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ABSTRACT
Cancer is a disease affecting increasing numbers of people. In the UK, the proportion of people
affected by cancer is projected to increase from 1 in 3 in 1992, to nearly 1 in 2 by 2020.
Health services to tackle cancer can be grouped broadly into prevention, diagnosis, staging,
and treatment. We review examples of Operational Research (OR) papers addressing decisions
encountered in each of these areas. In conclusion, we find many examples of OR research on
screening strategies, as well as on treatment planning and scheduling. On the other hand, our
search strategy uncovered comparatively few examples of ORmodels applied to reducing cancer
risks, optimising diagnostic procedures, and staging. Improvements to cancer care services have
been made as a result of successful OR modelling. There is potential for closer working with
clinicians to enable the impact of other OR studies to be of greater benefit to cancer sufferers.
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1. Introduction

In the UK, the proportion of people affected by cancer
is projected to increase from 1 in 3 in 1992, to nearly
1 in 2 by 2020 (Macmillan Cancer Support, 2013). Na-
tional cancer services must deal with almost 340,000
new cancer cases yearly, in addition to continued care
for patients previously diagnosed (Macmillan Cancer
Support, 2014). The cancer care system is comprised of
prevention, diagnosis, staging, and treatment services.
Prevention includes screening a target population for
cancers that are not yet showing symptoms (National
Health Service, 2016) and encouraging lifestyle changes
to lower cancer risk. Cancers are diagnosed follow-
ing an abnormal screening result or development of
suspicious symptoms. Following a cancer diagnosis,
staging is a way of describing the size of the cancer and
how much it has spread (Cancer Research UK, 2016).
The stage and type of cancer affect which particular
combination of treatments is most appropriate (Na-
tional Cancer Institute, 2016a). There are a variety of
treatments used in curing cancer, as well as adjuvant
treatments to lower the risk of the cancer returning
and palliative treatments to relieve symptoms (National
Cancer Institute, 2016b).

Operational research (OR) is the “discipline of ap-
plying advanced analyticalmethods to helpmake better
decisions” (The OR Society, 2016). The goal of this pa-
per is to demonstrate the breadth of problems in cancer
care that have been addressed with OR approaches.
These methods have been successfully applied (and
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have the potential to help further) in medical decision-
making for a variety of chronic diseases, as described in
the literature reviews by Denton, Alagoz, Holder, and
Lee (2011) and Capan et al. (2017). The latter review
is particularly accessible to those less familiar with OR
techniques. Further, the review by Steimle and Denton
(2016) concentrates on applications of two particular
OR methods, Markov decision processes and partially
observable Markov decision processes, to prevention,
detection, and treatment of chronic diseases. All of the
aforementioned reviews contain cancer care examples,
but unlike this review that is not their sole focus. Price,
Golden, Wasil, and Denton (2016) review OR papers
specifically addressing prostate cancer. There are also
existing specialised reviews of OR work that focus on
particular aspects of cancer care, which are described
in the appropriate sections of this paper. However this
review is, as far as we are aware, the first to provide
examples ofORpapers throughout cancer care services,
without focussing on a particular cancer type.

In particular, we review OR papers addressing the
different decisions encountered in cancer prevention,
diagnosis, staging, and treatment services. We provide
a sample of OR papers applied to decisions in each
of these areas, rather than generating an exhaustive
survey. The goals are to illustrate the types of cancer
care-related questions that OR has helped to answer, as
well as giving examples of different techniques that have
been applied. This is a scoping rather than systematic
review, since it is wide rather than deep (for example,
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if this were a systematic review, we would have listed all
possibleOR techniques as search terms). Consequently,
our search will not have found all OR papers for cancer
care, but it did yield a large sample of papers addressing
a variety of questions throughout cancer care services.

We searched for relevant literature using theUniver-
sity of Southampton’s search engine DelphiS (Univer-
sity of Southampton, 2016). This covers a large number
of databases including Scopus and JSTOR, which are
two of themostwidely used academic databases (Brails-
ford, Harper, Patel, & Pitt, 2009), as well as the biomed-
ical and health database MEDLINE. We searched for
“cancer” in abstracts, and “operations research” or “op-
erational research” in the full text, yielding 1536 papers.
Wefiltered this list by adding search terms (in abstracts)
as follows: “screen∗ OR prevent∗” to find papers on
prevention, “diag∗ OR stag∗” to find papers on diag-
nosis and staging papers, and “treat∗” to find papers
about treatment services. Additional papers found via
other routes that met the goals of the review were also
included. Papers were checked for relevance based on
their abstracts; papersweredeemed relevant if theyused
OR techniques to support decision-making in cancer
care and the full text was accessible. Since we wish to
show the range of problems addressed, we prioritise
showing examples of different decision areas rather
than many from the same area. That is why, for ar-
eas that have existing specialised literature reviews, we
direct readers to these and provide onlymore recent ex-
amples. When finding recent examples of chemother-
apy, surgery and radiotherapy papers we filtered the list
using the following search terms: “chemo∗”, “surg∗”,
“radio∗” and “radiation”. This review describes 29 ex-
amples of OR applied to cancer prevention, 6 to diag-
nosis, 1 to staging and 44 to treatment.

This paper proceeds as follows. We review OR pa-
pers addressing cancer prevention, diagnosis and stag-
ing, and treatment services in turn (see Tables 1–4).
Within these sections, papers are grouped in terms of
what problem they are addressing. When discussing
the papers, we describe their goals, the techniques used
and if present, any evidence of implementation. The
performance measures of papers are summarised in
Table 5. The findings of our review are presented in
the “Conclusion and discussion” section, along with
opportunities for further research.

2. Cancer prevention

It is estimated that about half the cases of the 11 most
common cancers are preventable (Soerjomataram, De
Vries, Pukkala, & Coebergh, 2007). The risk of devel-
oping these cancers can be reduced by lifestyle changes
such as stopping smoking, reducing alcohol intake, and
exercising. According to Cancer Research UK (2016),
some further cancer risk factors are as follows.

Certain infections, for instance HPV and hepatitis B,
can increase the risk of developing cancer. These are
preventable through vaccination. Other risk factors are
occupation-related or environmental, for example ex-
posure to asbestos and sunlight. However there are
risk factors for cancers that are not controllable; higher
age and a family history of cancer both increase the
chances of developing certain types of cancer. In recent
years, genetic testing has started to be available to assess
whether a person has inherited so-called cancer suscep-
tibility genes (Macmillan Cancer Support, 2016). This
has proved controversial because even if a person has a
gene that signals they are at higher risk, this still does
not mean they will definitely contract cancer.

At what stage of the disease a person is diagnosed
can affect treatment decisions and ultimately survival
chances. For this reason, screening programmes are
offered for common cancers in an attempt to diag-
nose cases earlier, sometimes at the pre-cancerous stage
(National Health Service, 2016). The harms and bene-
fits of screening tests must be carefully balanced when
deciding which screening method to use, who should
be invited for screening and what the time interval
between screening tests should be Sense about Science
(2015). Screening methods are selected by trading-off
cost and accuracy. The target population is chosen be-
cause it is predicted that they will benefit most, when
taking into account harms. If the screening interval is
too long, cases which develop between screens (interval
cancers) will be missed. However screening too often
increases harms such as increased exposure to radiation
from mammograms.

First we discuss papers relating to reducing cancer
risks, then screening strategies, followed by locating
screening facilities. Next, papers on evaluating pro-
cess changes to screening services and following up
screening tests are reviewed. Finally, we describe two
other screening-related studies, which address schedul-
ing and the measurement of screening effectiveness.
Tables 1 and 2 summarise key information about these
papers.

2.1. Reducing cancer risks

Using our previously described search strategy, we
found only twoORpapers looking at cancer prevention
through reducing cancer risks. Hall, Hershey, Kessler,
and Stotts (1992) address smoking, a well-known risk
factor for lung cancer, while Kim, Campos, O’Shea,
Diaz, andMutyaba (2013) are concernedwithHPVvac-
cination, to prevent cervical cancer. We discuss these
papers in turn.

Hall et al. (1992) investigate how best to choose
between proposed projects to reduce the number of
smokers in the USA. Stakeholders participated first in
a modified Delphi process to determine appropriate

HEALTH SYSTEMS 53



Table 1. Examples of OR applied to cancer prevention.

Problem Reference Cancer type Aim Techniques

Reducing cancer risk
Hall et al. (1992)

Lung Choosing which anti-smoking
proposals to fund

Modified Delphi process,
optimisation (binary integer
program)

Reducing cancer risk
Kim et al. (2013)

Cervical Analysing cost-effectiveness of
HPV vaccination at country-level

Discrete time microsimu-
lation and static cohort
simulation

Locating screening facilities
Haase and Müller (2015)

Breast Optimization of preventive
health care facility locations

Multinomial logit model
within linear optimisation

Locating screening facilities
Gu et al. (2010)

Breast Optimization of preventive
health care facility locations

Multi-objective
optimization, heuristic

Evaluating process changes to
screening services Zai et al. (2014)

General Evaluating the impact of intro-
ducing a screening invitation
system

Discrete-event simulation
(DES)

Evaluating process changes to
screening services Pilgrim and Chilcott (2008)

Cervical Evaluating impact of process
changes on reporting process

DES

Following up screening tests
Alagoz et al. (2013)

Breast Optimising use of biopsies and
follow-up mammograms

Bayesian network, Markov
decision process (MDP)

Following up screening tests
Chhatwal et al. (2010)

Breast Optimising use of biopsies Bayesian network, MDP

Improving measurement of
screening effectiveness Vieira et al. (2011)

General Comparing severity of tumours
detected by screening com-
pared to self-detected tumours

Discrete time simulation

Scheduling screening appoint-
ments Baker and Atherill (2002)

Breast Optimization of appointment
schedule given attendance
probability

Simulation-optimisation,
heuristic

Table 2. Examples of OR applied to cancer screening strategies.

Reference Cancer type Aim Techniques

Arrospide et al. (2015) Breast Evaluation of screening strategy Discrete event simulation
(DES)

Ayer et al. (2012) Breast Optimising risk-based screening policy Partially observable Markov
decision process (POMDP)

Ayer (2015) Breast Finding sensitivity and screening values for
which a screening policy is optimal

Partially observable Markov
chain (POMC), non-linear
program (inverse optimisa-
tion), heuristic algorithm

Ayer et al. (2016) Breast Optimising risk-based screening policy consid-
ering adherence

POMDP

Brailsford et al. (2012) Breast Comparing fixed-interval and age-based
screening strategies considering adherence

DES, logistic regression

Madadi et al. (2015) Breast Comparing wide range of fixed-interval and
age-based screening strategies considering
adherence

POMC

O’Mahony et al. (2015) Breast Optimising risk-based screening policy Mathematical model
Tejada et al. (2014) Breast Comparing fixed interval, risk-based and

factor-based screening strategies
DES and system dynamics
(SD)

Tejada et al. (2015) Breast Development of natural history of cancer
model for use in above paper

DES and SD

Wang and Zhang (2017) Breast Optimising risk- and age-based screening
policy

Logistic regression, misclas-
sification cost criterion

Campbell et al. (2017) Colorectal Evaluating effect of screening of average risk
individuals on colonoscopy resources required

DES

Erenay et al. (2014) Colorectal Optimising age-, gender-, and risk-dependent
screening policy

POMDP

Hosking et al. (2013) Colorectal Comparing interventions to increase screening
level

DES and SD

Li et al. (2014) Colorectal Comparing fixed-interval and observation-
based screening strategies

POMC

Li et al. (2015) Colorectal Optimising age-, risk-dependent and
observation-based screening policy
considering adherence

POMDP

Song and Wang (2016) Colorectal Comparing fixed-interval and observation-
based screening strategies

Monte Carlo simulation of
Markov model

McLay et al. (2010) Cervical Optimising age-dependent screening policy Simulation-optimisation
Rauner et al. (2010) General chronic diseases,

case study for breast cancer
Optimising fixed-interval screening strategies
for different risk groups

Multi-objective
optimisation, metaheuristic
(Pareto ant colony
optimisation)

Bertsimas et al. (2016) Prostate Finding optimal fixed-interval screening
strategies according to multiple models

Multi-objective
optimisation, local search
heuristic
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decision criteria and then answered a questionnaire to
decide on their relative importance. This led to develop-
ment of a binary integer programwhich allocates funds
between proposals based on budgetary constraints and
how well the proposals meet the criteria. Using this
approach, (Hall et al., 1992) were able to improve on
the originally suggested selections of proposals, and it
is reported that their recommendations were followed.

Kim et al. (2013) assess in which of 20 countries an
HPV vaccination programme would be cost-effective,
as well as modelling cytology-based screening in three
countries where sufficient data were available. For this,
they developed two simulation models: a population-
level cohort simulation as well as an individual-level
microsimulation. Results are given in terms of avoided
cervical cancer cases and deaths, disability-adjusted life
years (DALYs) and cost-effectiveness ratios. They
showed that vaccination is cost-effective in most coun-
tries if the vaccine has a relatively low cost, but at higher
costs, screening alone is more cost-effective in the three
countries where this is considered.

2.2. Screening strategies

Screening strategies consist of who to invite, how of-
ten and which test to use. Evaluating and comparing
screening strategies is a popular topic among OR and
statistics researchers, with a series of review papers
having been published covering this topic (Heiden-
berger, 1996; Knudsen, McMahon, & Gazelle, 2007;
Pierskalla & Brailer, 1994; Stevenson, 1995). Most re-
cently, Alagoz, Ayer, and Safa Erenay (2011) system-
atically reviewed those papers not described in detail
previously. Screening models can be classified as either
simulation or analytical. Both are powerful techniques
but have downsides; simulations can only compare a
relatively small number of scenarios, whereas analyti-
cal models tend to make some unrealistic simplifying
assumptions (Alagoz et al., 2011). Furthermore, Alagoz
et al. (2011) stress the importance of using reliable data
to develop models. Koleva-Kolarova, Zhan, Greuter,
Feenstra, andDeBock (2015) provide a recent review of
papers using simulation to assess breast cancer screen-
ing strategies in particular. Here the focus is on models
that feature inmultiple publications.Thesemodels have
been used to influence screening decisions in different
settings, although (Koleva-Kolarova et al., 2015) warn
that they have not been validated with data outside the
setting for which they were originally developed.

Given the vast body of literature in this area, we
here only provide examples published since Alagoz et
al.’s (2011) review. Table 2 displays key information
about such papers that were uncovered by our search:
aims, techniques, and cancer types. We next discuss
further details about these papers, starting with those
addressing breast cancer, then colorectal cancer and
finally other or unspecified cancers.

2.2.1. Breast cancer screening strategies
The majority of breast cancer screening papers either
comparemammogram screening strategies (Brailsford,
Harper, & Sykes, 2012; Madadi, Zhang, & Hender-
son, 2015; Tejada et al., 2014) or optimise the decision
of whether to mammogram or not each year (Ayer,
Alagoz, & Stout, 2012; O’Mahony et al., 2015; Ayer,
Alagoz, Stout, & Burnside, 2016;Wang&Zhang, 2017).
Of these, Madadi et al. (2015) consider an especially
large set of screening strategies. There has been a shift
in focus away from the fixed-interval policies that are
common in practice, to consideration of dynamic
screening intervals (Ayer et al., 2012; Brailsford et al.,
2012; Tejada et al., 2014;Madadi et al., 2015; O’Mahony
et al., 2015; Ayer et al., 2016; Wang & Zhang, 2017).
These dynamic intervals may vary based on changing
risk, age and adherence to screening guidelines. Adher-
ence is modelled in a range of ways from detailed psy-
chological models of behaviour (Brailsford et al., 2012),
to changing physician belief about which patients are
regular or irregular screeners (Ayer et al., 2016), and
to uncertain adherence probabilities based on age and
screening interval (Madadi et al., 2015). Arrospide et al.
(2015), on the other hand, aim to evaluate how well a
particular screening strategy is likely to perform in the
long run based on short term real-world results. When
choosing a screening method, there is a trade-off be-
tween sensitivity, the probability of screening correctly
identifying a person with cancer, and specificity, the
probability of screening correctly identifying a person
without cancer. Ayer (2015) assess for what range of
sensitivity and specificity values a screening interval is
best. If more accurate screening tests are introduced
in future, the ongoing appropriateness of the screening
interval can be judged by this model.

Both simulation (Arrospide et al., 2015; Brailsford
et al., 2012; Tejada et al., 2014, 2015) and analytical
(Ayer et al., 2012; Ayer, 2015; Ayer et al., 2016; Madadi
et al., 2015; O’Mahony et al., 2015; Wang & Zhang,
2017) techniques are used to model breast cancer pro-
gression and the screening process, as in earlier pa-
pers. There are some very sophisticated models com-
bining multiple approaches, for example Tejada et al.
(2014; 2015) combine system dynamics with detailed
discrete event simulations. Contrastingly, O’Mahony et
al. (2015) purposely built a relatively simple mathemat-
ical model, validated its results against a more complex
simulation and found that their model was detailed
enough to demonstrate that different risk levels have
different optimal screening intervals. The performance
measures assessedby themodels are diverse and include
mortalitymeasures (Arrospide et al., 2015; Brailsford et
al., 2012; Madadi et al., 2015; Tejada et al., 2014; Wang
& Zhang, 2017), quality-adjusted life year measures
(Ayer et al., 2012; Ayer, 2015; Ayer et al., 2016; Madadi
et al., 2015; Tejada et al., 2014) and cost-effectiveness
measures (O’Mahony et al., 2015; Tejada et al., 2014).
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2.2.2. Colorectal screening strategies
Screening methods for colorectal cancer include faecal
occult blood test (FOBT) and colonoscopy. Hosking,
Roberts, Uzsoy, and Joseph (2013), Erenay, Alagoz, and
Said (2014) and Li, Zhu, Klein, and Kong (2014) fo-
cus on colonoscopy only screening strategies, while Li,
Dong, Ren, and Yin (2015), Song andWang (2016) and
Campbell, Blake, Kephart, Grunfeld, and MacIntosh
(2017) consider two-step strategies that follow a non-
invasive test with a colonoscopy for those patients that
need it. Themajority of these papers compare screening
strategies (Li et al., 2014; Song & Wang, 2016) or opti-
mise the yearly screening decision (Erenay et al., 2014;
Li et al., 2015). In all cases, dynamic screening intervals
are evaluated, including so-called “observation-based”
strategies (Li et al., 2014; Li et al., 2015; Song & Wang,
2016), which use the results of the previous screen
to inform the next screening interval. Li et al. (2015)
consider patients with a range of adherence probabil-
ities. A different problem is tackled by Campbell et
al. (2017), who investigate the effect of screening the
general population on colonoscopy resources available
to other groups, such as surveillance and high risk (see
also the paper by Güneş, Örmeci, and Kunduzcu, 2015
discussed in the next section). Hosking et al. (2013)
instead look at how to increase the proportion of the
population screened through both supply and demand
interventions.

Similar techniques are used for colorectal screen-
ing as for mammography: simulation (Campbell et al.,
2017; Hosking et al., 2013; Song & Wang, 2016) and
analytical (Erenay et al., 2014; Li et al.; 2015). A com-
bination of discrete event simulation and system dy-
namics is applied to understand the likely impacts of
different interventions hoped to increase the screening
level (Hosking et al., 2013). Both papers optimising the
colorectal screening decision each year use partially
observable Markov decision processes (Erenay et al.,
2014; Li et al., 2015). Screening strategies are compared
in terms of quality-adjusted life years in most cases
(Erenay et al., 2014; Li et al., 2014; Li et al., 2015). Li
et al. (2014) also consider total cost, while Song and
Wang (2016) derive a new cost-effectiveness measure.

2.2.3. General cancer and other cancer screening
strategies
Finally, we discuss papers addressing screening models
for other cancers, as well as general screening models.
One paper is about cervical cancer screening through
pap smears (McLay, Foufoulides, & Merrick, 2010),
one is for general cancer screening with an application
to prostate cancer screening (Bertsimas, Silberholz, &
Trikalinos, 2016) and the other is a model for general
chronic diseases, with a case study for breast cancer
screening (Rauner, Gutjahr, Heidenberger, Wagner, &
Pasia, 2010). McLay et al. (2010) and Rauner et al.
(2010) both develop new models to optimise screening

policies, while Bertsimas et al. (2016) combine rec-
ommendations from multiple existing models to find
screening strategies that balance being optimal on aver-
age with those being optimal according to themost pes-
simisticmodel. Both Bertsimas et al. (2016) and Rauner
et al. (2010) limit the policies under consideration to
fixed interval, but McLay et al. allow the screening
interval to vary with age. A strength of Rauner et al.’s
(2010)model is that it can be used to optimise screening
strategies across several diseases simultaneously.

Different techniques are used than in the breast and
colorectal papers described above. McLay et al. (2010)
develop a simulation-optimisation model, while both
Rauner et al. (2010) and Bertsimas et al. (2016) for-
mulate multi-objective optimisation problems that are
solved with metaheuristics and a local search heuristic,
respectively. McLay et al. (2010) consider three differ-
ent performance measures (number of cervical cancer
deaths, number of life years lost due to cervical cancer
and cervical cancer incidence), and optimise separately
for each of them. Rauner et al. (2010) and Bertsimas et
al. (2016) assess models in terms of quality-adjusted life
years; Rauner et al. (2010) also set a budget constraint.

2.3. Locating screening facilities

Gu,Wang, andMcGregor (2010) andHaase andMüller
(2015) aim to determine the best locations for screening
facilities. Both case studies involve locating breast can-
cer screening services. Haase and Müller (2015) extend
previous work by Zhang, Berman, and Verter (2012)
who incorporated a discrete choice model inside an
optimisation.Haase andMüller (2015) reformulate this
non-linear model so that it is linear and able to solve
mid-size instances to optimality or close to optimal-
ity within one hour. Gu et al. (2010), on the other
hand, solve their multi-objective optimisation with a
heuristic, which consists of trying to improve upon the
position of each facility one at a time.

The authorsmeasure the suitability of location sets in
different ways. Haase andMüller (2015) fix aminimum
demand at each centre in order to ensure quality, and
choose the location set that maximises participation
in screening. However Gu et al. (2010) maximise both
the efficiency, which is a measure of fairness and is
the sum of weighted accessibility values, and the cov-
erage, which measures how many people are within
an acceptable distance of a facility. In their case study,
the optimum solution improves both the efficiency and
coverage with fewer facilities compared to the current
set-up.

2.4. Evaluating process changes to screening
services

Pilgrim and Chilcott (2008) and Zai et al. (2014) both
evaluate process changes to screening services. In par-
ticular, Pilgrim and Chilcott (2008) model the process
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for reporting cervical smear test results, from the time
of the smear test until patients receive results. Zai et al.
(2014) instead measure the long-term effect of intro-
ducing a screening appointment system, by modelling
the IT workflow and staff responsible for communi-
cating reminders. Both studies employ discrete event
simulation, which allows the authors to experiment
with different changes to the current processes. The aim
of Pilgrim and Chilcott’s (2008) work is to find ways to
reduce the length of time patients wait for results while
Zai et al.’s (2014) performance measure is the average
number of overdue screenings per patient.

Pilgrim and Chilcott (2008) found that liquid-based
cytology should reduce the time patients wait for re-
sults, and with some additional minor changes, could
reach 95% receiving results within two weeks, as well
as being cost-saving in the long run. Their results were
communicated toUKGovernmentministers and so in-
formed thinking about policy changes. The simulation
developed by Zai et al. (2014) predicted that the invi-
tation system would reduce overdue screenings per pa-
tient compared to the current process, in the long run.
Perhaps unsurprisingly, they also found that increasing
intervals between screens and increasing numbers of
staff involved with the invitation process both reduced
overdue screenings.

2.5. Following up screening tests

Two related papers address how patients should be
managed following abnormal mammogram results
(Chhatwal, Alagoz, & Burnside, 2010; Alagoz, Chhat-
wal, & Burnside, 2013). The aim is to identify those
patients at high enough risk of breast cancer to justify
the expense, worry and possible harm caused by car-
rying out further tests. The risk of cancer is calculated
frommammogram results and demographic data using
a Bayesian network (Chhatwal et al., 2010), and these
risk scores are also used by Alagoz et al. (2013). Both
papers formulate the problem as a Markov decision
process and aim to maximise total expected quality-
adjusted life years. Chhatwal et al. (2010) optimise the
decision of whether or not to biopsy, while Alagoz et al.
(2013) additionally consider follow-up mammograms
as an option. Chhatwal et al. (2010) find that the risk
threshold at which patients should be biopsied depends
on age. According to Alagoz et al.’s (2013)model, fewer
biopsies and follow-up mammograms should be car-
ried out than were recommended by radiologists.

2.6. Other screening-related studies

Here we discuss two further examples of OR work
related to cancer screening. Firstly, Baker and Ather-
ill (2002) schedule screening appointments for breast
cancer. They predict individual no-show probabilities
based upon previous attendance behaviour, then de-
velop a simulation model and a heuristic procedure to

optimise a combination of waiting time, idle time, and
overtime. It was found that screening sessions should
start with the patients who are most likely to attend,
and end with some overbooked appointments. This is
predicted to increase throughput by 10%.

Secondly, Vieira, de Senna, Harper, and Shahani
(2011) aim to improve how screening effectiveness is
measured. In particular, they compare the severity of
breast cancer detected by screening to self-detected
breast cancers. This is achieved by fitting distributions
to data on tumour size and developing a simulation
model of tumour progression, screening and self-
detection. The output is tumour doubling times for
screen-detected and self-detected cancers. It was found
that the increased survival benefits achieved through
screening for cancer at fixed intervals have been over-
estimated, due to so-called “length bias”. This means
that slower growing tumours aremore likely than faster
growing tumours to bedetected at the timeof screening,
rather than being self-detected in between screens.

3. Cancer diagnosis and staging

Cancers are diagnosed following an abnormal screen-
ing result, development of suspicious symptoms or in-
cidental detection when examining patients for other
reasons, for example after being admitted through the
emergency department or during an unrelated medical
consultation (Elliss-Brookes et al., 2012). After screen-
ing, patients with abnormal results are typically invited
for further diagnostic tests to confirm or exclude a
cancer diagnosis. In the UK, patients who self-detect
suspicious symptoms are encouraged to visit their GP
who will refer them to a specialist diagnostic clinic
if necessary. Patients who have been diagnosed with
cancer may undergo further tests to determine the size
of the cancer and how much it has spread (Cancer
Research UK, 2016). This staging process helps to de-
termine the most appropriate treatment.

Any models about cancer diagnosis whose main fo-
cus is screening asymptomatic patients were described
in the previous section. Other OR applications to can-
cer diagnosis, as well as staging, are described in this
section. Note that there are also papers predicting a
patient’s risk or stage of cancer in the related areas of
data mining and statistics, which we do not discuss
here (see for example Hippisley-Cox and Coupland,
2013a; 2013b). We discuss papers on managing diag-
nostic resources, then optimising diagnostic tests and
finally staging accuracy. Summaries of these papers are
displayed in Table 3.

3.1. Managing diagnostic resources

This subsection describes some papers on how best
to manage diagnostic resources. We discuss papers on
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Table 3. Examples of OR applied to cancer diagnosis and staging.

Problem Reference Cancer type Aim Technique

Managing diagnostic resources Lee et al. (2014) General What is optimal schedule
for producing and delivering
nuclear medicine to hospitals?

Mixed-integer program,
metaheuristics

Managing diagnostic resources Güneş et al. (2015) Colorectal What capacity of colonoscopy
resources should be allocated
to screening and diagnosis?

Compartmental models,
system dynamics (SD)

Managing diagnostic resources Örmeci et al. (2016) Colorectal How to dynamically priori-
tise screening and diagnostic
colonoscopies

Markov decision process,
event-based dynamic pro-
gramming

Managing diagnostic resources Berg et al. (2010) Colorectal Testing potential impact of
changes to resource use

discrete event simulation
(DES)

Managing diagnostic resources Berg et al. (2013) Colorectal Comparing overbooking and
strategies to reduce no-shows
on clinic performance

DES

Optimising diagnostic proce-
dure

Sofer et al. (2003) Prostate Optimising biopsy positions Non-linear integer pro-
gram, generalised decom-
position algorithm

Staging accuracy Ekaette, Lee, Kelly, and Dunscombe (2006) Breast What is the chance of mis-
staging patients and providing
wrong treatment?

Monte Carlo simulation

scheduling production and delivery, allocating
resources and evaluating service improvements in turn.

Nuclear medicine can aid in the diagnosis and
monitoringof cancer. Lee,Kim, Johnson, andLee (2014)
formulate a mixed-integer program of the production
and delivery schedule for nuclear medicine, given the
time limit on its effectiveness. They apply ametaheuris-
tic consisting of five algorithms to find solutions with
low cost. For example, in their case study, they are able
to reduce the number of vehicles needed by between
two and three. This problem is in some respects sim-
ilar to the problem solved by Chahed, Marcon, Sahin,
Feillet, and Dallery (2009), which is described in the
“Access to treatment” section.

Güneş et al. (2015) address the tactical decision of
how best to allocate colonoscopy resources between
screening and symptomatic patients. Relatedly,Örmeci,
Günes, and Kunduzcu (2016) model the operational
decision of how to dynamically prioritise screening and
symptomatic patients. These are both somewhat similar
to the paper by Campbell et al. (2017) described pre-
viously in the “Colorectal screening strategies” section,
but they use different techniques and address slightly
different questions. Güneş et al. (2015) develop com-
partmental models, where each compartment contains
patients in the same disease stage and the same health
service stage. Differential equations calculate the rate
at which the population progress through these stages.
Using a system dynamics simulation, the authors find
that less capacity should be allocated to screening if
the mortality rate is more important than the incidence
rate. On the other hand, Örmeci et al. (2016) develop a
Markov decision processmodel and apply event-driven
dynamic programming. Since preventive services lower
the demand for symptomatic colonoscopies, the au-
thors show that for certain parameters it would be
optimal (from a cost perspective) to prioritise screen-

ing. However when applying their model to real data
on colonoscopy services, they find that symptomatic
patients should be prioritised.

Berg et al. (2010, 2013) also investigate colonoscopy
procedures, but unlike Güneş et al. (2015), they use
discrete event simulation. Berg et al. (2010) experi-
ment with changing the staff-to-room ratio, appoint-
ment times and turnaround time. On the other hand,
Berg et al. (2013) investigate the effect of overbook-
ing versus alternative strategies to reduce missed ap-
pointments. In terms of assessing performance, Berg
et al. (2010) consider throughput and a range of re-
source utilisation measures. Berg et al. (2013) com-
bine operating costs, waiting time, and overtime costs
into a single performance measure that represents ex-
pected net gain. Berg et al. (2010) recommend that
there should be at most two rooms per endoscopist
and that the gap between patient appointments should
be increased by five minutes, which would decrease
waiting time without lengthening the clinic day. Berg et
al. (2013) find that overbooking is the most successful
strategy.

3.2. Optimising diagnostic procedures

Sofer, Zeng, and Mun (2003) optimise how biopsies
are used to detect prostate cancer. In particular, they
analyse prostate specimens to findout how likely cancer
is to affect different parts of the prostate. Then they
formulate a non-linear program to find the best nee-
dle locations to maximise the probability of detecting
cancer in affected patients. Their method accounts for
randomness in the exact positioning, depth and angle
of the biopsy needle. The authors were able to improve
the chance of detecting cancer compared to the current
biopsy positioning rules, without increasing the num-
ber of samples taken.
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3.3. Staging accuracy

Ekaette et al. (2006) use a Monte Carlo simulation to
model staging and radiation treatment of post-surgery
breast cancer patients. The aim is to determine how
often a mistake is made in determining the stage of
cancer, leading to patients not receiving the most effec-
tive treatment. Additionally, the expected information
value of each combination of tests in identifyingmetas-
tases (secondary tumours) is calculated. It is found that
there is a small chance of patients being misstaged and
hence receiving the wrong type of radiation treatment.

4. Cancer treatment

The appropriate treatment or combination of treat-
ments depends on the type of cancer and stage. Ad-
ditionally, personal preferences regarding convenience
and potential side effects also affect choice of treatment.
Many cancers are treated by performing surgery to
remove the tumour, and other common treatments
are chemotherapy and radiotherapy (Macmillan Can-
cer Support, 2016).Another treatment is photodynamic
therapy which involves drugs called photosensitisers
that are activated by light. Cancer patients may need
to attend clinics regularly for treatment or be supplied
with medicines in their homes, so planning access to
treatment is important. Cancer treatment centres are
concerned with how best to organise their services to
meet performance measures, and indeed what these
performance measures should be.

Cancer surgerymay remove all or part of the tumour.
Patients undergoing surgery will likely need to spend
some time in hospital afterwards to recover, which
means there is an interaction between operating room
workload and workload in inpatient wards. Multidisci-
plinary teamsmay be needed to perform these complex
surgeries, which means scheduling should take into
account the availability of different professionals.

Chemotherapy requires patients to take drugs that
are designed to destroy cancer cells. Unfortunately,
healthy cells may also be damaged, and some of the
drugs have harmful side effects. Patients taking the
drugs orally may stay at home, but when the treatment
is fed into a vein, patients typically visit an outpa-
tient clinic (Cancer Research UK, 2016). Outpatient
chemotherapy visits are complicated to schedule be-
cause patients receive this treatment in cycles, where
the gap between visits is different for different patients.
Since pharmacists prepare drugs specially for each pa-
tient, drugs may go to waste if patients are too ill for
treatment.

Radiation treatment may be internal or external.
There is a balance between providing a high enough
dose to cancer cells while keeping the dose reaching
the surrounding normal tissues and organs low. Inter-
nal radiation treatment consists of radioactive sources

being placed inside the body (Macmillan Cancer Sup-
port, 2016). When the radioactive sources are solid,
this is known as brachytherapy, which can be delivered
in low or high doses, through permanent or temporary
implants. In radioisotope therapy, radiation is delivered
through injections, capsules, or drinks.

External radiotherapy consists of targeting the can-
cer site with X-ray beams using a linear accelerator
(LINAC) machine (Cancer Research UK, 2016). Pa-
tients must undergo a pre-treatment assessment in-
volving imaging, for the specialists to decide the area
to target, the appropriate dosage and how to configure
the LINAC. 3D conformal radiotherapy uses multileaf
collimators to block parts of the beams to match the
shape of the tumour. Intensity-modulated radiotherapy
(IMRT) is a more advanced method where the beams
are divided into beamlets with different intensities.

This section proceeds as follows. First, we discuss
OR models relating to treatment decisions, then access
to treatment followed by performance of cancer treat-
ment centres. Then we address scheduling of cancer
surgery, chemotherapy and radiotherapy. Chemother-
apy planning and different types of radiotherapy plan-
ning are addressed next. We finish the section with
other treatment-related studies (deciding which drugs
to produce in advance, and planning photodynamic
therapy). The papers are summarised in Table 4.

4.1. Treatment decisions

There are examples of OR techniques helping with pa-
tients’ cancer treatment decisions (Simon, 2009; Suner,
Çelikoğlu, Dicle, & Sökmen, 2012; Utley, Paschalides,
& Treasure, 2006). These studies are about various dif-
ferent cancer types and treatment options. Utley et
al. (2006) focus on whether patients who have had
surgery that appears to have cured their non-small cell
lung cancer should have chemotherapy afterwards. Si-
mon (2009) addresses the choice of prostate cancer
treatments, while Suner et al. (2012) model the two
sequential decisions of renal cancer treatments. A range
of techniques are applied. Utley et al. (2006) develop a
mathematical model based on proportional hazards, in
order to calculate the survival benefit of chemother-
apy depending on its hazard ratio and the patient’s
stage of disease. The outcome of the model is the aver-
age additional months survival over a five-year period,
and ranges from zero to twelve months. Contrastingly,
Suner et al. (2012) use the analytic hierarchy process
to merge five experts’ opinions on the importance of
criteria in making two sequential treatment decisions.
They find that the judgements of individuals are consis-
tent, and represent the results in decision tree format.
Finally, Simon’s (2009) decision tool asks patients to
quantify the expected influence of each treatment side
effect on their quality of life. These are combined with
the survival impacts of treatments and side effects to
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Table 4. Examples of OR applied to cancer treatment.

Problem Reference Focus Aim Technique

Treatment
decision Utley et al. (2006)

Non-small cell
lung cancer

Calculating survival benefit of post-
operative chemotherapy on patients
with different stages of cancer

Mathematical modelling involving a
proportional hazard model

Treatment
decision Suner et al. (2012)

Renal cancer Develop a decision support for
primary and additional treatments
based on differing expert opinions

Analytic hierarchy process (AHP),
sequential decision tree

Treatment
decision Simon (2009)

Prostate cancer Developing tool for patients to
choose between treatments

Decision analysis

Access to treat-
ment Cotteels et al. (2012)

Radiotherapy Optimising locations of treatment
centres

Optimisation, p-median method

Access to treat-
ment Chahed et al. (2009)

Chemotherapy What is the optimal schedule for pro-
ducing and delivering chemotherapy
to patients at home?

Travelling salesman and scheduling,
branch and bound

Performance of
cancer treatment
centres

Santos et al. (2007)
Radiotherapy Designing appropriate performance

criteria
System dynamics (SD) and multi-
criteria decision analysis

Performance of
cancer treatment
centres

Baesler and Sepúlveda
(2001)

Chemotherapy How many resources (treatment
chairs, nurses, laboratory staff and
equipment, and pharmacy staff and
equipment) are required?

Goal programming simulation-
optimisation, genetic algorithm

Performance of
cancer treatment
centres

Matta and Patterson (2007)
Chemotherapy
and radiotherapy

Compare strategies to improve
performance of treatment centre

Discrete event simulation (DES)

Performance of
cancer treatment
centres

Werker et al. (2009)
Radiotherapy
planning

Compare strategies to reduce treat-
ment planning time

DES

Scheduling
Mutlu et al. (2015)

Breast surgery Optimising multidisciplinary team
schedules

Integer program, simulation

Scheduling
Lim et al. (2016)

Surgery Optimise assignment of nurses to
surgery cases and optimise lunch
breaks

Multi-objective optimisation (mixed-
integer program), swap heuristic,
column generation approach

Scheduling
Mobasher et al. (2011)

Surgery Optimise assignment of nurses to
surgery cases

Multi-objective optimisation (mixed-
integer program), a new version
of modified goal programming,
solution pool method

Scheduling
Vanberkel et al. (2011)

Surgery Comparing impact of different
surgical block schedules on workload
in other departments

Analytical models involving queuing
theory

Scheduling
Hahn-Goldberg et al. (2014)

Chemotherapy Optimising patient appointment
times within a day

Constraint programming optimisa-
tion, “shuffle” algorithm

Scheduling
Santibáñez et al. (2012)

Chemotherapy Comparing changes to booking
process, optimising patients appoint-
ment times and evaluating real
impact of service changes

DES, multi-objective optimisation
(integer program)

Scheduling
Woodall et al. (2013)

Chemotherapy Optimising nurse shift start times DES, optimisation

Scheduling
Bikker et al. (2015)

External
radiotherapy

Optimising doctors’ allocation to pre-
treatment appointments

Integer program, DES

Scheduling
Petrovic, Morshed, et al.
(2011)

External
radiotherapy

Optimising treatment start days Multi-objective optimisation, genetic
algorithm

Scheduling
Castro and Petrovic (2012)

External
radiotherapy

Optimising pre-treatment appoint-
ments

Multi-objective optimisation (mixed-
integer programs), problems solved
hierarchically

Scheduling
Conforti et al. (2010)

External
radiotherapy

Optimising treatment start days Integer program

Scheduling
Legrain et al. (2015)

External
radiotherapy

Optimising treatment start days Stochastic optimisation, greedy and
primal-dual algorithms

Scheduling
Sauré et al. (2012)

External
radiotherapy

Optimising treatment start days Markov decision process, approxi-
mate dynamic programming

Treatment plan-
ning Alam et al. (2013)

Chemotherapy Optimising treatment plan Multi-objective optimisation, closed-
loop optimal control model, genetic
algorithm

Treatment plan-
ning Lee and Zaider (2008)

Low-dose rate
brachytherapy,
prostate cancer

Optimising placement of radioactive
seeds in real-time

Mixed-integer program, conflict hy-
pergraphs for dealing with dense
constraint matrices

Treatment plan-
ning Ferrari et al. (2014)

Low-dose rate
brachytherapy,
prostate cancer

Optimising placement of radioactive
seeds pre-operation

Mixed-integer program, Genetic al-
gorithm

Treatment plan-
ning Lee et al. (2013)

High-dose rate
brachytherapy,
cervical cancer

Optimising position of radioactive
sources and dwell time

Mixed-integer non-linear program,
branch-and-cut and local search
involving generalised conflict hyper-
graphs

Treatment plan-
ning Holm et al. (2016)

High-dose rate
brachytherapy,
prostate cancer

Optimising position of radioactive
sources and dwell time

Mixed-integer program, tabu search,
variable neighbourhood search, ge-
netic algorithm

(Continued)
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Table 4. (Continued).

Problem Reference Focus Aim Technique

Treatment plan-
ning Teodorović et al. (2013)

Radioactive iodine
therapy, thyroid
cancer

Replicating experienced physicians’
dose plans

Case-based reasoning, Bee Colony
Optimisation meta-heuristic

Treatment plan-
ning Petrovic et al. (2016)

3D conformal,
brain cancer

Designing treatment plans from
previous cases

Case-based reasoning, adaptation
approaches

Treatment plan-
ning Jalalimanesh et al. (2017)

Intensity-
modulated
radiation therapy
(IMRT)

Optimising number of treatments
(fractions) and doses (fraction size)

Agent-based simulation, reinforce-
ment learning

Treatment plan-
ning Dias et al. (2014)

IMRT Optimising beam angles Genetic algorithm and neural net-
work

Treatment plan-
ning Mahmoudzadeh et al.

(2016)

IMRT, breast can-
cer

Optimising beamlet intensities under
breathing uncertainty

Robust optimisation, conditional
value-at-risk, decomposition (con-
straint generation)

Treatment plan-
ning Obal et al. (2013)

3D conformal
radiotherapy,
prostate cancer

Optimising dose per beam Multi-objective optimisation (linear
program), weighted summethod

Treatment plan-
ning Petrovic, Mishra, et al.

(2011)

3D conformal
radiotherapy,
prostate cancer

Optimising total dose in two phases
of treatment

Case-based reasoning, simulated
annealing

Treatment plan-
ning Van Haveren et al. (2017)

IMRT, prostate
cancer

Optimising beamlet intensities Multi-objective (convex) optimisa-
tion, lexicographic reference point
method

Treatment plan-
ning Chan et al. (2014)

IMRT, breast can-
cer

Optimising beamlet intensities under
breathing uncertainty

Robust optimisation, conditional
value-at-risk

Treatment plan-
ning Chan and Mišić (2013)

IMRT, lung cancer Optimising beamlet intensities under
breathing uncertainty

Robust optimisation, series of linear
programs

Treatment plan-
ning Aleman et al. (2014)

IMRT, head and
neck cancer

Optimising beamlet intensities con-
sidering two different tumour sites

Multi-objective (convex) optimisa-
tion, interior point method

Treatment plan-
ning Cabrera et al. (2014)

IMRT Optimising beamlet intensities Multi-objective optimisation

Treatment plan-
ning Bertsimas, Cacchiani, Craft,

and Nohadani (2013)

IMRT, pancreatic
cancer

Optimising beamlet intensities and
beam angles

Linear program, simulated annealing
combined with gradient descent

Treatment plan-
ning Taşkin and Cevik (2013)

IMRT Optimising leaf sequencing Mixed-integer program, combinato-
rial Benders decomposition

Chemotherapy
drug production
policy

Masselink et al. (2012)
Chemotherapy Deciding which chemotherapy drugs

to prepare in advance
Analytical models involving queuing
theory, DES

Chemotherapy
drug production
policy

Vidal et al. (2010)
Chemotherapy Deciding which chemotherapy drugs

to prepare in advance
AHP

Optimising treat-
ment Holder and LLagostera

(2008)

Photodynamic
therapy

Modelling effects of treatment Linear program, interior-point algo-
rithm

produce a “life score” for each treatment. This tool is
available online.

4.2. Access to treatment

Here, we describe OR approaches to improving ac-
cess to cancer treatment or medicines. Firstly, Cotteels,
Peeters, Coucke, andThomas (2012) consider the prob-
lem of locating radiotherapy centres in Belgium. They
use the p-median method, which minimises the total
demand-weighted distance between each patient and
the nearest radiotherapy centre, given that there are p
centres. The locations recommended by the model are
compared to the actual locations, in order to highlight
inequities in provision. They found that the current
locations are for the most part near the locations sug-
gested by the model.

Furthermore, Chahed et al. (2009) address the prob-
lem of efficiently supplying chemotherapy drugs to pa-
tients in their homes. A travelling salesman model is
extended to incorporate scheduling of the preparation

of drugs, which each have a production duration, ad-
ministration duration, and expiry date. This is some-
what similar to the paper by Lee et al. (2014) that
was described in the “Managing diagnostic resources”
section, since it also deals with drugs, with expiry dates,
that must be produced and supplied effectively. There
are some differences including that in Chahed et al.’s
(2009) paper the nurse who delivers the drugs stays
with the patient to administer them, and in the mathe-
matical formulation only one nurse travelling one route
is considered. Using branch and bound to solve for the
minimum distance, the authors find that depending on
the parameters, there may be no solution, the same so-
lution as if only routing were considered, or a different
solution.

4.3. Performance of cancer treatment centres

In this section, we discuss papers that address how well
cancer treatment centres perform. According to Brails-
ford and Vissers (2011), two stages of developing and
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managing health services relate to performance: defin-
ing performance criteria and managing how well these
are met. Some performance measures can be improved
by changing the scheduling of patients or resources.
OR approaches to optimal scheduling of chemotherapy
and radiotherapy services are discussed separately in
following sections.

Santos, Belton, and Howick (2007) focus on design-
ing appropriate performance measures for a radiother-
apy department. It is reported that the current perfor-
mance measurement is inadequate because only a few
aspects are considered and there is no systematic regu-
lar process formeasuring performance. The authors use
system dynamics and multi-criteria analysis to iden-
tify summary indicators (relating to capacity, access,
efficiency, and outcomes) that better represent overall
performance, help clients understand some underlying
causes for the observed performance and predict the
impact of changes on performance.

Baesler and Sepúlveda (2001), Matta and Patterson
(2007) andWerker, Sauré, French, and Shechter (2009)
all focus on how cancer treatment centre performance
can be improved. Matta and Patterson (2007) present a
framework for combining multiple performance mea-
sures across multiple dimensions into a single score.
They develop a discrete event simulation model of a
cancer treatment centre offering both chemotherapy
and radiotherapy. For this case study, the performance
score consists of the average system time and average
overtime weighted by throughput and frequency, re-
spectively, and stratified by day of week, disease type,
and patient routing through facilities. A variety of
process, resource, and scheduling changes are simu-
lated and compared in terms of the performance score.
In thisway, 11 changes that individually improvedover-
all performance were identified and then their joint
impact on performance was assessed. As a result of
the study, the treatment centre has changed how ap-
pointments are scheduled, increased capacity, and in-
troduced a separate blood testing area.

Baesler and Sepúlveda (2001) use a goal program-
ming simulation-optimisation method to find the
numbers of different resources required in a chemother-
apy centre. Multiple objectives are considered (waiting
time, chair utilisation, closing time, and nurse utili-
sation), and weighted based on their importance. A
genetic algorithm is used to find possible solutions to
the problem and succeeds in finding a configuration of
resources that is at least as good as the current config-
uration in all four objectives. In particular, it improves
nurse utilisation and needs just one extra chair.

Werker et al. (2009) also develop a discrete event
simulation. Specifically they model the radiation ther-
apy pre-treatment process in order to find ways to
reduce its length (the total planning time). This consists
of multiple stages required to plan treatment includ-
ing consultations, oncologist input, dose planning, and

verification stages. Three different types of staff are in-
volved in the planning: oncologists, radiation therapists
and medical physicists. It was found that shorter, more
consistent delays to oncologists being available would
reduce the total planning time.

4.4. Surgery scheduling

Mutlu, Benneyan, Terrell, Jordan, and Turkcan (2015)
optimise the individual schedules ofmembers of amul-
tidisciplinary team in order to maximise the time that
they are available to work together. They formulate the
problem as an integer program that includes restric-
tions relating to preferences and availability for clinic
work. Their case study, optimising the schedules of
plastic and oncologic surgeons, succeeded in increasing
the number of sessions when teams of two surgeons
were available for breast cancer surgery by 94%.

Vanberkel et al. (2011), on the other hand, com-
pare surgical block schedules, that is, which blocks of
operating room time are assigned to different special-
ties. They use an analytic approach involving queuing
theory to output the workload in different wards cre-
ated by patients recovering from surgery. In particular,
their model outputs the following ward-level statistics
per day: 90th percentile occupancy, expected admis-
sions, expected discharges, and expected numbers of
patients in each day of recovery. This modelling work
helped the Netherlands Cancer Institute-Antoni van
Leeuwenhoek Hospital choose a new surgical block
schedule after opening an extra operating room. The
new schedule succeeded in smoothing the numbers
of beds required on the ward compared to alternative
schedules considered.

Two related studies focus on the scheduling of
nurses in operating rooms (Lim, Mobasher, Bard, &
Najjarbashi, 2016; Mobasher, Lim, Bard, & Jordan,
2011). Mobasher et al. (2011) develop a multi-objective
mixed-integer program, with six soft constraints mod-
elled as penalised objectives. The aim is to assign nurses
to surgery cases taking account of their specialties and
skills. Lim et al. (2016) extend this work by adding a
second optimisation to maximise the number of nurses
who can take breaks over lunchtime. Four different
methods are proposed to solve the assignment problem;
the swap heuristic and column generation approach
proposed in later work (Lim et al., 2016) find acceptable
solutions much more quickly than the earlier ones, a
new version of modified goal programming and the
solution pool method (Mobasher et al., 2011).

4.5. Chemotherapy scheduling

There are papers considering a variety of chemo-
therapy scheduling problems. Hahn-Goldberg et al.
(2014) address the online scheduling problem: how
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to optimise a daily schedule of patients when new re-
questsmust be scheduled as they arrive. First a template
of appointment times is created by optimising over a
sample of previous appointment requests. As requests
arrive they are assigned appointment times within this
template, until this is no longer possible, when the
schedule is re-optimised based on the requests that have
arrived up to that point. The optimisations are solved
using constraint programming to minimise the total
working time (makespan) on a particular day. Finally,
an algorithm to shift appointment times is applied to
dealwith cancellations.Using this approach the authors
are able to improve the makespan compared to current
scheduling practices by up to 20%.

The goals of the patient scheduling study by San-
tibáñez et al. (2012), on the other hand, are to notify
patients of their appointment at least a week in advance
and to reduce thewaiting list size. In the first stage of the
project at a cancer centre in BritishColumbia (Canada),
a detailed process review of current booking practices
and a patient survey were carried out. A discrete event
simulation is developed to test changes to booking pro-
cesses. Then a multi-objective optimisation program is
presented which creates a daily appointment schedule
including nurse allocation. This aims to satisfy patient
preferences, balance the numbers and complexity of
patients per nurse throughout the day, assign clinical
trial patients to specialised nurses, and limit pharmacy
workload dependent on available resources. Resulting
from the modelling work, changes were made to book-
ing practices and software for the optimisation tool was
introduced. Following the changes, themedian wait list
size decreased, the numbers of patients notified of their
appointment less than a week in advance decreased,
and patient satisfaction increased.

Woodall, Gosselin, Boswell, Murr, and Denton
(2013) also describe a discrete event simulation of a
cancer centre, this one being in North Carolina (USA).
The simulation enables the authors to identify the ser-
vice bottleneck: nurses who administer chemotherapy
to particular disease groups. Secondly, the authors de-
velop a mixed-integer program to optimise the weekly
and monthly schedules of different nurse types to min-
imise the hours of unmet demand. Thirdly, they use
simulation-optimisation to determine the best nurse
shift start times so that average patient waiting time is
minimised. In particular, it was found that shift start
times should be allowed to start on the half hour and
that more nurses were needed. Consequently, the can-
cer centre adjusted shift times and hired more nurses.
Additionally, themodels were used to help plan staffing
levels for a new cancer centre.

4.6. Radiotherapy scheduling

In this section, we focus on examples of papers that
have addressed the pre-treatment scheduling and treat-

ment scheduling problems. Vieira, Hans, van Vliet-
Vroegindeweij, van de Kamer, and van Harten (2016)
produced a more inclusive review on radiotherapy
resource use that includes 18 papers on patient
scheduling.

A study based in the Academic Medical Centre in
Amsterdam offers potential improvements to radio-
therapy treatment access times, which are the time from
referral until treatment starts (Bikker, Kortbeek, van
Os, & Boucherie, 2015). The authors develop an integer
linear program to optimise when doctors should be
allocated to pre-treatment tasks in order to minimise
the access time for all patient types. In order to assess
the impact of their schedules in amore realistic stochas-
tic situation, they conduct experiments in a discrete
event simulation model. On the other hand, Castro
and Petrovic (2012) model the problem from the pa-
tient perspective. Pre-treatment appointments consist
of multiple stages requiring different resources. They
solve this scheduling problem as a hierarchy of optimi-
sation problems with different waiting time objectives.
Since this approach does not yield a feasible solution
in a short enough time, they also experiment with six
different rules to generate the initial solution to the first
problem more quickly.

Several papers schedule patients for radiotherapy
treatment, bydeterminingwhat day eachpatient should
start treatment given available LINAC capacity, and
assuming the timing of continuing treatment follows
a fixed pattern. Some of these tackle the offline problem
(Petrovic, Morshed, & Petrovic, 2011), whereas Sauré,
Patrick, Tyldesley, and Puterman (2012) and Legrain,
Fortin, Lahrichi, and Rousseau (2015) solve the online
problem, where appointment requests are scheduled
as they arrive. Objective functions involve minimising
days waiting to start treatment (Conforti, Guerriero, &
Guido, 2010; Legrain et al., 2015; Petrovic, Morshed,
et al., 2011; Sauré et al., 2012), days overdue to start
treatment (Legrain et al., 2015; Petrovic, Morshed, et
al., 2011), overtime (Legrain et al., 2015; Sauré et al.,
2012) and booking decisions postponed (Sauré et al.,
2012). All these papers consider patients with different
priorities, for example, curative and palliative groups.

The authors of these treatment scheduling papers
use a variety of approaches (Conforti et al., 2010; Legrain
et al., 2015; Petrovic, Morshed, et al., 2011; Sauré et al.,
2012). Conforti et al. (2010) provide an integer program
and solve it using exact methods. Petrovic, Morshed, et
al. (2011) compare the performance of different genetic
algorithms to solve their multi-objective optimisation
and find that the algorithm prioritising emergency pa-
tients performs best overall. Sauré et al. (2012) formu-
late the problem as a Markov decision process which
is reformulated using approximate dynamic program-
ming to obtain a linear program, for which the dual
problem is solved using column generation. They sim-
ulate the generated scheduling procedure for a case
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study, and find that there would be improvements to
waiting times compared to current practice. Legrain et
al. (2015) first solve an offline optimisation problem us-
ing two algorithms. Then the uncertainty of treatment
duration and new patients arriving is incorporated to
produce a stochastic online optimisation. Algorithms
to solve this are also presented. Results show that the
model improves on current scheduling practice.

4.7. Chemotherapy treatment planning

Mathematical approaches to optimising chemotherapy
plans have recently been reviewed by Shi, Alagoz, Ere-
nay, and Su (2014), and the only paper our search found
that is more recent than the scope of that review is by
Alam et al. (2013). For a particular patient, chemother-
apy treatment planning involves balancing two objec-
tives: destroying as many cancer cells as possible while
minimising the toxicity to normal cells (Cancer Re-
search UK, 2016). An added complexity is that cancer
cellsmay become resistant if exposed to drugs for a long
enough time.

Shi et al. (2014) reports that many papers formulate
the problem as an optimal control model and aim to
shrink the tumours as much as possible over a fixed
time period, given tumour growth rate and limits on
the chemotherapy drug dose. These models are sin-
gle or multi-objective optimisations that involve solv-
ing systems of differential equations. Researchers may
consider dosages, at what time points to treat patients
(for example cyclically or continuously) and single or
multiple drugs. Since these differential equations are
challenging to solve analytically, a range of approaches
including simplifying the model then solving it exactly,
approximations and heuristics have been applied (Shi
et al., 2014). Some authors add even further complex-
ity by modelling the problem stochastically to capture
randomness in the rates of tumour growth and drug-
induced shrinkage (Shi et al., 2014). In order to encour-
age the application of these models in clinical practice,
Shi et al. (2014) recommend focusing on a specific
cancer type, including cost as an objective, modelling
how treatment plans are updated and only considering
solutions that are feasible in practice.

Alam et al. (2013) provide a recent example of a
multi-objective optimisation of chemotherapy plans,
and consider multiple drugs. Compartment models are
used to describe cancer cell change, where cells in dif-
ferent phases (resting, dividing, or dead) are affected by
the drugs to a greater or lesser extent. The objectives
are: reducing the numbers of both resting and dividing
cancer cells,maximising the number of normal cells, re-
ducing the toxicity and keeping the drug concentration
within an acceptable limit. This sophisticated model is
formulated as a closed-loop optimal control model and
solved using a genetic algorithm. An extensive set of
experiments with different numbers of drugs is carried

out and comparisons to results of other models are
made.Unfortunately, attention to Shi et al.’s (2014) rec-
ommendations for improving practical relevance are
not evident here, but the authors do perform robustness
analysis.

4.8. Radiotherapy treatment planning

Here we describe OR approaches to planning differ-
ent types of radiotherapy. First we discuss the papers
on internal radiotherapy: low-dose rate brachytherapy,
high-dose rate brachytherapy, and radioactive iodine.
Then we discuss the papers on external radiotherapy:
3D conformal radiotherapy and intensity modulated
radiation treatment (IMRT).

4.8.1. Internal radiotherapy: low-dose rate
brachytherapy
Lee and Zaider (2008) describe their extensive contri-
butions to low-dose rate brachytherapy planning for
prostate cancer (and reference their many earlier pa-
pers). In particular, their system enables the optimisa-
tion and re-optimisation of placement of radioactive
seeds during the implantation procedure itself. This
eliminates the need for patients to attend a planning
appointment and associated scans. Their approach uses
mixed-integer programming and a range of new solu-
tion methods involving “conflict hypergraphs” to deal
with dense constraint matrices. The development and
successful implementationof their systemat theMemo-
rial Sloan-KetteringCancerCenterwas recognisedwith
the presentation of the Franz Edelman Award. After
implementation, the numbers of patients suffering side
effects was substantially reduced, and procedures were
shortened since fewer seeds were implanted. Ferrari,
Kazareski, Laca, and Testuri (2014) build on Lee and
Zaider’s (2008) models and other models optimising
the positioning of radioactive seeds. They add in ex-
tra constraints, for example constraints relating to the
needles that position the seeds. Unlike Lee and Zaider
(2008), their purpose is to optimise in advance of, rather
than during, the procedure. Using a genetic algorithm
to find acceptable solutions, they succeed in reducing
the dose affecting surrounding organs compared to
manually generated plans.

4.8.2. Internal radiotherapy: high-dose rate
brachytherapy
We refer interested readers to De Boeck, Beliën, and
Egyed’s (2014) review of dose optimisation models for
high-dose rate brachytherapy between 1990 and 2010.
These models optimise how long (dwell time) a ra-
dioactive source should stay in each position (dwell
location). De Boeck et al. (2014) found that in the
earlier papers, forward planning is the norm, where
the dwell times are changed iteratively and the dose is
calculated each time. These do not take into account
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the anatomy of particular patients. In later papers there
is a move to inverse planning, where the desired dose is
specified in advance, and images of individual patients’
anatomies are used in planning. Usually, the positions
of the catheters containing the radioactive sources is
given, but some papers also optimise these positions
(De Boeck et al., 2014). The review found that mod-
els have been developed for a range of cancers, and
both exact and heuristic methods have been used to
solve them. De Boeck et al. (2014) categorise the multi-
objectivemodels depending onwhether the importance
of each objective is decided in advance, during or after
the optimisation. It is recommended that future papers
concentrate on making models more clinically relevant
as well as incorporating uncertainty.

More recently, Lee et al.’s (2013) work with the Rush
University Medical Centre in the USA looked at the
best dwell times and dwell locations for radioactive
seeds in treating cervical cancer. This made use of new
imaging technology called positron emission tomog-
raphy to visualise where the cancer cells are densest,
and increase the radioactive dose to these regions ac-
cordingly. A biological model was used to explicitly
incorporate the probability of killing tumour cells in
the objective function. The problem was modelled as a
mixed-integer non-linear program. Heuristic solution
methods were developed that made use of newly de-
fined “generalised conflict hypergraphs” (see also the
description of Lee et al.’s (2013) work in the “Internal
radiotherapy: low-dose rate brachytherapy” section).
The mathematical model developed was used to plan
treatment for patients involved in a clinical trial, and
the trial was subsequently extended due to its success.

Recent work on high-dose rate brachytherapy for
prostate cancer applies mixed-integer programs to op-
timise both the catheter positions and the dwell times
(Holm, Carlsson Tedgren, & Larsson, 2016). The com-
putations are done while the patient is under anaes-
thetic following3D imaging andbefore treatment starts,
so must be relatively quick. Therefore heuristics are
used to find solutions in under an hour. It is found that
variable neighbourhood search gives a better solution
than tabu search, genetic algorithm, and CPLEX (a
commercial solver) in this time frame.

4.8.3. Internal radiotherapy: Radioactive iodine
Teodorović, Šelmić, and Mijatović-Teodorović (2013)
consider an internal treatment for well-differentiated
thyroid cancers, called radioactive iodine treatment.
Unlike the above papers which aim to improve on
current treatment plans, their goal is to replicate ex-
perienced physicians’ dose plans in order to train less
experienced physicians. For this, they use a technique
called case-based reasoning. This involves finding the
most similar patient who has been treated in the past,
and applying the same dose to the new patient. There
are a range of ways in which patientsmay be similar, for

example age, diagnosis and size of tumour. The authors
optimise the importance of each of these similarity
measures in order to most closely match the real doses
thatwere appliedwith the doses predicted by themodel.
This is achieved using aBeeColonyOptimisationmeta-
heuristic.

4.8.4. External radiotherapy: 3D conformal
radiotherapy
Herewe discuss some 3D conformal radiotherapy plan-
ning models (Obal, Volpi, & Miloca, 2013; Petrovic,
Khussainova, & Jagannathan, 2016; Petrovic,Mishra, &
Sundar, 2011). Petrovic, Mishra, et al. (2011) and Obal
et al. (2013) model prostate cancer treatment, while
Petrovic et al. (2016) apply their approach to brain
cancer treatment. The decision variables are different
in each paper. Petrovic, Mishra, et al. (2011) and Obal
et al. (2013) aim to determine the appropriate dose. For
Obal et al. (2013), this is the dose intensity that each
beam should deliver over the whole treatment course,
but for Petrovic, Mishra, et al. (2011) this is the total
dose that should be delivered during phase 1,whenboth
the prostate and surrounding area are targeted, and the
total dose in phase 2, when only the prostate is targeted.
Petrovic et al. (2016) decide on the appropriate number
of beams and the beam angles.

Both Petrovic, Mishra, et al. (2011) and Petrovic et
al. (2016) present case-based reasoning techniques that
make use of previous treatment plans developed by
medical experts. Petrovic, Mishra, et al. (2011) com-
bine previous similar cases by taking into account how
successful each treatment plan was (according to the
prostate-specific antigen valuemeasured twoyears after
treatment) and using Dempster–Shafer theory. Simu-
lated annealing is used to weight the features of cases.
Petrovic et al. (2016) present methods to adapt pre-
vious cases without needing expert knowledge: neural
networks, naïve Bayes classifier and adaptation-guided
retrieval. On the other hand, Obal et al. (2013) formu-
late theirmodel as amulti-objective linear program and
use the weighted summethod to find the set of efficient
solutions.

The authors present promising model results (Obal
et al., 2013; Petrovic, Mishra, & Sundar, 2011; Petrovic
et al., 2016). Formost patients, the dose plans produced
by Petrovic, Mishra, et al. (2011) were at least as good
as those generated by oncologists, in that they met
dose constraints and the total dose was at least as high.
Similarly, Petrovic et al. (2016) defined the success rate
as the number of plans that were the same as those
designed by oncologists. In this context, using neural
networks and adaptation-guided retrieval improved the
specification of the number of beams compared to no
adaptation, however the specification of beam angles
was not improved by adaptation. In order to choose
between the many efficient solutions to their problem,
Obal et al. (2013) suggest choosing the solution nearest
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the “ideal point”, the point with the best solution for
each objective.

4.8.5. External radiotherapy: Intensity modulated
radiation therapy (IMRT)
There is a large body of literature on designing IMRT
plans and several review papers (Bortfeld, 2006; Cen-
sor & Unkelbach, 2012; Ehrgott, Güler, Hamacher, &
Shao, 2010). Bortfeld (2006) discusses the mathemati-
cal, physical, and technological developments relating
to IMRT. The author describes the typical problem
formulation, which is to calculate the necessary beamlet
intensities given prescribed doses that should reach the
tumour site (target). This is known as inverse plan-
ning. Later Ehrgott et al. (2010) reviewed optimisa-
tion approaches to three related problems: (1) fluence
map optimisation, which consists of finding the best
set of beamlet intensities, (2) beam angle optimisa-
tion, and (3) the segmentation problem, which is how
to configure the multileaf collimators to achieve this.
Censor and Unkelbach (2012) describe the two key
approaches to solving the inverse problem: continu-
ous analytic techniques and fully discretised algebraic
methods. They explain the change in perspective to
considering the problem as an optimisation where the
damage to healthy tissue should be minimised.

We compare examples of IMRT treatment plan-
ning papers published since Censor and Unkelbach’s
(2012) paper that were identified from our search strat-
egy. Some of these address the fluence map optimi-
sation problem (Cabrera, Ehrgott, Mason, & Philpott,
2014; Chan, Mahmoudzadeh, & Purdie, 2014; Mah-
moudzadeh, Purdie, & Chan, 2016; Van Haveren et al.,
2017). Chan and Mišić (2013) and Aleman, Wallgren,
Romeijn, and Dempsey (2014) optimise fluence maps
over the whole series of treatment sessions, called frac-
tions.Aleman et al. (2014) consider the casewhere there
are two target areas that require differing amounts of
radiation. Jalalimanesh,Haghighi, Ahmadi, and Soltani
(2017) optimise the number of fractions and dose per
fraction, rather than assuming constant doses as is com-
monly the case. Dias, Rocha, and Ferreira (2014) ad-
dress the beam angle optimisation problem, while Bert-
simas, Cacchiani, Craft, andNohadani (2013) optimise
both angles and intensities jointly. The “leaf sequenc-
ing” problem is considered by Taşkin andCevik (2013):
which sequence of rectangular aperture shapes and in-
tensities to use so that the total planned intensities are
achieved.

There may be as many as 30 objectives to consider
in radiotherapy planning optimisation (Van Haveren
et al., 2017). Importantly, the tumour should receive
enough radiation, called target coverage, while nor-
mal tissues and surrounding organs should receive as
little as possible, called organ sparing. For example,
some models minimise the “conditional value-at-risk”,
which is the average dose that is received in the parts

of an organ that receive the highest dose (Chan et al.,
2014; Mahmoudzadeh et al., 2016). Different optimi-
sation, heuristic and simulation methods have been
used on these problems. Van Haveren et al. (2017)
solve theirmulti-objective optimisation by applying the
lexicographic reference pointmethod andCabrera et al.
(2014) prove theoretical results for solving a particular
class of multi-objective optimisations through a series
of single-objective optimisation problems. Aleman et
al. (2014) penalise deviations from the required dose in
their optimisation, and solve it using a primal-dual inte-
rior point algorithm. Taşkin andCevik (2013) use com-
binatorial Benders decomposition to break down their
mixed-integer program into an integer programmaster
problem and a linear program subproblem, then com-
pare heuristic and exact solution procedures. Bertsimas
et ail (2013) develop a heuristic combining simulated
annealing with gradient descent to solve their linear
program. On the other hand, Dias et al. (2014) pro-
vide a non-linear formulation and find solutions with
a genetic algorithm incorporating a neural network to
estimate the fitness functions quickly. Jalalimanesh et
al. (2017) develop an agent-based simulation of tumour
growth and use the Q-learning algorithm, a type of
reinforcement learning, to optimise. A series of papers
use robust optimisation to capture the uncertainty in
patients’ breathing patterns (Chan&Mišić, 2013; Chan
et al., 2014; Mahmoudzadeh et al., 2016). Chan and
Mišić (2013) update what is known about a patient’s
breathing each treatment to help with planning the
next treatment. This is modelled as a series of linear
programs. Mahmoudzadeh et al. (2016) use constraint
generation (a decomposition method) to solve the ro-
bust optimisation first presented by Chan et al. (2014).

Some authors report how their methods improved
solutions or computational time compared to other
approaches (Aleman et al., 2014; Chan & Mišić, 2013;
Dias et al., 2014; Taşkin & Cevik, 2013; Van Haveren
et al., 2017). Mahmoudzadeh et al. (2016) found that
adding one constraint each time their problem was
resolved was slowest, and it was fastest to add several
constraints each time. Compared to the standard treat-
ment planning method at the time, Chan et al.’s (2014)
approach better matches the planned dose with the
actual dose received, since they incorporate breathing
uncertainty. Jalalimanesh et al. (2017) show that the
dose should be varied over time as the tumour changes
size. Cabrera et al. (2014) demonstrate how to generate
infinitelymany Pareto-optimal solutions to theirmulti-
objective optimisation problem.

4.9. Other treatment-related studies

Holder and LLagostera (2008) model how best to apply
photodynamic therapy to deep tissue cancers, and as-
sess whether the only drug approved in theUSA for this
treatment at the time would yield acceptable results.
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Table 5. Performance measures for each problem area.

Area Performance measures Papers

Reducing cancer risks Technical merit of projects
Hall et al. (1992)

Avoided cervical cancer cases and deaths, disability-
adjusted life years, cost-effectiveness Kim et al. (2013)

Screening strategies Mortality measures
Brailsford et al. (2012), Tejada et al. (2014), Arrospide et
al. (2015), Madadi et al. (2015), Wang and Zhang (2017)
and McLay et al. (2010)

Quality-adjusted life year measures
Ayer et al. (2012), Tejada et al. (2014), Madadi et al.
(2015), Ayer (2015), Ayer et al. (2016), Erenay et al.
(2014), Li et al. (2014), Li et al. (2015), Rauner et al.
(2010) and Bertsimas et al. (2016)

Cost-effectiveness measures
Tejada et al. (2014), O’Mahony et al. (2015), Song and
Wang (2016)

Total cost
Li et al. (2014) and Rauner et al. (2010)

Cancer incidence
McLay et al. (2010)

Overdiagnosis
Arrospide et al. (2015)

False-positives
Arrospide et al. (2015) and Ayer et al. (2012)

Number of mammograms
Ayer et al. (2012)

Cancers detected
Brailsford et al. (2012)

Locating screening facilities Uptake of screening
Haase and Müller (2015)

Efficiency (fairness) and coverage
Gu et al. (2010)

Evaluating process changes to
screening services

Waiting times
Pilgrim and Chilcott (2008)

Overdue screenings
Zai et al. (2014)

Following up screening tests Quality-adjusted life year measures
Chhatwal et al. (2010) and Alagoz et al. (2013)

Other screening-related studies Waiting time, idle time and overtime
Baker and Atherill (2002)

Tumour doubling times
Vieira et al. (2011)

Managing diagnostic resources Total cost
Lee et al. (2014) and Örmeci et al. (2016)

Mortality rate, cancer incidence rate
Güneş et al. (2015)

Waiting time, overtime, revenue
Berg et al. (2013)

Throughput, resource utilisation
Berg et al. (2010)

Optimising diagnostic proce-
dures

Probability of detecting cancer
Sofer et al. (2003)

Staging accuracy Expected information value of test combinations
Ekaette et al. (2006)

Treatment decisions Survival benefit
Utley et al. (2006) and Simon (2009)

Quality-adjusted life year measures
Simon (2009)

Deciding on performance measures
Suner et al. (2012)

Access to treatment Total demand-weighted distance
Cotteels et al. (2012)

Total distance travelled
Chahed et al. (2009)

Performance of cancer treat-
ment centres

Deciding on performance measures
Santos et al. (2007)

Waiting time, closing time and resource utilisation
Baesler and Sepúlveda (2001)

Total treatment planning time
Werker et al. (2009)

Surgery scheduling Co-availability of staff
Mutlu et al. (2015)

Ward cccupancy
Vanberkel et al. (2011)

Nurse breaks
Mobasher et al. (2011) and Lim et al. (2016)

Nurse overtime, nurse job changes, nurse room changes
Mobasher et al. (2011)

Chemotherapy scheduling Total working time
Hahn-Goldberg et al. (2014)

Balanced nurseworkload, satisfying patient preferences,
pharmacy workload limited, specialist nurses assigned
appropriately

Santibáñez et al. (2012)

Waiting time measures
Santibáñez et al. (2012) and Woodall et al. (2013)

Demand satisfaction
Woodall et al. (2013)

(Continued)
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Table 5. (Continued).

Area Performance measures Papers

Radiotherapy
scheduling

Access times
Bikker et al. (2015)

Waiting time measures
Castro and Petrovic (2012), Conforti et al. (2010),
Petrovic, Morshed, et al. (2011), Sauré et al. (2012) and
Legrain et al. (2015)

Overtime
Sauré et al. (2012) and Legrain et al. (2015)

Booking decisions postponed
Sauré et al. (2012)

Chemotherapy
treatment
planning

Number of cancer cells remaining (resting and dividing),
number of normal cells remaining, toxicity, drug
concentration

Alam et al. (2013)

Radiotherapy
treatment
planning

Deviations from prescribed radiation doses in tumour,
surrounding organs and normal tissue Lee and Zaider (2008) and Ferrari et al. (2014)

Number of needles, number of radioactive seeds
Ferrari et al. (2014)

Deviations from prescribed doses in tumour,
surrounding organs and normal tissue Lee and Zaider (2008), Petrovic, Mishra, et al. (2011),

Bertsimas et ail (2013), Chan and Mišić (2013), Lee et al.
(2013), Obal et al. (2013), Aleman et al. (2014), Cabrera
et al. (2014), Chan et al. (2014), Dias et al. (2014), Ferrari
et al. (2014), Holm et al. (2016), Mahmoudzadeh et al.
(2016), Van Haveren et al. (2017)

Tumour control probability
Lee et al. (2013)

Difference to expert-generated treatment plan
Teodorović et al. (2013) and Petrovic et al. (2016)

Total dose
Petrovic, Mishra, et al. (2011) and Chan and Mišić (2013)

Numbers of cancer cells and normal cells killed
Jalalimanesh et al. (2017)

Deviation between planned and actual dose
Chan et al. (2014)

Number of apertures used
Taşkin and Cevik (2013)

Other treatment-
related studies

Deviations from prescribed doses in tumour, critical
regions and normal tissue Holder and LLagostera (2008)
Deciding criteria for drugs to produce in advance

Vidal et al. (2010)
Waiting times

Masselink et al. (2012)

Table 6. Table showing numbers of papers identified in each area.

Cancer service Problem Subproblem Review papers Identified papers (since latest
review)

Prevention Reducing cancer risks 2
Screening strategies 6 reviews, latest

published in 2011
19

Locating screening facilities 2
Evaluating process changes 2
Following up screening 2
Other screening 2

Cancer diagnosis and
staging

Managing diagnostic re-
sources

5

Optimising diagnostic pro-
cedures

1

Staging accuracy 1
Treatment Treatment decisions 3

Access to treatment 2
Performance of cancer
treatment centres

4

Surgery scheduling 4
Chemotherapy scheduling 3
Radiotherapy scheduling 6
Chemotherapy treatment
planning

1 review, pub-
lished in 2014

1

Radiotherapy treatment
planning

Low-dose rate
brachytherapy

2, 1 of which also references
10 earlier related papers by the
authors

High-dose rate
brachytherapy

1 review, pub-
lished in 2014

2

Radioactive iodine 1
3D conformal 3
IMRT 3 reviews, latest

published in 2012
10

Other treatment-related
studies

3
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They develop biological models of the concentration
of the drug in different tissues, and the rate at which
cellular damage occurs when the drug is activated with
light. Their linear model to optimise the application of
the light source is adapted from a model for external
radiotherapy planning. They find that even under the
optimal alignment of the light source, the drug cannot
target the tumour closely enough, and the surrounding
normal tissues are damaged to an unacceptable extent.

Vidal, Sahin, Martelli, Berhoune, and Bonan (2010)
and Masselink, van der Mijden, Litvak, and Vanberkel
(2012) both address the decision of which chemother-
apy drugs to produce in advance, rather than on de-
mand directly before use. These drugs are prepared for
specific patients, and so become useless if patients are
too ill for treatment and thedrugs expire before they can
be used. Vidal et al. (2010) interviewed pharmacists at
a French pharmacy, which prepares drugs for medical
facilities in the area, to find out criteria thatmake a drug
suitable for preparing in advance. The relative impor-
tance of each criterion was determined using the ana-
lytical hierarchy process. The most important criteria
were found to be drug stability, time between ordering
and when needed, as well as total annual volume of
the drug. Following the study, a decision support tool,
designed to assist in choosing the drugs to produce in
advance, was adopted by other pharmacies in France.

Masselink et al. (2012) worked with a pharmacy that
is attached to a chemotherapy unit in the Netherlands.
Unlike Vidal et al. (2010), they focus on the effect on
patient waiting times of preparing some chemotherapy
drugs in advance. This is achieved by modelling the
drug order queue as well as the linked queue of patients
waiting for treatment. For the case study, a discrete
event simulation is developed. Analytical expressions
to approximate patient waiting times under different
policies are derived, which are also applicable to other
settings. The policies considered involve making the
cheapest drugs (up to some threshold price) in advance
and optionally reallocating drugs when patients are too
ill for treatment. Using the results of the modelling
work, managers from the pharmacy and chemotherapy
unit agreed on which drugs should be made in advance
and that some drugs should be reallocated. Model re-
sults suggest this will cause waiting times to be halved
with only a 1–2% increase in cost.

5. Conclusion and discussion

Our review showcases examples of OR techniques
applied to problems throughout cancer care services.
These problems lend themselves to OR modelling
because of conflicting objectives, large numbers of op-
tions to be compared andpatient-specific parameters.A
key strength ofmanyORmethods is that they canmake
goals, constraints, and uncertainties explicit. Using our
search strategy (described in the Introduction section),

a substantial amount of research on screening strategies
was discovered, as well as on treatment planning and
scheduling. Arguably these areas are particularly suited
to OR modelling, since they have the characteristics
described at the start of this paragraph. On the other
hand, we uncovered comparatively few examples of OR
models applied to reducing cancer risks, optimising di-
agnostic procedures and staging. Sourcing appropriate
data may be challenging when assessing population-
level interventions to reduce cancer risks, and optimis-
ing diagnostic procedures and staging are more typi-
cally considered in clinical trials. The numbers of pa-
pers identified for each problem area are summarised
in Table 6.

This review is not systematic; in particular it only
includes papers that mention “operations research” or
“operational research”. This means that there are fur-
ther published applications to cancer care which use
techniques that are considered OR methods. However,
this paper goes some way towards demonstrating the
huge variety of cancer care problems that have benefited
from an OR perspective. We also hope that reading
this paper will prove a useful starting point for OR
researchers considering tackling cancer care problems.

It is promising that there is evidence of improve-
ments beingmade throughout cancer services as a result
of operational research modelling. At the national or
regional level, OR studies have influenced decisions on
screening strategies (Koleva-Kolarova et al., 2015), cer-
vical screening processes (Pilgrim and Chilcott, 2008)
and funding of anti-cancer proposals (Hall et al., 1992).
At the hospital or department level, OR studies have
impacted brachytherapy delivery (Lee & Zaider, 2008),
surgical schedules (Vanberkel et al., 2011), chemother-
apy booking practices and schedules (Santibáñez et al.,
2012), nurse hiring and shift start times (Woodall et
al., 2013) and cancer treatment centre capacity, layout
and scheduling processes (Matta & Patterson, 2007).
Additionally, Simon (2009) developed a treatment de-
cision aid that is accessible online. On the other hand,
many theoretically impressive studies fail to translate
into service changes, or at least implementation is not
evident from the papers, as Shi et al. (2014) also point
out for the specific case of chemotherapy treatment
planning. There is potential for closer working with
clinicians to enable the impact of these methods to be
of greater benefit to cancer sufferers. When targeting
implementation, it is crucial that methods are trans-
parent and that appropriate performance measures are
chosen.

Finally, we outline some opportunities for future
research. Since the number of cancer cases is increasing,
in part due to lifestyle factors, there is scope to prevent
a large number of cancer cases, with huge potential
benefits for both would-be patients and the health bud-
get. OR techniques, for example pathway modelling,
are well suited to assess the potential impact of differ-
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ent prevention schemes, such as incentives for lifestyle
changes. At the same time, it is important to understand
the issue of overdiagnosis better in order to priori-
tise limited resources appropriately and avoid unneces-
sary worry, tests, and treatment (Moynihan, Doust, &
Henry, 2012). Mathematical modelling of the impacts
of overdiagnosis could help. In terms of cancer survival,
the UK lags behind its western European counterparts
(De Angelis et al., 2014). More research could be done
looking at what differences between national care sys-
tems cause this discrepancy and what would happen
if processes from other countries were adopted in the
UK. To this end, simulation models for example could
be valuable. ORmethods such as case-based reasoning,
which is used in treatment planning, may require large
data-sets in order to provide the best solutions. Thus
for the rarer cancer types it may help to pool national
or even international data-sets. We believe these are
worthwhile research areas for those keen to contribute
to the OR literature on cancer care.
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