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Abstract: Human life necessitates high-quality sleep. However, humans suffer from a lower quality of
life because of sleep disorders. The identification of sleep stages is necessary to predict the quality of
sleep. Manual sleep-stage scoring is frequently conducted through sleep experts’ visually evaluations
of a patient’s neurophysiological data, gathered in sleep laboratories. Manually scoring sleep is a
tough, time-intensive, tiresome, and highly subjective activity. Hence, the need of creating automatic
sleep-stage classification has risen due to the limitations imposed by manual sleep-stage scoring
methods. In this study, a novel machine learning model is developed using dual-channel unipolar
electroencephalogram (EEG), chin electromyogram (EMG), and dual-channel electrooculgram (EOG)
signals. Using an optimum orthogonal filter bank, sub-bands are obtained by decomposing 30 s
epochs of signals. Tsallis entropies are then calculated from the coefficients of these sub-bands. Then,
these features are fed an ensemble bagged tree (EBT) classifier for automated sleep classification.
We developed our automated sleep classification model using the Sleep Heart Health Study (SHHS)
database, which contains two parts, SHHS-1 and SHHS-2, containing more than 8455 subjects with
more than 75,000 h of recordings. The proposed model separated three classes if sleep: rapid eye
movement (REM), non-REM, and wake, with a classification accuracy of 90.70% and 91.80% using
the SHHS-1 and SHHS-2 datasets, respectively. For the five-class problem, the model produces a
classification accuracy of 84.3% and 86.3%, corresponding to the SHHS-1 and SHHS-2 databases,
respectively, to classify wake, N1, N2, N3, and REM sleep stages. The model acquired Cohen’s kappa
(κ) coefficients as 0.838 with SHHS-1 and 0.86 with SHHS-2 for the three-class classification problem.
Similarly, the model achieved Cohen’s κ of 0.7746 for SHHS-1 and 0.8007 for SHHS-2 in five-class
classification tasks. The model proposed in this study has achieved better performance than the best
existing methods. Moreover, the model that has been proposed has been developed to classify sleep
stages for both good sleepers as well as patients suffering from sleep disorders. Thus, the proposed
wavelet Tsallis entropy-based model is robust and accurate and may help clinicians to comprehend
and interpret sleep stages efficiently.

Keywords: polysomnogram (PSG); ensemble bagged tree (EBT); sleep stages; EEG; EMG; EOG;
Tsallis entropy; Cohen’s kappa coefficient; wavelet decomposition

1. Introduction

Sleep is a daily routine in human life. Sleep can be categorized into two phases, namely,
rapid eye movement (REM) sleep, and non-REM (NREM) sleep, as per the Rechtschaffen
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and Kales (R&K) guidelines [1]. A healthy adult’s one-night sleep contains 4 to 5 cycles of
REM and NREM sleep; each cycle lasts for approximately 90 min. NREM sleep is further
categorized into four phases: S1, S2, S3, and S4. Sleep stages S3 and S4 are combined into a
stage called N3, as per the American Academy of Sleep Medicine’s (AASM) [2] guidelines.
Thus, according to the AASM, the NREM stage consists of only three sleep stages, namely
N1, N2, and N3 [3,4].

Proper sleep-stage scoring helps doctors diagnose sleep disorders and decide on the
relevant course of action for the treatment. The present gold standard for sleep analysis is
the scoring of visual sleep phases performed manually by human experts. Sleep stages are
graded by technicians and clinicians associated with a visual inspection of neurophysiologic
signal patterns [5]. A hypnogram is a visual description of sleep phases throughout
the night. It provides a simple picture of sleep that can be used to suspect or confirm
sleep problems [6]. Analyzing the hypnograms over a night is a time-consuming process
involving the subjectivity of sleep scorers. When given the same polysomnography (PSG)
recording, different human sleep-scoring specialists are likely to develop varied sleep-
staging assessments, and agreement among them may be around 83% [7]. The sleep-
scoring accuracy of individual human experts is about 80% [8]. Even though the same
specialist analyzes the same recording twice, the results may be slightly different, and the
agreement between both sleep-scoring assessments would be, at most, 90% [9]. Sleep stages
help as an asymptomatic instrument to identify sleep issues. The sleep scoring is often
performed in a clinical setting by professionals using PSG [10] monitoring, which commonly
includes electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG)
data, and electromyogram (EMG) signals, as per the R&K [11] principles or the AASM
guidelines [2,12,13]. PSG recordings are first segmented into 30 s epochs, complying with
the AASM guidelines. PSG is an effective tool used in sleep medicine to record many
biological signals to determine sleep quality. When the patient sleeps, multiple signals,
such as overnight EEG, breathing through the nostrils, breathing rate, blood pressure
variations, ECG signals, blood oxygen content, EOG signals, and contact EMGs on the
chin and legs, are recorded [14]. However, overnight recording using multiple channels
causes discomfort in patients, and such data sometimes may not represent natural sleep
patterns. PSG analysis for sleep-stage scoring is a costly affair requiring dedicated sleep
labs and expensive equipment [15–19]. Recording sleep in a sleep lab cannot be conducted
for multiple nights, and only one or two nights’ worth of sleep data may not accurately
represent the complete scenario. For accurate sleep analysis, sleep recordings of multiple
nights are required, which demands a portable and home-based system that captures only
a few desired signals and requires the placement of only a few electrodes and sensors on
the subject’s body. The proposed study explores the effectiveness of various channels and
their combination for three signals, namely, EEG, EOG, and EMG, which are considered
to be the most essential for sleep analysis. Further, this study aims to obtain a simple
system that uses a minimum number of electrodes, but at the same time has a comparable
performance with PSG-based systems such that it can be used as a portable home-based
sleep-scoring system [12,20,21].

The National Sleep Research Resource (NSSR) contains PSG data of the SHHS [22,23]
database, which was used for this study. The SHHS is a polycentric cohort developed to
observe sleep-disordered ventilation related to an increased chance of heart disease [6].
The PSG recordings of 5793 subjects were collected during the 1995–1998 period. This
database is known as the SHHS-1. For the remaining 2651 subjects, recordings were col-
lected during the 2001–2003 period; these are known as the SHHS-2 database. The sampling
frequency of both the EEG and EMG signals is 125 Hz, whereas the sampling frequency
of the EOG signal is 50 Hz. PSGs were annotated by certified expert sleep scorers in both
sessions using modified R&K standards. A single clinician manually assessed every record
for sleep stages in 30-s epochs using R&K [11] scoring standards, obtaining multiple sleep
stages. The details of both databases are given in Table 1.
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Table 1. Summary of the SHHS database.

Variable SHHS-1 SHHS-2

Subject Count 5793 2651

Size of Dataset 216 GB 137 GB

Male Patients 3033 1425

Female Patients 2760 1226

mean std min max mean std min max

Age (year) 63.14 11.23 39 90 67.23 10.38 44 90

Body Mass Index (BMI) 28.16 5.09 18 50 28.31 5.05 18 50

Epworth Sleepiness Scale (ESS) score 7.77 4.4 0 24 7.51 4.21 0 24

Total Sleep Time (minutes) 506.07 37.36 180 599.5 602.15 68.52 261 845.5

Wake (%) 28.72 12.29 1.56 91.42 37.43 11.62 7.29 88.16

Repid Eye Moment (REM) Sleep (%) 13.96 5.75 0 35.73 12.97 5.15 0 34.31

Non-REM stage 1 (%) 3.7 2.62 0 23.8 3.51 2.9 0 76.35

Non-REM stage 2 (%) 40.98 11.43 3.69 93.64 36.18 9.46 0 83.43

Non-REM stage 3 (%) 11.84 7.97 0 53.84 9.49 6.89 0 43.82

Sleep Efficiency (%) 71.28 12.29 8.58 98.44 62.57 11.62 11.84 92.71

Total Epochs 5,861,304 3,037,838

It is to be noted that few studies have been performed in the literature to identify
sleep stages using the SHHS-1 database. However, to the best of our knowledge, no
study has used both SHHS-1 and SHHS-2. Sors et al. [6] employed a convolutional neural
network using only the SHHS-1 database to score sleep stages using EEG and obtained
an accuracy of 87% and a Cohen’s κ coefficient of 0.81. Biswal et al. [24] conducted a
study on sleep-stage classification employing recurrent and convolutional neural networks
(RCNN) and achieved 77.9% accuracy for the SHHS-1 dataset. Zhang et al. [5] also used
the SHHS-1 dataset for sleep scoring using spectrograms from raw data. In addition,
they used recurrent and convolutional neural networks to score sleep stages and obtained
87% accuracy. Zhang et al. [25] performed sleep-stage classification using a bidirectional
long short-term memory (BLSTM) neural network to assess the four sleep stages (deep
sleep, light sleep, wake, REM) and obtained a prediction accuracy of 80.25%. Fernández-
Varela et al. [26] used only 500 random sleep recordings of the SHHS-1 database and
achieved an accuracy of 75% by using a convolutional network. Wongsirichot et al. [27]
used the k-nearest neighbors classifier with 14 bio-medical channels of the SHHS-2 database
and found an accuracy of 83.76%.

In this work, we introduce an automatic sleep-stage scoring system using a wavelet-
based Tsallis entropy feature, wherein the model is developed employing the SHHS-1 and
SHHS-2 databases together. The deployment of both datasets makes the model robust.
The SHHS-1 and SHHS-2 databases contain 5804 and 2651 subjects, respectively. We
used C3-A2 and C4-A1 channels for the EEG signal—one EMG channel and two EOG
channels (EOG-L and EOG-R). Thus, in contrast to earlier studies that used SHHS-1 only,
the proposed study employs a comprehensive database comprising both SHHS-1 and
SHHS-2. The wavelet decomposition of the signals is also performed using a new optimal
orthogonal filter bank. Furthermore, we used individual channels as well as their varying
combinations. We have explored the performance of 15 varying combinations. This is the
first study on a joint SHHS database that used the optimal wavelet-based single feature to
score sleep stages.
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2. Methodology

Figure 1 shows the flow diagram for the suggested system, representing the actions
taken in scoring sleep stages. Data acquisition, segmentation, wavelet decomposition,
feature extraction, and classification are all part of the process. The PSG data were collected
and segmented into an epoch of 30 s. The six sub-bands were acquired using a five-level
wavelet decomposition using an orthogonal wavelet filter bank. The Tsallis entropy feature
is extracted for these sub-bands. The features are then fed into machine learning classifiers
to identify sleep stages.

Data

SHHS-1 
and 

SHHS-2

Signals

EEG

EMG

EOG

Pre-
processing

Segmentation

Wavelet 
Decomposition

using Orthogonal 
Filter bank
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and 

Validation

Ensemble 
Bagged Tree

Classifier

10% Holdout 
Validation

Sleep Stage 
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Wake

N1

N2

N3

REM

Figure 1. Block diagram of the proposed work.

2.1. Data Gathering

The SHHS database contains 8444 PSG recordings, of which 8326 (5791 from visit-1
and 2535 from visit-2) were selected for this study based on the availability of target signals.
We used two bipolar EEG channels, two EOG channels, as well as an EMG channel. Every
PSG recording was retrieved as a European data format (.edf) file, which also includes
XML files for each subject. Every sleep stage of a 30-s epoch was annotated in the XML
file, according to the R&K [11] rules. Recording files, the frequency of the channels, and
the header details were obtained from the .edf file. The recording file contains the signal
data in matrix form, which is normalized for segmentation into an epoch of 30 s. A total
of 5,861,304 and 3,037,838 epochs were obtained from the SHHS-1 and SHHS-2 databases.
The details of the sleep-stage epoch distribution for both visits are given in Table 1.

2.2. Orthogonal Wavelet Filter Bank

Instead of using Daubechies standard wavelet dB filters [28,29], we used an optimal
orthogonal wavelet filter in this study [30]. The orthogonal filter employed has a minimum
time-frequency product [31]. For the chosen length, first, an optimal half-band filter was
designed, formulating a convex optimization problem in the form semidefinite program
such that the spectral factors had minimum mean squared bandwidths. Then, the optimal
spectral factor possessing a minimum mean squared duration was selected. Thus, the low-
pass filter chosen had minimum spread both in frequency and time [31,32]. We used a filter
with three vanishing moments and with a length of 18 in this study.
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2.3. Wavelet Decomposition

The wavelet decomposition of level five was applied to every epoch of the PSG signals
using the orthogonal wavelet filter bank. As a result, we obtained six sub-bands, out of
which one was an approximate band, and the remaining five were detailed bands.

2.4. Feature Extraction

Feature extraction was performed by extracting the Tsallis entropy features from each
sub-band to classify sleep stages. Tsallis entropy is important in non-extensive statistics
because it accurately explains complicated systems’ statistical properties. Tsallis entropy is
regarded as a valuable metric for defining the thermo-statistical features of a specific class
of given system, which includes long-range connections, long-term memories, and multi-
fractal systems [33]. The generalization of Boltzmann–Gibbs–Shannon (BGS) entropy [34]
gives Tsallis entropy (TE):

TE =
n

∑
i=1

xi − xi
2

where xi denotes the ith sample of the wavelet coefficient sequence x(n) of length N.

2.5. Classification Method

Wavelet-based Tsallis entropy features are used to classify sleep stages. Two classifi-
cation tasks were considered: (i) 3-class classification for distinguishing W vs. NREM vs.
REM, and (ii) a 5-class task to discriminate 5 classes, namely, W vs. REM vs. N1 vs. N2 vs.
N3. The extracted labeled features were fed to the machine learning classifier, namely, an
ensemble bagged decision tree with 10% holdout validation [31,35]. Ensemble learning is a
cutting-edge method to solve various machine learning issues by integrating the outputs of
many base learners [36,37]. A bagging method and decision tree classifier were combined
in the EBT classifier. Bagging is a strategy that uses bootstrap sampling to decrease decision
tree variance and increase learning algorithm efficiency by producing a group of learning
algorithms that are trained in succession. It employs arbitrary sampling with a replacement
rather than a conventional averaging of all outcomes from multiple decision trees [38].

3. Results

The present approach is conducted on an Intelr Core™ i5 eighth-generation CPU
@ 1.60 GHz, 8 GB RAM, and Windows 10 (64-bit) OS with MATLAB R2016a. For the
classification task, the proposed method employs 8,899,142 epochs (5,861,304 epochs for
visit-1 and 3,037,838 epochs for visit-2). A summary of the results obtained for automated
sleep-stage scoring with the ensemble bagged tree classifier using 10% holdout validation
to classify sleep stages into three stages using the SHHS (1 and 2) datasets can be observed
in Tables 2 and 3, respectively. Additionally, Tables 4 and 5 summarize the categorization
results for five sleep stages.

Signals are divided into six sub-bands using a five-level one-dimensional decom-
position. Tsallis entropy is then used to extract features, which are then loaded into the
EBT classifier for three-stage and five-stage classification. We merged the sleep stages N1,
N2, and N3, and represented them as N for three sleep-stage classifications in this work.
Tables 2 and 3 exhibit each channel’s accuracy alone and collectively for three-class sleep-
stage categorization, as acquired from visit-1 and visit-2. It also shows that the maximum
accuracy is yielded by integrating all channels rather than individual channels. For three-
stage classification using visit-1, by combining all the channels, we scored an accuracy
of 90.70% and a Cohen’s κ coefficient of 0.833, whereas, for visit-2, we achieved 91.80%
accuracy and a Cohen’s κ coefficient of 0.86. The confusion matrix [39,40] for the three-class
sleep-stage classification for both datasets is shown in Table 6. Similarly, for the five-stage
classification, by employing all the channels using visit-1, we achieved 84.30% classification
accuracy with a Cohen’s κ value of 0.774, and 86.30% accuracy with Cohen’s κ coefficient
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of 0.80 for visit-2. The confusion matrix for the five-class sleep-stage classification is shown
in Table 7.

Table 2. Classification performance using different combinations of channels for classifying three
sleep stages using SHHS-1.

Signals
Accuracy(%) Cohen’s

W NREM REM Overall Kappa

EMG 83.06 72.28 87.46 71.60 0.4552
EOG-R 86.26 81.78 87.44 77.75 0.5941
EOG-L 86.41 81.75 87.36 77.75 0.5941
EEG (C4-A1) 91.36 84.51 88.78 82.00 0.8305
EEG (C3-A2) 91.29 84.34 88.42 82.35 0.6839
EEG (C4-A1 + C3-A2) 93.22 87.63 90.99 86.00 0.7489
EMG + EOG-R 89.87 85.01 91.66 83.25 0.6975
EMG + EOG-L 89.93 85.01 91.62 83.25 0.6977
EOG-R + EOG-L 88.52 84.85 88.82 81.15 0.6581
EMG + EOG-R + EOG-L 90.46 86.23 92.15 84.40 0.7188
C3-A2 + C4-A1 + EMG 94.08 89.77 93.44 88.65 0.798
C3-A2 + C4-A1 + EOG-R + EOG-L 94.60 90.87 93.41 89.40 0.8109
C3-A2 + C4-A1 +EMG +EOG-R 95.00 91.67 94.46 90.55 0.8316
C3-A2 + C4-A1 +EMG +EOG-L 94.98 91.62 94.41 90.50 0.8109
C3-A2 + C4-A1 + EMG + EOG-R + EOG-L 95.05 91.81 94.52 90.70 0.8338

Table 3. Classification performance using different combinations of channels for classifying three
sleep stages using SHHS-2.

Signals
Accuracy(%) Cohen’s

W NREM REM Overall Kappa

EMG 83.05 72.92 88.09 72.00 0.5073
EOG-R 87.40 83.90 88.39 79.80 0.6533
EOG-L 87.33 83.84 88.44 79.80 0.6526
EEG (C4-A1) 91.90 86.01 89.49 83.20 0.7122
EEG (C3-A2) 91.61 85.73 89.02 83.70 0.7217
EEG (C4-A1 + C3-A2) 93.60 88.74 91.45 86.90 0.7766
EMG + EOG-R 90.87 86.82 92.52 85.10 0.7456
EMG + EOG-L 90.85 86.88 92.59 85.10 0.7461
EOG-R + EOG-L 88.73 86.21 90.04 82.50 0.6994
EMG + EOG-R + EOG-L 91.45 88.18 93.20 86.40 0.7683
C3-A2 + C4-A1 + EMG 94.37 90.79 94.05 89.60 0.8237
C3-A2 + C4-A1 + EOG-R + EOG-L 95.14 92.15 93.97 90.60 0.8406
C3-A2 + C4-A1 + EMG + EOG-R 95.43 92.78 95.05 91.60 0.8578
C3-A2 + C4-A1 + EMG + EOG-L 95.34 92.67 95.04 91.50 0.8561
C3-A2 + C4-A1 + EMG + EOG-R + EOG-L 95.44 92.92 95.14 91.80 0.8600

Table 4. Classification performance using different combinations of channels for classifying five sleep
stages using SHHS-1.

Signals
Accuracy(%) Cohen’s

W N1 N2 N3 REM Overall Kappa

EMG 83.39 96.36 65.90 88.52 86.93 59.25 0.4125
EOG-R 87.75 96.60 80.05 92.05 88.88 67.95 0.5733
EOG-L 85.67 95.95 76.62 90.63 86.80 67.85 0.5328
EEG(C4-A1) 91.13 96.01 79.69 93.18 88.57 74.30 0.6303
EEG(C3-A2) 91.08 96.02 79.92 93.36 88.21 74.30 0.6301
EEG(C4-A1 + C3-A2) 92.83 96.18 83.48 94.64 90.87 79.10 0.6970
EMG + EOG-R 89.45 96.16 80.13 92.44 91.50 74.85 0.6354
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Table 4. Cont.

Signals
Accuracy(%) Cohen’s

W N1 N2 N3 REM Overall Kappa

EMG + EOG-L 89.47 96.18 80.15 92.47 91.35 74.80 0.6350
EOG-R + EOG-L 86.99 95.94 78.86 91.62 88.47 70.90 0.5787
EMG + EOG-R + EOG-L 90.06 96.20 81.61 93.03 92.14 76.50 0.6600
C3-A2 + C4-A1 + EMG 93.84 96.26 85.88 95.31 93.35 82.30 0.7462
C3-A2 + C4-A1 + EOG-R + EOG-L 94.45 96.19 86.81 95.20 93.28 83.00 0.7553
C3-A2 + C4-A1 + EMG + EOG-R 94.73 96.25 87.37 95.53 94.37 84.15 0.7720
C3-A2 + C4-A1 + EMG + EOG-L 94.76 96.31 87.30 95.51 94.28 84.05 0.7714
C3-A2 + C4-A1 + EMG + EOG-R + EOG-L 94.79 96.25 87.55 95.57 94.45 84.30 0.7746

Table 5. Classification performance using different combinations of channels for classifying five sleep
stages using SHHS-2.

Signals
Accuracy(%) Cohen’s

W N1 N2 N3 REM Overall Kappa

EMG 81.64 96.31 66.67 89.99 86.99 60.80 0.4119
EOG-R 86.95 96.24 79.91 92.84 87.92 71.90 0.5864
EOG-L 86.88 96.29 80.00 92.84 88.03 72.00 0.5878
EEG(C4-A1) 91.76 96.25 82.40 94.71 89.26 76.70 0.6605
EEG(C3-A2) 91.31 96.25 82.33 95.09 88.70 77.20 0.6657
EEG(C4-A1 + C3-A2) 93.43 96.41 85.92 96.05 91.29 81.50 0.7301
EMG + EOG-R 90.40 96.40 82.90 94.14 92.35 78.10 0.6788
EMG + EOG-L 90.50 96.38 83.10 94.18 92.43 78.30 0.6812
EOG-R + EOG-L 88.17 96.30 82.13 93.61 89.62 74.90 0.6308
EMG + EOG-R + EOG-L 91.02 96.40 84.26 94.54 93.11 79.70 0.7016
C3-A2 + C4-A1 + EMG 94.14 96.45 87.58 96.32 93.97 84.20 0.7697
C3-A2 + C4-A1 + EOG-R + EOG-L 94.93 96.41 88.90 96.41 93.81 85.20 0.7844
C3-A2 + C4-A1 + EMG + EOG-R 95.19 96.43 89.20 96.51 94.96 86.10 0.7979
C3-A2 + C4-A1 + EMG + EOG-L 95.18 96.43 89.15 96.49 94.98 86.10 0.7975
C3-A2 + C4-A1 + EMG + EOG-R + EOG-L 95.20 96.44 89.35 96.55 95.13 86.30 0.8007

Table 6. Confusion matrix relating to three sleep stages’ classification by using combined signals with
10% hold-out validation.

Predicted class Predicted class

Wake N REM Wake N REM

True class
Wake 92% 7% 1%

True class
Wake 95% 5% 1%

N 3% 95% 2% N 3% 95% 2%
REM 6% 23% 71% REM 7% 21% 72%

SHHS-1 SHHS-2

Table 7. Confusion matrix relating to five sleep stages’ classification by using combined signals with
10% hold-out validation.

Predicted class Predicted class

Wake N1 N2 N3 REM Wake N1 N2 N3 REM

True class

Wake 93% 1% 4% 1% 1%

True class

Wake 96% <1% 3% <1% 1%
N1 24% 12% 47% <1% 17% N1 26% 11% 50% 14%
N2 3% <1% 90% 4% 3% N2 3% 1% 90% 3% 2%
N3 1% <1% 22% 77% <1% N3 <1% 22% 77% <1%

REM 6% 1% 17% <1% 75% REM 7% 1% 16% <1% 75%

SHHS-1 SHHS-2
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4. Discussion

The PSG is widely recognized as a key element for assessing sleep phases and diag-
nosing sleep disorders. PSG-based approaches require the use of many connected sensing
devices to capture the actions of various biomedical signals, as well as time-consuming
analytic methods. Furthermore, the sleep measurements must be performed nightly in a
professional sleep lab or clinic. As a result, it is essential to investigate novel approaches
that can yield reliable outputs that are comparable to conventional sleep-staging PSG-based
techniques, but that are simpler, less costly, and more comfortable for patients. The sug-
gested method addresses all of the issues associated with earlier methods by employing a
basic and straightforward methodology to classify sleep stages reliably.

This proposed study has provided an automatic sleep-stage classification system
employing PSG signals. The suggested study considers a five-class and a three-class sleep-
stage classification method. We used two unipolar EEG channels (C4-A1 and C3-A2), one
EMG channel, and two EOG channels (EOG-L and EOG-R) separately and in combination
for the present study. In addition, we used an orthogonal filter bank to decompose PSG
epochs using a five-level one-dimensional wavelet filter bank.

As shown in Table 8, the proposed technique has obtained the highest classification
accuracies compared to prior studies for three-class and five-class problems. The proposed
approach acquired 90.70% and 91.80% accuracy for the three-stage classification by using
the visit-1 and visit-2 datasets, respectively. Morevoer, the technique obtained a higher
Cohen’s κ coefficient for both datasets compared to previous studies. Biswal et al. [24]
employed only the SHHS-1 dataset using RCNN to categorize five-class sleep stages and
achieved an accuracy of 77.90% while using only two uni-polar channels. The current
study uses both datasets (visit-1 and visit-2) and EEG, EMG, and EOG channels both
separately and together. Furthermore, the proposed study focuses on three- and five-stage
categorization and achieves high accuracy. Sors et al. and Seo et al. [6,41] employed a
single dataset (visit-1) and a single EEG channel to categorize five sleep phases while the
suggested method employs a large dataset (visit-1 and visit-2) to score sleep stages. Linda
Zhang et al. and Fernandez-Varela et al. [5,26] used a single dataset with three channels
(EEG, EMG, and EOG) for five-class classification. Additionally, Wongsirichot et al. [27]
used the visit-2 dataset with 14 biomedical channels for 5-class stage classification using
a k-nearest neighbor classifier, and achieved an accuracy of 83.76%, which is less than
the proposed method. The proposed technique used five channels for three-stage and
five-stage classification and employs an ensemble bagged tree classifier, and achieved
higher classification accuracy.

The current work is unique because it gives an idea about how different PSG signals
contribute to the sleep-scoring capability of a machine learning model. We observed that
EEG signals are the most effective in sleep scoring, followed by EOG and EMG signals.
A combination of these channels yields even better sleep-scoring capabilities, and helps
develop a system that can score sleep stages in an effective, rapid, and simple manner.
The following are some additional advantages of the proposed study:

• This is the first study that employs a huge database with two subsets, visit-1 with 5791
subjects and visit-2 with 2535 subjects, and it is also the first study to employ more
epochs (5,861,304 for visit-1 and 3,037,838 for visit-2) than previous research [5,6,24,41].
We have used 75468 h of sleep recordings (48861 h in visit-1 and 26607 h in visit-2);

• The proposed model demonstrated high recognition accuracy for the three- and five-
stage classification tasks examined in this study. Tables 2–5 show that the EMG is
the least-accurate signal in sleep-scoring tasks, whereas EEG is the most-accurate
one. EOG-R and EOG-L had similar scoring capabilities, and taking only one did not
significantly change the outcome. A combination of all five target signals yielded the
best-performing model;

• We have used orthogonal filters to create a new five-level, one-dimensional wavelet
decomposition class. Tsallis entropy is used to extract the features from every sub-band;
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• We extracted Tsallis entropy-based features from two EOG channels, two uni-polar
EEG channels, and one EMG, with sampling frequencies of 125 Hz, 50 Hz, and 125 Hz.
This made the process easier and more computationally efficient;

• A system for detecting sleep stages that is simple, rapid, and accurate is being developed;
• For both SHHS sleep datasets, the suggested model produced high Cohen’s κ coeffi-

cient values (greater than 0.75).

The limitations of the proposed method are as follows:

• Because of the restricted amount of data available in an unbalanced database, the pro-
posed method achieves lower accuracy in categorizing the N1 sleep stage (SHHS).
However, balancing the employed data improves the classification of the N1 sleep stage;

• Wavelet-based features take longer to compute than traditional statistical features.
However, interestingly, the same wavelet filter is used to remove noise;

• The suggested method employs PSG signals with many channels, which may cause a
little inconvenience to individuals. The portable recording machines that can be used
at homes are also more expensive;

• Since the database has many participants, the machine learning classifier takes longer
to categorize sleep stages.

Deep learning (DL) is now widely used to categorize biomedical signals [42]. However,
DL-based algorithms perform well when dealing with large databases [43]. As a result,
we plan to incorporate deep learning (DL) techniques such as recurrent neural networks
(RNN), long short-term memory (LSTM), and auto-encoders into our future study.

Table 8. Comparison with existing state-of-the-art approaches in terms of accuracy and Cohen’s κ.

Study Database Subject Signal
Accuracy Cohen’s κ

C = 3 C = 5 C = 3 C = 5

Sors et al. [6] SHHS-1 5793 C4-A1 - 87% - 0.81

Biswal et al. [24] SHHS-1 5791 C4-A1, C3-A2 - 77.90% - 0.73

Linda zhang et al. [5] SHHS-1 5793 EEG + EMG + EOG - 87% - 0.82

Fernandez-Varela et al. [26] SHHS-1 500 EEG + EMG + EOG - 78% - 0.83

Wongsirichot et al. [27] SHHS-2 2535 14 Biomedical - 83.70% - N/A

Seo et al. [41] SHHS-1 5791 C4-A1 - 86.30% - 0.81

Proposed Work
SHHS-1 5791 EEG + EMG + EOG 90.70% 84.30% 0.83 0.77

SHHS-2 2535 EEG + EMG + EOG 91.80% 86.30% 0.86 0.80

5. Conclusions

The identification of the sleep stages plays a significant role in sleep science. Normal
sleep rating in a sleep clinic utilizing human PSG records is costly and difficult for experts.
In certain ways, defining the sleep cycle process will reduce costs and accelerate sleep
research. In this work, we propose a technique for automatic sleep-stage classification
using PSG signals. We employed two unipolar EEG channels (C4-A1 and C3-A2), one
EMG channel, and two EOG channels (EOG-L and EOG-R) individually and in various
combinations for three-class and five-class classification tasks. We used the PSG signal
recordings of 5791 subjects from the visit-1 dataset, and 2535 subjects from the visit-2
dataset. The PSG signals were segmented into numerous 30 s epochs corresponding to
three and five classes, and each epoch was subjected to a five-level, one-dimensional
wavelet decomposition using an orthogonal filter bank. This was followed by computing
the Tsallis entropy-based features for each sub-band.

The proposed method employs an EBT classifier with 10% holdout validation for
the three-class and five-class classification problems. The proposed method achieved a
maximum accuracy of 90.70% with the visit-1 dataset and of 91.80% with the visit-2 dataset
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for three-class classification, while for the five-class sleep-stage classification, we achieved
an accuracy of 84.30% with visit-1 and 86.30% with visit-2. Further, when the visit-1 and
visit-2 datasets were used, the model produced higher Cohen’s κ coefficients (0.838 (visit-1)
and 0.86 (visit-2) for the three-class classification and 0.7746 (visit-1) and 0.8007(visit-2) for
the five-class one, respectively). The proposed model’s classification accuracy reveals that
it can effectively categorize sleep stages utilizing 30 s duration and PSG signals, and it can
be employed in home-based systems and clinics to classify sleep stages.
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