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Aims: Low plasma testosterone levels have been shown to predict worse outcome

in men with severe atherosclerotic disease. We hypothesized that a low plasma

testosterone level affects disease risk through changes in gene expression in

atherosclerotic plaques. Therefore, we studied plasma testosterone levels in relation

to gene expression levels in atherosclerotic plaque tissue of men with advanced

atherosclerotic disease.

Methods: Plasma testosterone levels were measured in 203 men undergoing

carotid endarterectomy. The corresponding atherosclerotic plaque tissue was used

for RNA sequencing. First, we assessed how often the androgen receptor gene was

expressed in the plaque. Second, correlations between plasma testosterone levels and

pre-selected testosterone-sensitive genes were assessed. Finally, differences within the

RNA expression profile of the plaque as a whole, characterized into gene regulatory

networks and at individual gene level were assessed in relation to testosterone levels.

Results: Testosterone plasma levels were low with a median of 11.6 nmol/L (IQR:

8.6–13.8). RNA-seq of the plaque resulted in reliable expression data for 18,850 genes

to be analyzed. Within the RNA seq data, the androgen-receptor gene was expressed in

189 out of 203 (93%) atherosclerotic plaques of men undergoing carotid endarterectomy.

The androgen receptor gene expression was not associated with testosterone plasma

levels. There were no significant differences in gene expression of atherosclerotic

plaques between different endogenous testosterone levels. This remained true for known

testosterone-sensitive genes, the complete transcriptomic profile, male-specific gene

co-expression modules as well as for individual genes.

Conclusion: In men with severe atherosclerotic disease the androgen receptor is

highly expressed in plaque tissue. However, plasma testosterone levels were neither

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.693351
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.693351&domain=pdf&date_stamp=2021-06-14
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f.groepenhoff@umcutrecht.nl
https://doi.org/10.3389/fcvm.2021.693351
https://www.frontiersin.org/articles/10.3389/fcvm.2021.693351/full


Groepenhoff et al. Testosterone and the Plaque Transcriptome

associated with pre-selected testosterone sensitive genes, gene expression profiles nor

gene regulatory networks in late-stage atherosclerotic plaques. The effect of testosterone

on gene expression of the late-stage atherosclerotic plaque appears limited, suggesting

that alternate mechanisms explain its effect on clinical outcomes.

Keywords: testosterone, atherosclerosis, RNA-expression, transcriptome (RNA-seq), men

INTRODUCTION

Testosterone is the most important sex hormone in men.
The decline in testosterone levels with age in men has been
linked to increased prevalence of (coronary) artery disease and
cardiovascular events (1). In men, higher plasma testosterone
levels have shown to protect against cardiovascular disease (2, 3).
Therefore, supplementation of testosterone in men with low
testosterone levels was considered to be beneficial. However,
treatment of low testosterone levels in men have resulted
in ambiguous results (4), stressing the need to unravel the
underlying mechanisms responsible for the detrimental effect of
low endogenous testosterone in men.

Atherosclerosis underlies the majority of cardiovascular
disease (5). The composition of the plaque is an important
indicator of cardiovascular events (6). Animal studies have
shown a beneficial effect of testosterone on atherosclerotic plaque
formation, suspectedly via its anti-inflammatory properties (7, 8).
In humans, even though the relationship between endogenous
testosterone levels and cardiovascular disease has extensively
been studied (3), the role of testosterone in the development and
composition of the plaque is still unknown.

Testosterone is the main endogenous androgen (9) and
is involved in many physiological processes, among which
the function of the vascular endothelium. For example, by
binding to the nuclear androgen receptor, testosterone can alter
downstream gene expression resulting in vasodilatation. To exert
its regulatory effect, testosterone needs to bind to the androgen
receptor (10), this receptor is nuclear and the predominant
mediator of the effects of endogenous testosterone. For example,
androgen receptor ablation in the vascular smooth muscle
cell inhibits vascular calcification (11). The androgen receptor
regulates downstream effects of testosterone as a transcription
factor and it is expressed in many tissues, including the vascular
endothelium. However, besides genomic actions of testosterone
on the vasculature, it is thought to also have non-genomic
vasoactive effects which might be exerted through interaction
with proteins, receptors, or ion channels nested in the plasma
membrane (9).

As we previously showed that plasma testosterone was
a strong predictor of a secondary stroke in our cohort of
men undergoing carotid endarterectomy (12), we hypothesized
that the mechanism by which low testosterone levels affect
cardiovascular risk is through the atherosclerotic plaque. To
test this hypothesis, we studied if plasma testosterone associates
with plaque tissue gene expression. We used several approaches
including analyses of complete transcriptomic profiles as well as
gene co-expression networks as these are able to capture relatively
subtle changes in overall expression within tissues (13). We also

studied if pre-selected testosterone-sensitive genes and receptors
were associated with plasma testosterone levels.

METHODS

Study Population
We analyzed transcriptional activity by RNA-sequencing of
plaques from men included in the Athero-Express Biobank
Study (14) of whom testosterone level and RNA-sequencing
data were available (n = 203). Details of the Athero-Express
study protocol have been described previously (12, 15). In
short, patients undergoing endarterectomy of the carotid artery
in two Dutch tertiary referral centers between 2002 and 2015
were included in this study. Study procedures comprise of a
baseline blood withdrawal, an extensive questionnaire filled in by
the participants verified against medical records, and collection
of carotid arterial plaque material during surgery. All patients
provided written informed consent before surgery, the study was
approved by the LocalMedical Ethical Committee and conducted
according to the Declaration of Helsinki (16).

Sex Steroid Measurements
Serum testosterone was measured by immunoassay on an
ARCHITECT ci8200 system (Abbott Diagnostics, Abbott
laboratories, USA) (12).

Histology
As described previously (12, 14, 17), the atherosclerotic
plaque was processed directly after surgery and (immune-)
histochemical staining was routinely performed on the culprit
lesion (segment with the highest plaque burden) for identification
of macrophages (CD 68), calcification (haematoxylin-eosin
(HE)), smooth muscle cells (alfa actin), collagen [Picro Sirius
red (PSR)], intra-plaque hemorrhage (HE, Elastin von Gieson
staining), vessel density (CD34) and fat (PSR, HE).

Bulk RNA Sequencing
As the culprit lesion is used for plaque histology following
the standardized Athero-Express protocol (14), the adjacent
plaque segments were used for RNA sequencing. To measure
bulk RNA expression in the plaques total RNA was isolated
according to the manufacturers protocol after processing of the
plaque segments using ceramic beads and tissue homogenizer
(Precellys, Bertin intruments, Montigny-le-Bretonneux) with use
of TriPure (Sigma Aldrich). After precipitating RNA in the
aqueous phase with propanolol, RNA was washed with 75%
ethanol and either used immediately after an additional washing
step with 75% ethanol or stored in 75% ethanol for later use.
Subsequently, library preparation was performed as described

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 June 2021 | Volume 8 | Article 693351

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Groepenhoff et al. Testosterone and the Plaque Transcriptome

before (18–20). Ethanol was removed and the pellet air-dried.
Then, primer mix (5 ng primer per reaction) was added to initiate
primer annealing at 65 degrees Celsius for 5min. Subsequently,
reverse transcription (RT) was executed. Subsequent reverse-
transcription RT reaction; first strand reaction for 1 h at 42◦C,
heat inactivated for 10min at 70◦C, second strand reaction for 2 h
at 16◦C, and then put on ice until proceeding to sample pooling.

This initial RT reaction used the following primer design:
an anchored polyT, a unique 6 bp barcode, a unique molecular
identifier (UMI) of 6 bp, the 5’ Illumina adapter and a T7
promoter, as described (18–20). Each sample now contained its
own unique barcode making it possible to pool together cDNA
samples at 7 samples per pool. Complementary DNA (cDNA)
was cleaned using AMPure XP beads (Beckman Coulter), washed
with 80% ethanol, and resuspended in water before proceeding
to the in vitro transcription (IVT) reaction (AM1334; Thermo-
Fisher) incubated at 37◦C for 13 h. Next, Exo-SAP (Affymetrix,
Thermo-Fisher) was used to remove primers, upon which
amplified RNA (aRNA) was fragmented, cleaned with RNAClean
XP (Beckman-Coulter), washed with 70% ethanol, air-dried, and
resuspended in water. RNA yield and quality in the suspension
were checked by Bioanalyzer (Agilent) after removal of the beads
with use of a magnetic stand. By performing an RT reaction
using SuperScript II reverse transcriptase (Invitrogen/Thermo-
Fisher) according to the protocol of the manufacturer cDNA
library construction was initiated. Next, PCR amplification was
performed as described previously (18–20). PCR products were
cleaned twice using AMPure XP beads (Beckman Coulter). Qubit
fluorometric quantification (Thermo-Fisher) and Bioanalyzer
(Agilent) were used to checked Library cDNA yield and quality.
Illumina Nextseq500 platform was used to sequence the libraries;
paired end, 2× 75 bp. After sequencing, retrieved fastq files were
de-barcoded and split into forward and reverse reads. From there,
the reads were mapped using Burrows-Wheel aligner (BWA37)
version 0.7.17–r1188, calling “bwa aln” with settings -B 6 -q 0
-n 0.00 -k 2 -l 200 -t 6 for R1 and -B 0 -q 0 -n 0.04 -k 2 -l
200 -t 6 for R2, “bwa sampe” with settings -n 100 -N 100, and
a cDNA reference (assembly hg19, Ensembl release 84). Read and
UMI counts were acquired from SAM files with use of custom
perl code and collected into count matrices. Further analyses
were performed using R (21) version 3.6.2 and later and its IDE
Rstudio (22) version 1.2 and later. Genes were annotated with
Ensembl ID’s, basic quality control was performed [filtering out
samples with low gene numbers (<10,000 genes) and read counts
(<18,000 reads)].

Statistical Analyses
Counts, metadata and clinical data were combined into a
SummarizedExperiment (23) object. Counts were pre-filtered,
normalized and transformed making use of the variance
stabilization transformation function (vst) in DESeq2 (24),
resulting in transformed data of n = 203 on a log2-scale,
normalized for library size (24). These were used to visualize
gene expression, to assess correlations between gene expression
and androgen receptor expression and plasma testosterone levels,
to construct correlation heatmaps, correlation scatter plots,
and Manhattan plots, furthermore we used these to calculate
differentially expressed genes between high and low testosterone

tertiles. Correlation estimates and p-values were calculated
using Spearman’s rank correlation. Correlations between the
expression levels of genes and testosterone level were explored
using scatterplots. Heatmaps were drawn using Pheatmap from
the Pheatmap package (25), applying hierarchical clustering
based on correlation estimates with standard settings: complete
linkage and Euclidean distance.

Gene Regulatory Networks Analysis
The software package WGCNA (13) was used to generate
modules of co-expression genes on the 486 available men
RNAseq samples. After excluding all the ribosomal genes and
included only the protein-coding genes with annotated HGCN
names, a set of 12,765 protein-coding genes which passed
quality control (average >1 count per sample) was used for
module generation. The raw read counts were corrected for UMI
sampling [corrected_count=−096∗(ln (1–(raw_count/4096)))],
normalized by sample sequencing depth and log-transformed.
A signed network was constructed using the robust “bicor”
correlation measure. To determine the exponent used for the
adjacency matrix construction, soft thresholding analysis was
performed with the WGCNA package for powers ranging from
2 to 30. The cut-off for assuming scale-free topology was set
at an R-squared of 0.8, while having a median connectivity of
lower than 100.The chosen lowest complying power was 26.
The network was constructed by first generating an adjacency
matrix, which was transformed into a topological overlay matrix
(13). Modules were detected by clustering the average distance
of the dissimilarity matrix (defined as 1- topological overlay
matrix) and cutting the subsequent dendrogram by using
the cutreeDynamic function (deepSplit = 2, minClusterSize
= 20). Module eigengenes were calculated by taking the
first principal component of gene expression in that module.
Module eigengene values were selected for the 203 samples with
testosterone measurements available. The module eigengenes
were correlated to clinical traits by Pearson correlation, with a
Student asymptomatic p-value test for significance.

Data and Scripts Availability
Data and scripts are available upon reasonable request.

RESULTS

Baseline Characteristics
We analyzed data of 203 men with a mean age of 68 years old.
Most men presented with a transient ischemic attack (42%) or
stroke (23%). Median testosterone level was 11.6 nmol/L (IQR:
8.6–13.8). The participants of the study population were allocated
to tertiles based on testosterone levels: high (median 16.5, IQR:
14.9–18.9 nmol/L), medium (11.6, IQR: 10.6–12.7 nmol/L), and
low (7.6, IQR: 8.6–13.8 nmol/L). Patient characteristics of our
study population stratified by testosterone tertiles are presented
in Table 1. Age, body mass index and renal function did not
differ between the tertiles. Hypercholesterolemia seemed more
prevalent in the low and medium testosterone level group (73
and 72%, respectively) as compared to the group with the highest
testosterone levels (60%), yet this difference was not statistically
significant. Hypertension was most prevalent in individuals with
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TABLE 1 | Baseline characteristics by testosterone tertiles of men undergoing carotid endarterectomy.

Overall Low Medium High

n 203 68 68 67

Testosterone nmol/mL [median (IQR)] 11.6 (8.6–13.8) 7.6 (5.7–8.6) 11.6 (10.6–12.7) 16.5 (14.9–18.9)

Age [years; mean (SD)] 68 (8.8) 69 (9.6) 69 (7.5) 68 (9.2)

Body mass index [mean (SD)] 26.6 (3.6) 27.0 (3.9) 26.8 (3.64) 25.8 (3.3)

Renal function [GFR; mean (SD)] 75 (22) 74 (26) 73 (18) 79 (20)

Total Cholesterol [mean (SD)] 4.0 (1.1) 3.7 (1.0) 4.0 (1.2) 4.4 (1.1)

Triglycerides [mean (SD)] 1.6 (0.8) 1.7 (0.9) 1.7 (0.7) 1.5 (0.8)

LDL [mean (SD)] 2.3 (0.9) 2.1 (0.8) 2.3 (0.9) 2.5 (0.9)

HDL [mean (SD)] 1.0 (0.3) 0.9 (0.3) 1.0 (0.3) 1.1 (0.3)

Current smoker = yes, n (%) 70 (35) 23 (34) 26 (38) 21 (31)

Diabetes Mellitus = yes, n (%) 37 (18) 19 (28) 13 (19) 5 (8)

Hypercholesterolemia = yes, n (%) 127 (68) 45 (73) 46 (72) 36 (60)

Hypertension = yes, n (%) 135 (69) 52 (79) 46 (69) 37 (59)

History of coronary artery disease = yes, n (%) 65 (32) 22 (32) 24 (35) 19 (28)

History of stroke = yes, n (%) 54 (27) 22 (32) 16 (24) 16 (24)

History of peripheral artery disease = yes, n (%) 44 (22) 19 (28) 15 (22) 10 (15)

Symptoms group, n (%)

Asymptomatic 38 (19) 11 (17) 16 (24) 11 (17)

Ocular 31 (16) 11 (17) 10 (15) 10 (15)

Stroke 46 (23) 18 (28) 13 (19) 15 (23)

Transient ischemic attack 84 (42) 25 (39) 29 (43) 30 (46)

Plaque phenotype, n (%)

Atheromatous 63 (32) 23 (34) 18 (27) 22 (33)

Fibro-atheromatous 67 (34) 22 (33) 22 (33) 23 (35)

Fibrous 70 (35) 22 (33) 27 (40) 21 (32)

Statins or lipid lowering medication = yes, n (%) 158 (78) 54 (79) 53 (78) 51 (76)

Antiplatelet medication = yes, n (%) 186 (92) 60 (88) 63 (93) 63 (94)

FIGURE 1 | Expression of the Androgen Receptor (AR) gene and its association with testosterone levels in men undergoing carotid endarterectomy. (A) AR gene

expression levels as compared with the mean expression level of 1,000 randomly selected genes. (B) Scatterplot of testosterone level (rank-normalized) and AR gene

expression in plaque.
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TABLE 2 | Selected genes for testosterone-sensitivity.

Selected based on literature (26) Selected based on correlation with AR gene expression

CXCL10, EGR1, VCAN, BMP7, FGF3, EFNB2, CLDN1, CXCL2,

CSTA, CDK2AP1, HDAC4

NAPG, SRGAP2B, PARVB, DMD, TBC1D1, FRYL, CSNK2A1, GLIPR1L2, HMCN1,

KLRD1, REV3L, TEX10, EYS, RPS6KB2, RUNX1T1, IL1RAP, AKAP6, ZNF266, LPP,

ANAPC16

AR, androgen receptor.

FIGURE 2 | Scatterplots for testosterone levels and gene expression of selected hormone-dependent genes based on literature and gene co-expression with

androgen receptor (AR) gene in the atherosclerotic plaque.

the lowest testosterone levels [83% in the low, 69% in the
medium and 59% in the highest testosterone tertile, respectively
(p < 0.05)]. In all groups, a transient ischemic attack was the
most common clinical presentation and there was a balanced
distribution of plaque phenotypes based on histology with similar
prevalence of atheromatous, fibro-atheromatous, and fibrous
plaques (17).

Androgen Receptor Expression Within the
Atherosclerotic Plaque
To exert its function, testosterone needs to bind to the
androgen receptor (AR) (10) which mediates almost all the

known genomic effects of testosterone. To assess the level of
AR expression within the atherosclerotic plaque we compared
its expression to the mean expression of 1,000 randomly
selected genes (Figure 1A), the mean expression of the AR
gene was 2.2, SD: 0.7 vs. 1.1, SD: 0.1 for the average of
1,000 genes (log transformed counts). We found that the
AR gene is expressed within the atherosclerotic plaques of
93% (189 of 203 patients) in our male cohort (count >

1). AR expression levels were not significantly correlated to
testosterone levels in serum of the same patients (Figure 1B)
(Spearman rank correlation (rho): 0.08, unadjusted p-value
= 0.25). In addition, we explored the expression of other
nuclear receptors in relationship to the AR gene, several
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FIGURE 3 | Association of testosterone levels with transcriptome signatures in male plaque tissue. (A) Heatmap based on sample-to-sample distances colored by

continuous testosterone levels. (B) Manhattan plot of associations between testosterone levels and individual gene expression.

receptors presented with comparable expression levels with
NR6A, HNF4A, and THRB presenting the highest expression in
this cohort (Supplementary Figure 1).

Testosterone-Sensitive Genes and Plasma
Testosterone Levels
A list of testosterone-sensitive genes was selected based on
literature (26). In addition, an unbiased list of genes was selected
based on significant correlation (after Bonferroni adjustment)
of their gene expression with expression of the AR gene
(Supplementary Figure 2, Supplementary Table 1), 12 out of
these 20 genes (60%) were identified as being targets of the AR
gene as a transcription factor (27). The combination of these
two lists of candidate testosterone-sensitive genes was used, and
an association of their expression with testosterone levels within
the plaque was further evaluated (Table 2). Correlation analysis
of the testosterone-sensitive genes’ expression (Table 2) and
continuous testosterone levels showed no significant correlations
(Figure 2). Clustering of individuals using hierarchical clustering
and based on sample distances restricted to the testosterone-
sensitive gene subset did not show an overlap with the established
testosterone-level tertiles (Supplementary Figure 3).

Plaque Transcriptional States Do Not
Correlate With Testosterone Levels
Hierarchical clustering based on sample distances did not
highlight a group of patients who are similar with respect to
their specific testosterone levels (Figure 3A). In order to identify
individual genes associated with testosterone levels, correlations
between gene expression from each gene with testosterone
levels were tested. No gene was statistically significantly
correlated with testosterone (after Bonferroni correction). The
top 15 genes nominally correlated with testosterone levels

are labeled in a Manhattan plot in Figure 3B and presented
in Supplementary Table 2. We also performed differential
expressed analysis between high and low testosterone levels. Yet,
there were no differentially expressed genes (data not shown).

No Evidence of an Effect of Testosterone
Levels on Male-Specific Gene
Co-expression Modules
Gene co-expression modules were constructed
following previously described methods (28, 29)
(Supplementary Figure 4), identifying 14 modules (Figure 4A)
in the bulk plaque RNA-seq data. Eigen genes were calculated for
each individual module, representing a proxy for the combined
expression of the genes that belong to each module. Using this
composite measure of module expression, we correlated each
module with the rank-normalized testosterone levels in the 203
patients with data available. Two modules (purple and turquoise)
were identified with nominally significant negative correlations
(p-value < 0.1) (Figure 4B). However, no significant associations
remained after adjusting the p-values using Holm method for
false discovery rate (30). To understand the biological relevance
of such modules, gene enrichment analysis was performed and
the modules that were nominally associated were pointing to
endoplasmic reticulum processes (Figure 4C).

DISCUSSION

By using statistical and system biology approaches, we show
that gene expression of the plaque tissue of men with severe
atherosclerosis is unrelated to plasma testosterone levels, despite
a high relative expression of the androgen receptor.
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FIGURE 4 | Association analysis of gene co-expression networks with testosterone levels. (A) Hierarchical cluster tree of 12,756 genes, height (y-axis) is determined

using the average gene linkage from the topological overlap measure, which incorporates information about both co-expression and connectivity in the network. A

total of 14 modules were assigned based on the dynamic hybrid branch cutting method and are shown along the x-axis in different colors. Genes in the same module

have higher co-expression and present higher connection in the network. (B) Correlation of module eigengenes (a composite measure of the combined expression of

the genes from each module) with testosterone levels and age of the participants, p-values for the correlation are in parenthesis. (C) Gene enrichment GO terms

obtained for the purple module, nominally associated with testosterone levels (no significant enrichment was found for turquoise module).

Testosterone level itself was not correlated with the overall
transcriptional state of the atherosclerotic plaques in our study
and did not significantly influence gene expression at individual
gene level. Furthermore, dissecting the gene expression profiles
into gene co-expression modules, which are known to reveal
subtle differences in tissue gene expression (29) also showed
no effect of testosterone on gene regulatory networks. Also,
known testosterone-sensitive (26) genes as well as genes that
were correlated to the androgen receptor expression were not
correlated to plasma testosterone levels.

Several factors might explain our unexpected results. First of
all, levels in our study were overall low as our population consists

mainly of older men. It may well be that testosterone does affect
plaque expression, and thereby affects atherosclerosis, but rather
at an earlier age when testosterone levels are higher. Despite
the low levels, we did observe a strong relation between sex-
hormone levels and secondary outcomes (12) in this cohort. Low
testosterone to estradiol predicted future major cardiovascular
events (hazard ratio (HR) 1.67; 95% CI: 1.02–2.76, an effect
even stronger in obese men (HR 2.42; 95% CI: 1.09–5.38), This
coincided with an unfavorable inflammatory pattern shown by
elevated hsCRP levels.

It may be that the systemic inflammation we observed is an
important factor in secondary outcome in these men. Indeed,
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it is known that stroke patients with a high inflammatory
profile have a poor outcome (31–33), possibly by time-dependent
recruitment and activation of inflammatory cells at the site of
the injury. Indeed, testosterone is known to affect the immune
system (34). Interestingly, a high prevalence of venous thrombo-
embolic complications has been documented in Klinefelter
Syndrome (35), characterized by genetically low testosterone
and often accompanied by abdominal adiposity and metabolic
syndrome. It could well be that the relation between low
testosterone and secondary outcome is mediated by changes in
vascular hemostasis and thrombosis. Testosterone is known to
affect platelets (36), but an effect on thrombosis has not been
found (37).

From a disease progression point of view, testosterone
could be more important in the development and
progression of atherosclerotic disease in earlier stage of
the disease, instead of in older patients with advanced
atherosclerosis as we have studied here. Animal studies
indeed point toward a beneficial effect of testosterone
during the development of the atherosclerotic plaque
(7, 8), but longitudinal studies in humans are inconclusive
as excellently reviewed elsewhere (38). The premature
interruption of the Testosterone in Older Men With
Mobility Limitations (TOM) study raised serious concerns
on the potential increased risk of CVD upon testosterone
supplementation (39).

Limitations of the Study
Testosterone levels were available in 203 men and our study
may not be sufficiently powered to assess associations of each
individual gene with plasma testosterone levels. However, a
predefined testosterone responsive list of genes also did not reveal
any association.

In literature, we searched for candidate genes that are
influenced by the androgen receptor. Expression levels of these
genes were associated with plaque androgen receptor expression
and testosterone levels. Publicly available data was scarce and
limited to expression levels obtained in endothelial progenitor
cells. Although the endothelial cell is considered to be a central
player in the effects of testosterone on the vessel wall, we cannot
rule out the possibility that co-expression of relevant genes can
be found in other cell clusters present in atherosclerotic lesions.

In our study, the expression of the androgen receptor
does show a correlation with downstream gene expression,
hinting toward an association between the testosterone pathway
and down-stream gene expression, but was independent of
plasma testosterone levels. As dihydrotestosterone (DHT)
is the most active androgen, for future studies, it might
be interesting to assess the association between different
DHT levels and the plaque transcriptome, instead of total
testosterone alone. Unfortunately, we did not measure DHT in
this study.

Lastly, testosterone levels depend on aromatase-activity, as
testosterone is converted to estradiol (1). This aromatization is

dependent on white adipose tissue, and thereby obese subjects
often have lower testosterone levels. Thus, after conversion to
estradiol, testosterone can theoretically also have an effect on
plaque expression indirectly via estrogen-receptors, a link that
needs to be studied further.

CONCLUSION

In men with severe atherosclerotic disease the androgen
receptor is highly expressed in plaque tissue. However, plasma
testosterone levels were neither associated with gene expression
profiles nor with gene regulatory networks or with pre-selected
testosterone sensitive genes in late-stage atherosclerotic
plaques. The effect of testosterone on gene expression
of the late-stage atherosclerotic plaque appears limited,
suggesting that alternative mechanisms explain its effect on
clinical outcomes.
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