precursors
to autonomous robots.”3! Artificial intelligence researchers pre-
dict that Al-powered technologies will outperform humans at
surgery by 2053.55!

In general, the application of Al in the medical field can provide
doctors with more accurate, efficient, and safe diagnosis and treat-
ment solutions and provide a better medical experience and treat-
ment effect for patients. With the continuous development and in-
novation of Al technology, it is believed that it will bring more
opportunities and challenges to the medical field.

THE ALGORITHM INTRODUCTION OF Al

The most basic practice of machine learning is to use algorithms to
parse data, learn from it, and then make decisions and predictions
about real-world events.*® Unlike traditional hard-coded soft-
ware programs that solve specific tasks, machine learning “trains”
with large amounts of data and learns how to complete tasks from
the data through various algorithms.

Machine learning is directly derived from the early field of AL
which includes multiple techniques, such as support vector ma-
chines (SVMs), decision trees, factor machines, logistic regression
analysis, and neural networks.[*®*! A neural network is a machine
learning technique based on the use of multiple neurons.!*®! Each
neuron converts the input data into the output data by applying
a weight to the input data (thus adding a bias) and passing it to
the activation function. Neurons can be connected in series or in
parallel, and a neural network consists of an input layer, several
hidden layers, and an output layer [Figure 1].

Given the commonalities shared between statistical and machine
learning techniques, the boundary between the 2 may seem fuzzy
or ill-defined. One way to describe these methods is to consider
their primary objectives. Both are used to infer results, but unlike
statistics, in which the goal is to understand the relationship be-
tween variables, machine learning is the result of predicting all var-
iables, even if they are nonlinear regressions, and the relationship
between variables is not important. Among them, machine
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learning can be simply divided into supervised (labeled data) and
unsupervised (unmarked data) learning technology. Supervised
learning refers to the technique of training models on a series of in-
puts (or features) associated with known results, whereas unsuper-
vised technology is exploratory to discover undefined patterns or
clusters in datasets and does not involve predefined results.!*!!

An artificial neural network is a set of algorithms used for machine
learning. Its appearance failed to set off the stormy waves of Al re-
search; until in recent years, it returned to the public view under a
new name—deep artificial network (Deep Artificial Networks,
Deep Learning), and people re-recognized and valued it. Some of
the greatest successes of deep learning have been in the field of
computer vision. Computer vision focuses on image and video un-
derstanding and deals with tasks such as object classification, de-
tection, and segmentation. Overall, machine learning is a way to
realize Al, and deep learning is a technology to realize machine
learning. The relationship between algorithms such as Al, machine
learning, and deep learning is shown in Figure 2.

Convolutional neural networks (CNNs), a type of deep learning al-
gorithm designed to process images, have grown to be central in
this field. The CNN can be trained to classify images, segment re-
gions of interest, and even detect specific features, such as tumors
or lesions. An example of a CNN-based algorithm for medical im-
age analysis is DeepLesion.®%3 It is a dataset that uses CNN to
detect and locate lesions on computed tomographic scans with an
accuracy of 81.1% and can be used in lesion detection, lesion clas-
sification, lesion segmentation, lesion retrieval, and lesion growth
analysis.>¥!

Recurrent neural network (RNN) is another deep learning algo-
rithm that can be used for medical image analysis. Recurrent neu-
ral network is well suited for sequence data such as time series or
sequence images. In medical imaging, RNNs can be used to analyze
video sequences or multiframe images, where the information from
the previous frame is important for the analysis of the current frame.
An example of an RNN-based medical image analysis algorithm is
the convolutional LSTM network (ConvLSTM). ConvLSTM is
a deep learning architecture combining the spatial processing of
the CNN with the temporal processing of the RNN. It has been used
in video segmentation and disease diagnosis in medical imaging.!*>=®!

Hidden Layer

Input Layer Output Layer

Figure 1. Neural network principle: neurons are connected in series or in
parallel, and the neural network consists of an input layer, several hidden
layers, and an output layer. Created by MS Office (https://www.microsoft.
com/zh-cn/).
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1950s
Artificial Intelligence

1980s Machine Learning

(Supervised/unsupervised learning)

2010s
Deep Learning

(Based on ANNs, CNNs, RNNs)

Figure 2. Relationship between Al, machine leaming, deep learning algorithms.
Al: artificial intelligence. Created by the Biorender (https:/Avww.biorender.com).

In addition, there are many other types of machine learning algo-
rithms. For example, SVMsP”*! are machine learning algorithms
that can be used for medical image analysis. Support vector machines
are binary classifiers that learn the decision boundary between 2
classes of data. In medical imaging, SVMs can be trained to distin-
guish healthy from diseased tissues or to detect specific features,
such as tumors or lesions. An example of a medical image analysis
algorithm based on SVMs is an SVM classifier (SVM-RBF) with
radial basis functions.!®"]

This algorithm has been applied to breast cancer diagnosis on im-
ages of nuclei sampled in breast masses and is significantly superior
to regularized regression using generalized linear models and artifi-
cial neural networks.*!

In conclusion, the Al-assisted diagnosis of medical images is a rap-
idly evolving field with the potential to significantly improve health
care. The algorithms mentioned in this article are presented in
Table 1. These algorithms can help doctors make more accurate di-
agnoses, thus improving the treatment of patients. With the contin-
uous improvement of Al technology, we look forward to seeing the
advent of more advanced algorithms to assist physicians in more
effectively and accurately diagnosing the vast number of medical
images, including EUS images.

Application of Al in Endoscopic Diagnosis of
Pancreatic Lesions

Artificial intelligence was first applied in the field of cancer in the
diagnosis of endoscopic ultrasonography. Multiple previous stud-
ies of Al diagnosis in pancreatic ductal adenocarcinoma have been
reported. For example, Zhang et al.l®?! used the SVM algorithm in
machine learning to distinguish pancreatic ductal adenocarcinoma
(PDAC) from normal tissue, identified 29 features combined with
EUS images, and then built predictive models and trained repeatedly,
resulting in a classification accuracy of 99.07% and a sensitivity of
97.98%. In the presence of chronic pancreatitis (CP), the diagnos-
tic accuracy is significantly reduced because of endoscopic US and
EUS-FNA/B because tumor and inflammatory changes generally have
similar image changes. Meanwhile, EUS-FNA/B also relies heavily on
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Summary of Al algorithms.

Algorithm Function

Relationship Application

Analyze the data to make decisions and
predictions

Machine learning (ML)

Deep leaming (DL) Classify, detecting, and segment objects

Classify images, segment regions and
detect specific features

Analyze video sequences or multiple-frame
images

A binary classifier for learning the decision
boundary between 2 classes of data

Convolutional neural network (CNN)
Recurrent neural network (RNN)

Support vector machine (SVM)

From artificial intelligence

Through large lot of data “training” to
learn how to complete the data
through various algorithms

A technique for implementing machine Computer vision
learning

Classical algorithms in deep learning DegepLesion

Degp learning algorithms that focus on ConvLSTM
sequence data

Machine learning algorithms for SVM-RBF

medical images

the accurate localization of the region of interest based on the inter-
pretation of the EUS image, and it has a low diagnostic yield, even
when subjectively assessed by an experienced endoscopist. Das et al.**!
retrospectively included 22 healthy patients after pancreatic EUS-FNA
puncture, 12 patients with CP, and 22 patients with pancreatic can-
cer. Based on the 11 features extracted from EUS images, a machine
algorithm was used to distinguish pancreatic cancer, CP, and nor-
mal pancreatic tissue, and the diagnostic model had a sensitivity of
93% and a specificity of 92%. Therefore, the researchers proposed
that the performance characteristics of Al-assisted EUS diagnosis are
comparable to those of EUS-FNA, and noninvasive diagnosis can be
achieved in the future.

Saftoiu et al.l*"! prospectively included patients with endoscopic
pancreatic nodules, including 112 with pancreatic cancer and 55
with CP, for the differential diagnosis of pancreatic ductal carci-
noma and focal CP using a CNN algorithm in deep learning. In
the architecture of this study, deep learning is implemented in 2
stages, namely, the feature extraction stage and training stage.
In the first stage, endoscopic ultrasonography of the pancreatic
tumors was performed. Histogram analysis was performed on
endoscopic elastography images, and several features were ex-
tracted. In the second phase, several features extracted in the first
phase are used as input to the deep learning algorithm to judge
pancreatic cancer and CP.[®! After repeated training, the final
model yielded a sensitivity of 94.64%, a specificity of 94.44%,
a positive predictive value of 97.24%, and a negative predictive
value of 89.47%. Therefore, the use of Al combined with EUS im-
ages can distinguish pancreatic cancer and CP cases, greatly im-
proving the diagnostic accuracy and reducing the rate of misdiagno-
sis and missed diagnosis.

Pancreatic lesions mainly include not only tumor lesions,®*”! such
as PDAC, pancreatic adenosquamous cell carcinoma, acinar cell
carcinoma, metastatic pancreatic cancer, neuroendocrine carcinoma,
neuroendocrine tumor, and real pseudopapillary tumor, but also
some nonneoplastic lesions, such as CP and autoimmune pancrea-
titis. The diagnosis of pancreatic lesions as cancer or noncancer is
important for the patient to undergo surgery and further treatment
options. Recently, Kuwahara et al.”**! conducted a retrospective
study of 933 patients with pancreatic lesions using the advanced deep
convolution generative antagonistic network (DCGAN) algorithm
with EUS images to establish a deep learning model that could
judge pancreatic lesions as cancerous or noncancerous based on
EUS images. This study was conducted in 2 stages. The first stage
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extracted the predicted value of each static EUS image output by
the deep learning algorithm and evaluated the diagnostic perfor-
mance of the deep learning model at the image level. In the second
stage, the predicted values of comprehensive continuous images
from the video images were extracted, and the median values of
all still images in the cohort were verified and tested at the patient
level. Then, the diagnostic performance of this deep learning model
was evaluated. The final result showed that the deep learning
model had an accuracy of approximately 90% at both the image
and patient levels. The use of the DCGAN algorithm can improve
the imbalance caused by the input dataset, which ultimately en-
ables the diagnostic model produced by the deep learning algo-
rithm combined with EUS images to greatly improve the accuracy
of tumor diagnosis. This deep learning model uses EUS images of
almost all types of pancreatic masses and achieves a reliable diag-
nosis of tumors or nontumors. In addition, Tonozuka et al.*°! de-
veloped the original computer-aided diagnosis system of CNN
using endoscopic ultrasonography images, reported its carcinoma
of the pancreas detection capability, and used control images from
CP and necrotizing pancreatitis patients as a preliminary study to
analyze whether the EUS-CNN algorithm model could correctly
identify pancreatic masses. The CNN algorithm inputs 139 pa-
tients, including 76 pancreatitis, 34 CP, and 29 necrotizing pancre-
atitis patients, for a total of 88,320 images after training and
10-fold cross-validation and independent testing. Finally, its sensi-
tivity was 92.4%, and its specificity was 84.1%.

An intraductal papillary mucinous tumor (IPMN) is a precursor le-
sion in pancreatic cancer.[*®® Therefore, early detection of IPMN
and prediction of whether it has an increasing risk of malignancy
are crucial. In this field, Takamichi Kuwahara et al.”®! reported
206 IPMN patients with surgical confirmation using endoscopic
IPMN-related images as input data from a deep learning algo-
rithm. Based on the pathological diagnosis after resection, these
IPMN patients were classified as benign IPMN (pathology re-
vealed low- and middle-grade dysplasia) and malignant IPMN by
IPMN (pathology showed high-grade dysplasia and invasive carci-
noma). Later, it was predicted according to endoscopic IPMN im-
ages and compared with the pathological results. The final result
was that the sensitivity, specificity, and accuracy of malignant
IPMN were 95.7%, 92.6%, and 94.0%, respectively, far exceed-
ing the human diagnostic accuracy of 56.0%. That study revealed
that deep learning-based Al algorithms may be a more accurate
and objective method to diagnose IPMN malignancies than human
diagnosis and conventional EUS features.
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APPLICATION OF Al IN EUS FOR THE DIAGNOSIS OF
GASTROINTESTINAL STROMAL TUMORS

Gastrointestinal stromal tumors (GISTs) and gastrointestinal
leiomyomas (GILs) are the most common subepithelial lesions
(SELs). Gastrointestinal stromal tumors occur most frequently in
the stomach, accounting for approximately 60% to 70% of cases,
whereas the percent of small intestinal GISTs is approximately
20% to 30%, the percent of colorectal GISTs is approximately
5%, and the least is less than 5%.”! However, all GISTs are consid-
ered to have a certain degree of malignant potential, so early diagno-
sis and timely treatment are very important. EUS is helpful to diag-
nose SELs. The classic EUS image characteristics of GISTs are low
dark echo appearance, round or oval, located in the fourth ultra-
sonic wall layer and corresponding to the muscularis propria. Al-
though large or malignant stromal tumors can show irregular out-
lines, the tumor borders are usually smooth and clear, whereas the
tissue can be heterogeneous or homogenous, with the mass occa-
sionally possessing characteristics of echogenic foci, cystic spaces,
or ulcers.I”?! Gastrointestinal leiomyomas are benign tumors distrib-
uted throughout the gastrointestinal tract, mostly occurring in the
esophagus, esophagogastric junction, and stomach. Their EUS im-
ages are mostly uniform hypoechoic lesions, often located in the sec-
ond or fourth ultrasound wall layer.[”?! Although it is possible to di-
agnose both at the pathological level by using fine needle aspiration
biopsy, EUS-FNA still has limitations because of the risk and uncer-
tainty of puncture and the lack of easy manipulation of smaller le-
sions.l”* Relevant studies have combined Al technology with EUS
to distinguish and diagnose GIST and GIL by a noninvasive method.
Yang et al.”*! designed an Al system based on EUS images of pa-
tients with GIST or GIL. They further developed and retrospectively
evaluated this Al system by collecting information on EUS images of
patients with these diseases from multiple centers. This system is
used when endoscopists judge SELs as GISTs or GILs. The Al system
in this study was developed using 10,439 EUS images from 752
GIST or GIL patients. Finally, the Al system was applied to a multi-
center prospective diagnostic trial to explore whether the joint diag-
nosis of the endoscopist and the Al system could distinguish be-
tween GISTs and GILs at the clinical level. As a final finding, in
the prospective trial, 132 subjects in 508 consecutive subjects were
diagnosed histologically (36 GISTs, 44 GILs, and 52 other types of
SELs). Through combined diagnosis (Al-assisted endoscopists),
the accuracy of the endoscopists who diagnosed 80 patients with
GISTs or GILs increased from 73.8 % to 88.8 %, and the total diag-
nostic accuracy was significantly improved.”!

Kim and others!”®! have also developed a CNN-assisted diagnostic
system to analyze EUS images of GISTs to distinguish GIST's that are
difficult to distinguish from benign tumors (such as leilomyomas and
schwannomas). First, EUS images of gastric GISTs, leiomyoma, and
schwannoma were screened, and these lesions had been organized
and pathologically confirmed by surgical or endoscopic resection
and/or EUS-FNB, excluding blurred and poor-quality images. A to-
tal of 587 images from 179 gastric tumors were screened as a train-
ing image dataset, including 428 images from 125 GISTs, 91 images
from 33 leiomyomas, and 68 images from 21 schwannomas. A total
of 212 images from 69 gastric tumors were also collated as an inde-
pendent test dataset, including 106 images of 32 GISTs, 60 images
of 23 leiomyomas, and 46 images of 14 schwannomas. Then, a
CNN algorithm model consisting of 5 layers was built. The output
layer was first divided into 2 categories of tumors: GISTs and non-
GISTs. In the non-GIST tumor group, the output layer was further
subdivided into schwannomas and leiomyomas. For the final con-
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structed CNN system, the sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy for distinguishing
GIST tumors were 79.0%, 78.0%, 76.3%, and 80.5 %, respectively,
whereas the sensitivity, specificity, positive predictive value, negative
predictive value, and accuracy were 89.3%, 80.6%, 82.1%, 88.4%,
and 85.0%, respectively. Based on the obtained data, the investiga-
tors believe that the CNN system will show high accuracy in diag-
nosing GISTs on EUS images and can assist in the endoscopic diag-
nosis of GISTs in current clinical practice.

Hirai et al.?*! collected EUS images of pathologically confirmed
SELs of the upper digestive tract in 12 hospitals, including GISTs,
leiomyoma, schwannoma, neuroendocrine tumor, and ectopic
pancreas. Later, a random sampling method was used to divide
the acquired images into a ratio of 4:1 (the dataset is used to de-
velop and train the designed Al algorithm system) and a test
dataset (the dataset is used to test the Al system). The study col-
lected a total of 16,110 images from 631 cases for both datasets.
The final results showed the accuracy of the Al system for five types
of GISTs, leiomyoma, schwannoma, neuroendocrine tumor, and
ectopic pancreas, which was significantly higher than that of all
endoscopists. At the same time, the sensitivity, specificity, and ac-
curacy of the Al system designed in the study to identify GISTs
and non-GISTs were 98.8%, 67.6%, and 89.3%, respectively,
which were also higher than those of endoscopists.

APPLICATION OF Al IN ENDOSCOPIC DIAGNOSIS OF
ESOPHAGEAL CANCER

At present, common esophageal lesions include submucosal tu-
mors (including leiomyomas, stromal tumors, and lipomas), pre-
cancerous lesions, and esophageal cancer. Among them, esopha-
geal cancer is one of the most common cancers, and it is also one
of the most common causes of death. The early stage of esophageal
cancer has no obvious abnormal symptoms; the most important
symptoms in the advanced stage are progressive dysphagia and
weight loss, which will make surgical resection necessary, and it of-
ten has a poor prognosis. However, with the gradual development
of endoscopic technology, an increasing number of early esopha-
geal cancer or esophageal precancerous lesions have been found,
and through endoscopic resection, the patient's prognosis is also
satisfying.[**”7781 Therefore, it is particularly important to im-
prove the detection rate and diagnosis rate of early esophageal can-
cer so that patients can receive treatment at the early stage.[””! Pre-
vious studies have revealed that the deep evaluation of the primary
tumor extension to the esophageal wall and surrounding tissues by
EUS can assist in the staging of esophageal cancer.*®8!! However,
EUS images also have some problems, such as low-resolution,
blurred image artifacts and poor exposure to image quality.[8%83!
Wang and other researchers'®*! compared conventional endoscopy
and Al algorithm-combined EUS. Comparing the endoscopic and
ultrasonic images of real-time diagnosis characteristics combined
with endoscopic detection and pathological results, they evaluated
the Al algorithm combined EUS for the diagnostic value of early
esophageal cancer and precancerous lesions. Through screening,
80 patients who met the standard were selected and randomly di-
vided into 3 groups: 2 groups of EUS images based on the Al algo-
rithm, which were then divided into a cascade region CNN
(RCNN) model algorithm group and a traditional convolution
neural network model algorithm group, and 1 group of EUS (con-
trol group). That study showed that the Al algorithm of ultrasonic
images was effective, and the detection performance was better
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than endoscopic detection, which greatly reduced the detection
time. The study calculated that the detection rates of the traditional
CNN model, cascade RCNN model, and EUS alone were 56.3%
(45 of 80), 88.8% (71 of 80), and 44.1% (35 of 80), respectively.
The sensitivity, specificity, positive predictive value, and negative
predictive value of the cascade RCNN model were all higher than
those of the CNN model and EUS alone, providing a reference for
the differential diagnosis of early upper digestive tract cancer and
other digestive tract tumors.

A CNN algorithm system for automatically identifying the infiltra-
tion depth and origin of esophageal lesions was similarly devel-
oped by Liu et al.l®! A total of 1670 EUS images collected for
the study were used to train and validate the CNN system. The
overall accuracy of the CNN system was 82.49%, with a sensitiv-
ity of 80.23% and a specificity of 90.56%. That study was the first
to identify esophageal EUS images through deep learning, and a
CNN algorithm was developed that can automatically identify
the depth of invasion and lesion origin of esophageal submucosal
tumors and can classify such tumors to achieve good accuracy.

Currently, preoperative staging of Barrett-related esophageal ade-
nocarcinoma is the main criterion for determining the subsequent
treatment strategy, and endoscopic ultrasonography is an impor-
tant diagnostic method for preoperative staging. Related studies
have shown that Al can assist in the diagnosis and staging of EUS
and optimize treatment. Knabe et al.®®! developed an AI system—
assisted ultrasound endoscopy to stage Barrett-related esophageal
adenocarcinoma. A total of 1020 images (at least 1 per patient, up
to 3) from 577 Barrett adenocarcinoma patients were selected for
CNN training and internal validation. A total of 821 images were
selected to train the model, and 199 images were finally used to
validate the model. The final results showed that the developed
AlI'model had higher accuracy, sensitivity, and specificity in identi-
fying benign Barrett mucosa lesions, Barrett mucosa carcinoma in
situ, early Barrett esophageal progression carcinoma, and advanced
Barrett progression carcinoma. The overall diagnostic accuracy rate
was 73%.

APPLICATION OF Al IN ENDOSCOPIC DIAGNOSIS OF
LIVER AND BILIARY DISEASES

EUS is important for the diagnosis of biliary-related diseases,'®” 5!
such as choledochthiasis, biliary obstruction, ampullary cancer, and
cholangiocarcinoma, and Al also has unique value in the diagno-
sis of assisted EUS bile duct scans. Yao and other researchers®”
have built a deep learning—based system called BP MASTER for
real-time identification and bile duct labeling in EUS. The system in
this study integrates 4 deep CNN (deep CNN, DCNN) algorithm
models that have 2 functions: one is to locate the location of the ul-
trasound probe to provide corresponding operating instructions
for the physician, and the other is to mark the bile duct and provide
bile duct diameter measurements for endoscopists. DCNN 1 is
used to filter out the gastroscope images and input the ultrasound
images to DCNN 2. DCNN 2 divides the ultrasound images into
standard and nonstandard categories and inputs the standard im-
ages into DCNN 3. DCNN 3 is used to identify the position of bile
ducts, and DCNN 4 is used for segmentation and annotation of bile
ducts. In this study, 2000 ordinary gastroscope images and 2000
EUS images were applied, and the BP MASTER system was ob-
tained through strict testing. DCNN 1 classified gastroscope images
and ultrasound images with 100% accuracy. In the standard and
nonstandard image classification, DCNN 2 achieved an accuracy
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of 87.4%. However, for DCNN 3, the accuracy was 93.3%. For
the segmentation performance for the bile ducts, the DCNN 4 seg-
mentation was 77%. In summary, this BP MASTER system can
identify the standard location of the bile duct scan, remind the
endoscopist of the missed part, and guide the physician accord-
ingly. At the same time, the system can also segment the bile duct
with high accuracy, automatically measure the bile duct diameter,
simplify the operation of the endoscopist, and help evaluate the di-
lated and narrow bile duct.

Gallbladder polypoid lesions are abnormal bulges of the gallblad-
der wall into the gallbladder cavity and have various pathological
types. Currently, EUS is considered to be superior to conventional
ultrasound in gallbladder examination, which can improve the dif-
ferentiation of neoplastic gallbladder polyps and contribute to the
staging of gallbladder cancer. The Jae Hee Cho research team
developed an Al-assisted endoscopic diagnostic system with the
ResNeT50 structure. A cohort of 1039 EUS images (including
EUS images of 836 gallbladder polyps and 203 gallstones) were
used for Al training, internal validation, and testing. Finally, the di-
agnostic performance was validated using an external validation
cohort of 83 patients and compared with that of professional
endoscopists. That study found that the accuracy of the diagnosis
(65.3%) was between intermediate endoscopist (66.7%) and ex-
pert endoscopist (77.5%). The newly developed EUS combined
with the Al diagnostic model of the research team showed good
performance in the diagnosis of neoplastic gallbladder polyps
and gallbladder adenocarcinoma, which is as good as that per-
formed by endoscopists. This study reveals the broad prospect of
AT combined with EUS technology in the diagnosis of gallbladder
polyp diseases. However, at the same time, the relatively insuffi-
cient sample size may lead to a lack of Al training, so there are
some limitations.””"!

In recent years, the role of EUS has become more important with
emerging applications in the diagnosis and treatment of hepatology.”>”*!
EUS is considered a valuable tool for monitoring liver disease and
complications by clear, real-time liver imaging.”**! In the field of
liver tumors, EUS has become an important tool for identifying,
characterizing, and staging primary and malignant liver tumors.'®)
Focal liver lesions (FLLs) are an important concept in liver disease.
Focal liver lesion includes not only malignant liver lesions but also
solid and cystic benign lesions of the liver, such as hepatic heman-
gioma, focal nodular hyperplasia, hepatic adenoma, and liver
cysts.””! Accurate discrimination between benign and malignant
FLLs is key to optimizing the treatment of patients with possible
primary liver cancer or metastatic tumors of the liver. In this field,
Marya et al.”®! developed a novel CNN model based on EUS to
identify and classify FLLs. The study first reviewed a prospective
EUS database that included cases of FLL visualized and sampled
by EUS. Relevant static images and videos of the liver parenchyma
and FLL were extracted. Patient data were then randomly assigned
for CNN model training and testing. After the final model was cre-
ated, an analysis was performed to evaluate the ability of the CNN
model based on EUS images to independently identify FLL and the
ability of the CNN model to identify benign and malignant FLL.
That study used a total of 210,685 EUS images from 256 patients
to train, validate, and test the CNN model. By analyzing this
EUS-based CNN model, the FLLs in 92.0% of the EUS datasets
were successfully located. When evaluating any random still images
extracted from video or physician-captured images, the Al model
was 90% sensitive and 71% specific for malignant FLL classifica-
tion. When the full-length video dataset was evaluated with this
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Summary of the application of artificial intelligence in EUS

Disease Algorithm Application Object Conclusion
Pancreatic lesions  SVM algorithm Distinguish between PDAC and normal  Combining EUS images to identify 29 Accuracy: 99.07%; sensitivity:
tissues features 97.98%
Machine algorithm Distinguish between pancreatic cancer, Retrospectively included 22 healthy  Sensitivity: 93%; specificity: 92%
chronic pancreatitis, and normal patients after pancreatic EUS-FNA
pancreatic tissue puncture, 12 patients with chronic

Gastrointestinal
stromal tumors
(GISTs)

Early esophageal
cancer

Barrett-associated
esophageal
adenocarcinoma

Biliary tract lesions

pancreatitis and 22 patients with
pancreatic cancer

CNN algorithm Differential diagnosis of pancreatic Image data from 112 pancreatic Sensitivity: 94.64%; specificity
ductal carcinoma and focal chronic cancers and 55 patients with chronic ~ 94.44%; positive predictive
pancreatitis pancreatitis that were prospectively — value: 97.24%; negative

included predictive value: 89.47%
Deep convolutional The pancreatic lesions judged as A retrospective study performed on 933 About 90% accuracy at both the
generative adversarial cancerous or noncancerous based patients with pancreatic lesions with  image and patient levels
network (DCGAN) on EUS images EUS images

The original computer-aided To detect pancreatic cancer and to 76 patients with pancreatic cancer, Sensitivity: 92.4%; specificity:

diagnostic system of the  distinguish between chronic 34 with chronic pancreatitis, and 84.1%
CNN pancreatitis and necrotizing 29 with necrotizing pancreatitis.
pancreatitis

Deep learning algorithm ~ Tests differentiated between benign 206 patients with IPMN with confirmed Sensitivity: 95.7%; specificity:

IPMN and malignant IPMN pathology after surgical procedures 92.6%; accuracy: 94.0%, far

exceeding the human
diagnostic accuracy of 56.0%

Al system based on Distinguishing between GISTs and GILs 132 of 508 consecutive subjects who ~ Accuracy increasing from 73.8%
pathologically were histologically diagnosed to 88.8%
histologically confirmed
EUS images

CNN-assisted diagnostic ~ Distinguish GISTs from benign tumors  The 587 images of 179 gastric tumors GIST and non-GIST tumors
system (eg, leiomyomas and schwannoma)  that were used as a training image Sensitivity: 79.0%;

dataset, and the 212 images of 69 Specificity: 78.0%.
gastric tumors that were used as an
independent test dataset.
Leiomyomas and Schwannomas
Sensitivity: 89.3%;
Specificity: 80.6%.
Diagnosis of subepithelial A total of 16,110 images collected from Sensitivity: 98.8%; specificity: 67.6%;

lesions of the upper the 631 cases were used in both accuracy: 67.6%; be higher than
gastrointestinal tract datasets those of endoscopists
Cascade Diagnosis of early esophageal cancer 80 patients who met the criteria Detection rate of the cascade
region-convolutional and precancerous lesions selected and randomly divided into 3~ RCNN model: 88.8%
neural network model groups: the traditional CNN model,
algorithm group cascade RCNN model, and EUS
alone
A CNN algorithm system for To identify the depth of invasion and 1670 endoscopic sonographic images Accuracy: 82.49%; sensitivity:
identifying the depth of lesion origin of esophageal 80.23%; specificity: 90.56%
invasion and origin of submucosal tumors
esophageal lesions
Al system—assisted Staging of the Barrett-associated 1020 images of 577 patients with Overall diagnostic accuracy rate:
ultrasound endoscopy esophageal adenocarcinoma Barrett adenocarcinoma 73%
performed
BP MASTER Real-time identification and bile duct 2000 ordinary gastroscope images and Accuracy rate:
System based on the annotation in EUS 2000 EUS images applied DCNN 1: 100%; DCNN 2:
deep CNN 87.4%; DCNN 3: 93.3%;

DCNN 4: 77%

(continued))
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(continued).

Disease Algorithm Application

Object Conclusion

ResNeT50
Al-assisted EUS

diagnostic system adenocarcinoma

A CNN model based on
endoscopic
ultrasonography

Focal liver lesions
(FLL)

To identify and classify FLL

Distinguish between neoplastic
gallbladder polyps and gallbladder

1039 endoscopic images were trained, Accuracy rate comparable to that
internal confirmation, and testing, of endoscopic endoscopists
and an external validation cohort of
83 patients validated the diagnostic
performance

A total of 210,685 EUS images from  Random still images Sensitivity:
256 patients that were used to train, ~ 90%,; specificity: 71%
validate, and test the CNN model

Assessed full-length video
datasets Sensitivity: 100%;
specificity: 80%

model, its sensitivity was 100%, and its specificity was 80% for ma-
lignant FLL classification. However, one defect of endoscopic ultra-
sonography is the inability to obtain a complete evaluation of the
right lobe of the liver, so the FLL in the right lobe may not have been
fully visualized. In summary, that study demonstrated the accuracy,
simplicity, and rapidity of identifying and classifying FLL based on
endoscopic CNN model training.

DISCUSSION

With the rapid development of Al technology in recent years, the
diagnosis method of Al-assisted ultrasonic endoscopic imaging
has shown vigorous vitality, liberating clinical ultrasound endo-
scopic physicians from heavy diagnostic work, and has been fre-
quently used in liver biliary benign and malignant diseases, esoph-
ageal cancer, pancreatic benign and malignant diseases, and the
identification of GISTs. With the development of Al algorithms
and interventional ultrasound technology, in the future, Al can
be further integrated with other examination means to accurately
identify lesion properties and then provide treatment strategies.
Artificial intelligefnce is also expected to provide accurate guidance
or endoscopic ultrasonic interventional therapy. Examples of the
endoscopic application of Al mentioned in this article are pre-
sented in Table 2.

Although an Al-based computer aid seems promising in the analy-
sis of EUS images of pancreatic lesions, current data need to be
interpreted with caution, and the following limitations of machine
learning need to be acknowledged®: the application of Al in EUS
is still in its early stage, and several challenges must be addressed to
fulfill its potential. One of the major challenges is the need for large
amounts of high-quality training data. Developing Al algorithms
for endoscopic diagnosis requires large datasets with annotated en-
doscopic images and clinical data that are time-consuming and
costly to acquire. Other challenges are the possibility of overfitting
and bias in Al algorithms. Overfitting occurs when an Al algorithm
is trained on a dataset that is too small or too homogeneous, and
because of that, it performs poorly on new data. Biases occur when
Al algorithms are trained on datasets that do not represent the tar-
get population and thus may result in inaccurate or unfair results.
To address these challenges, future research should focus on devel-
oping large, diverse EUS images, and clinical datasets, as well as
developing more powerful and transparent Al algorithms. It is also
important to note that there are very few prospective studies on Al
in the diagnosis or prediction of clinical outcomes and even fewer
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user-centered algorithms. Artificial intelligence technology can be
smoothly embedded in the clinical diagnosis and treatment link
only through strict demonstration and research under repeated
verification in the real environment to realize a perfect combina-
tion of Al and the artificial process

A more serious problem is how to establish a sound Al medical
malpractice accountability system. Artificial intelligence technol-
ogy will undoubtedly change the traditional doctor-patient rela-
tionship, and the inherent reason for this change is the potential
shift in doctors' personal sense of responsibility. For example, in
regard to predicting the nature of digestive tract tumors, misjudg-
ments caused by Al can allow patients to undergo unnecessary
surgery or delay treatment. There are multiple sources of account-
ability: doctors, vendors of software platforms, developers who
build algorithms, and training data. The establishment of a perfect
accountability system is an important link in the clinical applica-
tion of digestive endoscopy, but how to divide the responsibility
still needs to be clarified.
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